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10.1. Introduction

Impedance Spectroscopy (IS) has become a major tool to investigate the properties
and quality of dye-sensitized solar cells (DSC) devices. In this chapter we provide an
introduction of IS methods of interpretation focusing on the analysis of DSC impedance
data, as well as a scope of the main results obtained so far. IS also gives access to
fundamental mechanisms of operation of solar cells, therefore we will discuss our views
of basic photovoltaic principles that are required to realize the interpretation of the
experimental results. The chapter summarizes some 10 years of experience of the
authors in modeling, measurement and interpretation of IS applied in DSC.

A good way to start this subject is a brief recollection of how it evolved over the first
years. The original “standard” configuration of a DSC* that emerged in the early 1990s
is formed by a large internal area nanostructured TiO, semiconductor, connected to a
transparent conducting oxide (TCO), coated with photoactive dye molecules, and in
contact with redox I/l3 electrolyte, that is in turn connected to Pt-catalyzed
counterelectrode (CE). The DSC developed initially as a photoelectrochemical solar
cell. Electrochemical Impedance Spectroscopy (EIS) is a traditional method, central to
electrochemical science and technology. Electrochemistry usually investigates
interfacial charge transfer between a solid conductor (the working electrode, WE) and
an electrolyte, by a voltage applied between WE and CE, with the assistance of a
reference electrode (RE), that allows to identify the voltage drop at the interface
between the WE and the electrolyte. In addition the electrolyte often contains a salt that
provides a large conductivity in the liquid phase and removes limitations by drift
transport in electrical field, thus electrochemistry is mostly concerned with interfacial
charge transfer events, possibly governed by diffusion of reactants or products. EIS
allows to readily separate the interfacial capacitance and charge-transfer resistance, and
to identify diffusion components in the electrolyte as well. A good introduction to such
applications is given by Gabrielli.?

In solid state solar cell science and technology the most commonly applied frequency
technique is Admittance Spectroscopy (AS). By tradition AS denominates a special
method that operates at reverse voltage and evaluates the energy levels of majority
carrier traps (in general, all those that cross the Fermi level) as well as trap densities of
states.® In work on DSCs and other solar cells we may be interested to probe a wide



variety of conditions, so we generally use the denomination Impedance Spectroscopy
(IS) to denote the technique applied in this context (rather than EIS or AS).

Before the advent of DSC, IS had been widely applied in photoelectrochemistry.*>
This is a field widely explored since the 1970s, using compact monocrystalline or
polycrystalline semiconductor electrodes for sunlight energy conversion.®® In these
systems IS provides information on the electronic carrier concentration at the surface,
via Mott-Schottky plots (i.e. the reciprocal square capacitance versus the bias voltage)
characterization and on the rates of interfacial charge transfer.”*! Several important
concepts, later to be applied in DSC, where established at that time, such as the
bandedge shift by charging of the Helmholtz layer and the crucial role of surface states
in electron or hole transfer to acceptors in solution.>***>* Nonetheless, it was clearly
recognized that applying IS in these systems is far from trivial, for example due to the
presence of frequency dispersion that complicates the determination of parameters.’®

It was natural to apply such well established electrochemical methods to DSC and
several groups did s0.**° However in the early studies it was necessary to clarify a
conceptual framework of interpretation and this took several years. On the one hand, the

early diffusion-recombination model,?

was generally adopted for steady-state
techniques and produced very good results when extended to light-modulated frequency
techniques.?! In this approach the only role of the applied voltage is to establish the
concentration of electrons at the edge of the TiO- in contact with TCO.?>?! On the other
hand, classical photoelectrochemical methods heavily rest on the notion of charge
collection at the surface space-charge layer, while diffusion is viewed as an auxiliary
component, at best.? Thus in photoelectrochemistry of compact semiconductor
electrodes the main method to describe the system behavior is an understanding of the
electric potential distribution between the bulk semiconductor and the
semiconductor/electrolyte interface.’

Owing to these conflicting approaches, in the DSC area there were many discussions
about the distribution of the applied voltage as internal “potential drops”, the origin of
photovoltage, screening, and the role of electron-hole separation at space-charge
region.>?’ This is understandable since the DSC is a porous, heterogeneous system, and
in models of systems with a complex morphology, it is generally difficult to match
diffusion control with a precise statement about the electrical potential distribution. The

key element for progress is to adopt a macrohomogeneous approach and focus in the



24,28-30 and

spatial distribution of the Fermi level. This approach emerged in the DSC area
eventually led to generalized photovoltaic principles based on splitting of Fermi levels
and the crucial role of selective contacts.*** Another central concept that appeared in
the DSC area was a “conduction band capacitance”,**?®% later to be generally defined
as a chemical capacitance.®*® This capacitive element is normally absent in classical
photoelectrochemistry but it is central for the interpretation of frequency resolved

techniques in DSC. Also important was the recognition?®°

that nanostructured TiO,
should be treated as a disordered material, much like the amorphous semiconductors,®”
%9 with electronic traps affecting not only the surface events, but any differential/kinetic
measurements, including the chemical capacitance,®® recombination lifetime and
transport coefficients.*

The passage from established ideas of photoelectrochemistry to those best suited to
the DSC inevitably required to treat the porous-mixed phase structure of the DSC. But
Electrochemistry was already evolving in this direction for some decades, first with the
description of porous electrodes,** and then, with the introduction of truly active
electrodes that become modified under bias voltage, such as intercalation metal-
oxides,** conducting polymers* and redox polymers.** Especially the work of Chidsey
and Murray* importantly shows the modification of the diffusion coefficient in the solid
phase, as well as the capacitance of the solid material as a whole, in opposition to the
standard interfacial capacitance. In the analysis of these systems, either porous or not, it
was well recognized the importance of coupling transport elements with interfacial
and/or recombination components for proper description of IS data. Transmission line
models provide a natural representation of the IS models and were widely used.***°

Transmission line models incorporating frequency dispersion that is ubiquitous in
disordered materials where developed and applied to nanostructured TiO, used in DSC,
Fig. 1, and a very good realization of the model was soon found in the experiment, as
shown in Fig. 2.% Later, diffusion-reaction models were solved for IS characterization,
and the models where put in relation to both nanostructured semiconductors and bulk
semiconductors for solar cells.*” Disorder was included also in generalized transmission
lines for anomalous diffusion.*® The role of macroscopic contacts was also analyzed in
generalized transmission line models, as shown in Fig. 1(b),* and this effect would take

relevance because of the TCO contribution to the measured impedance.>*>*



Fig. 1. (a) General two-channel transmission
line equivalent circuit for a porous electrode
or diffusion coupled with recombination,
with blocking boundary conditions at both
— channel ends.*® (b) The two channel
X2 transmission line with generalized boundary
conditions.”® Notice that the Z, box
solution | corresponds to the electrical properties of the
electrolyte/substrate interface, although it is
not drawn precisely at that point for
convenience of representation.

solution
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Fig. 2. Impedance spectroscopy of a 8 um
thick film of nanostructured TiO2 (10 nm
nanoparticles anatase) in aqueous solution at
pH 2, with -0.250 V bias potential vs.
Ag/AgCl in dark and under UV illumination.
e The lines are fits to the model of a version of
lght the transmission line in Fig. 1(a).*
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The calculation of the diffusion-recombination impedance*’ opened the way for a
direct measurement of conductivity of electrons in TiO, by 1S that provided a good
validation of the method. Further, the diffusion-recombination impedance also reveals
naturally*’ the chemical capacitance of electrons in nanostructured TiO, (associated to
the rise of the Fermi level), which appears as well in measurements of cyclic
voltammetry (at slow scan rates)> and electron lifetime.>

Application of these 1S methods and models to DSC®' showed that IS provides a
picture of the energetics of TiO,, which is a crucial tool for comparing different DSC



configurations.™ It also showed that it was possible to obtain simultaneously the
parameters for transport and recombination at different steady-state conditions of a
DSC, which is an unsurpassed power of the technique. The trends of the electron
diffusion coefficient®® where similar to those found previously by L. M. Peter and
coworkers by light-modulated techniques.®® The electron lifetime derived from 1S
measurements was also consistent® with that obtained from open-circuit voltage
decays.”**" The variation of parameters with the bias voltage (correspondent to the
electron Fermi level) observed by IS and other methods was related to multiple trapping
characteristics in an exponential distribution of states.**® This subject has been recently
summarized in review articles.>*®*

The consistency of the different experimental methods provided a great confidence
of the significance of modeling and experimental tools. The usefulness of IS for DSC
characterization became apparent, since IS allows a full picture of the different device
aspects to be obtained.®* Several groups presented detailed and systematic 1S
characterization of DSC.**® The literature of papers applying 1S in DSC is very large
and we do not aim to cite all the contributions. We highlight a paper on high efficiency
DSC® that provides excellent examples of diffusion-recombination impedances, a full
analysis of electron transport data, as well as the reconstruction of the current density-
potential ( j—V ) curve from the resistance obtained by IS. Subsequently, IS has been
applied in different and important configurations of DSC, such as those using ionic
liquids,® ordered TiO nanotubes,®” and solid hole conductor.®®

2. Abasic solar cell model
2.1. The ideal diode model

Many general aspects of solar cell operation can be understood starting with an ideal
model that represents optimal performance. Fig. 3(a) shows the steady-state
characteristic j—V curve of a solar cell. This curve was drawn using the ideal diode
model:

i=Je—Jale™™ 1) (1)
Here j is the electrical current density, V is the voltage difference between the
contacts, J¢. the short-circuit current density, jy the dark reverse current density, q is

the positive elementary electrical charge, kg is Boltzmann’s constant and T the absolute
temperature. The coefficient m is an ideality factor, the “ideal” model being for m = 1.



From Eq. (1) we obtain the open-circuit voltage V, :

v :mk—BTln(lﬂij D)

*q g

and we can also write Eq. (1) in terms of V.

1_ eq(V—Vuc)/kaT

1= e (3)
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Bias voltage is denoted “forward” when it injects charge in the solar cell and induces
recombination, and otherwise “reverse”. Changing the illumination intensity ®,, one
can trace different curves similar to Fig. 3(a) with other values of j, and V. The
values and shape of these curves for a given solar cell allow us to determine the energy
conversion efficiency of the photovoltaic device, Fig. 3(b). Another crucial parameter is
the fill factor (FF), which is the maximum electrical power delivered by the cell with

respect to j -V, Fig. 3(b). A high FF requires that the current remains high at the

oc’

maximum power point. This is obtained if the j-V curve is reasonably “squared” as in
Fig. 3(a).



2.2. Physical origin of the diode equation for a solar cell

It is important to clarify the physical interpretation of the diode equation. We
consider a slab of p-type semiconductor with thickness L. At position x, n is the density
of minority carriers (electrons), and J, the flux in the positive x direction. The
conservation equation is

%(x) =Gy (X) + Gy (x)—aJXn (x)=U,(x) (4)

0
In Eq. (4) Gy is the rate of optical photogeneration (per unit volume) due to the
illumination intensity @ (photons-cm), while G4 is the rate of generation in the dark
by the surrounding blackbody radiation. U , is the rate of recombination of electrons per
volume. A simple an important model is the linear form, with electron lifetime 7

U,=— )
7o

Eq. (4) must hold locally, in equilibrium, therefore, assuming Eq. (5), we have

n
Gy =2 (6)
70

where n, is the carrier density in dark equilibrium. This is because in dark equilibrium,
by detailed balance principle, the rate of generation equilibrates the recombination
rate.! A similar constraint on G4 applies for any recombination model.
The flux of electron carriers with the diffusion coefficient D, relates to the gradient
of concentration by Fick’s law
A

3y =Dy~ (7)

While Eq. (4) can be solved for any kind of generation profile and boundary
conditions, we now adopt some assumptions that lead to the central diode model (1) in
the simplest way. We assume that the photogeneration of carriers is homogeneous, and
we consider that the transport of electrons is very fast. Thus we assume that D, is very
large implying that the gradient of concentration required to maintain the flux is very
small. With these assumptions all the quantities in Eq. (4), except the carrier flux,
become independent of position. We now integrate between 0 < x < L and we obtain

%=G¢+Gd —%[JH(L)—Jn(O)]—Un ®)



The next condition we need is to assume that the semiconductor is supplemented with
ideal selective contacts to form a solar cell, as shown in Fig. 4.3 Thus the left contact
extracts all the arriving electron carriers.

light absorber Fig. 4. Basic model of a solar cell formed by
[ a light absorber and two selective contacts
for electrons and holes. Shown are the
processes of (1) Generation (Gg, + Gy ) (2)
L recombination (U,) and (3) charge
---------- extraction.

electron contact
I
I%
m

rn
o)
o)
0
o)
|
@* :
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The electrical current density in the positive x direction is

j=-0J,(0) (9)
and the right contact is perfectly blocking to electrons:

J.(L)=0 (10)

Therefore, the output current at time ¢ is:

j= qL[G(D +G4 -U, —gt—n} (11)

If we restrict our attention to steady-state condition, Eq. (11) reduces to

j=0LGy —qLU, - Gy] (12)

Comparing Egs. (1) and (12) we obtain that the photocurrent generated at short-
circuit is

Jse =0LGy (13)

The total generation per unit area, LGy, is proportional to the incident light

intensity, LGq, =705t P, Where 7, is an optical quantum yield, that depends on the
properties of absorption of the radiation by the solar cell. We also obtain that

Jg =qLGy (14)

Therefore the dark reverse current corresponds to the extraction of the carriers
generated by the thermal surrounding radiation.
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We already appreciate that the ideal diode model of a solar cell, states that a constant
current is drawn out of the cell, namely j¢. + j4, corresponding to all the electron
carriers generated in the semiconductor. In addition, the recombination term produces a
current in the opposite direction. At high forward bias the recombination term dominates
and bends the j—V curve, as it is indicated in Fig. 3(a). Note that this ideal model does
not contain any trace of diffusion at all. The only necessary element to obtain the diode
model is to state that the contacts are selective and extract only one carrier at each side,
as indicated in Fig. 4.

Another step to convert the conservation equation into a j—V characteristic is to
relate the carrier density n to the applied voltage ¥V by means of the introduction of
Fermi levels. We assume the extended states for electrons at the level E. (conduction
band edge), with effective density N, . With respect to the electron Fermi level E.,, we
have

n= Nce(EFn_Ec)/kBT (15)

and considering the dark (equilibrium) Fermi level Er,

N = Nce(EFO_Ec)/kBT (16)
we obtain
n= noe(EFn_EFO)/kBT a7

The voltage V is measured at the selective contacts, and corresponds to the difference
of Fermi levels of carriers at the contacts. If the contacts are ideally reversible,* each
contact separately equilibrates with the Fermi level of electrons, E,, and holes, Eg,,
therefore we have

V = (Ery —Erp)/0 (18)

For a p-semiconductor the holes Fermi level remains at the dark equilibrium level,
Erp = Egg, and so Eqg. (18) can be written
Ern =Epo +aQV (19)

In consequence
n =nyed" /keT (20)

Using the linear recombination of Eqg. (5) in Eqg. (12), and applying the Boltzmann
statistics indicated in Eq. (20), we obtain the diode equation (1) with m = 1. But if we
assume a nonlinear recombination model, more general than that used previously



11

U, :krnﬂ (21)

we obtain the general diode equation with m = 1/8. Here, Eq. (21) is written as a
purely empirical law but its origin will be further discussed below.

It should be noted that the recombination mechanism has a major impact in the shape
of j—V curve, especially on the FF, and therefore on the solar cell conversion
efficiency. In fact, as we have shown with the above model, for ideal selective contacts,
the diode ideality factor m is entirely determined by the bulk recombination mechanism.
This point is well understood in solid-state electronics.®

3. Introduction to IS methods
In general, IS is applied in a system with electrical contacts. It consists on the
measurement of the ac electrical current f(a)) at a certain angular frequency @, when a
certain ac voltage \7(a)) is applied to the system, or vice versa, measurement of \7(a)) at
applied f(a)). The impedance is
Z(0) =12 (22)
| ()

The symbol X over a quantity x indicates that X has the following properties. It is

(1) the complex amplitude of a sinusoidal (ac) perturbation of x and

(2) a small perturbation.

The “smallness” of X is required in order to obtain in Eq. (22) the linear impedance,
i.e., f(a)) is linear with respect to \7(0)), or vice versa, so that Z(w) is independent of
the amplitude of the perturbation. In modeling work, this is ensured if the absolute value
of X is much less than that of the steady state quantities X, y, ... In practice this means
that the amplitude of the voltage must be of the order of several mV. However in some
situations, e.g. close to a phase transition, a small perturbation of voltage induces very
large variations of charge or current, and the conditions of linearity must be carefully
inquired.

In the impedance measurement the system is (ideally) kept at a fixed steady state by
imposing stationary constraints such as dc current, illumination intensity, etc., and the
Z(w) is measured scanning the frequency at many values f =w/2x, typically over
several decades, i.e. from mHz to 10 MHz, with 5-10 measurements per decade. At each
frequency the impedance meter must check that the Z(w) is stable. At low frequencies
this takes considerable time, i.e., stabilizing a measurement at f =10 mHz consumes
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minutes. But measurement at low frequencies is often important in order to check that
one is approaching the dc regime, as further explained below. So judicious selection of
the frequency window of measurement is necessary, and this is often aided by
experience.

In addition to scanning the frequencies, it is usually very important to determine the
IS parameters at different conditions of steady state. This is the key approach in order to
relate the measurement to a given physical model. At each steady state the Z(w) data is
related to a model in the frequency domain, which usually is represented as an
equivalent circuit. By changing the steady state, the change of impedance parameters
(resistances, capacitances, etc.) can be monitored in relation to the physical properties of
the system. Since the impedance measurement takes considerable time, it is often the
case that the steady state changes along the impedance measurement, and precautions
should be taken to avoid a serious drift of the parameters. In particular, care should be
taken with unintentional changes of temperature in solar cells, since this introduces
additional and unwanted variation of parameters.

Note that at each steady state a full scan of frequencies is necessary. Thus many
steady state points imply a long measurement, perhaps a whole day. However, data that
do not cover different steady states may be in some cases of little value, if there is
uncertainty about the meaning of the parameters. It is also important to check the true
significance of parameters by materials variation of the samples, e.g., to confirm the
correlation of a transport resistance with the reciprocal length of the sample. The extent
to which these approaches must be realized judiciously depends on preliminary

knowledge and experience about the particular system.

3.2. Steady state and small perturbation quantities

As an example of the relationship between ac impedance and steady-state quantities,
we discuss a characteristic experiment on a solar cell using the ideal model outlined
above in Figs. 3 and 4. We choose a certain point of bias voltage V, with the associated
current density j,. At this point, a small displacement of voltage \7(0) implies a change
of current j(0). The value =0 in parenthesis indicates that the displacement is
infinitely slow, i.e., V(0) and j(0) attain a value that is independent of time. The
displacement of the current and voltage is indicated in Fig. 3(a) with arrows.

For a solar cell with area A the quotient of the small quantities gives
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2=~ [A—d’] R, 29
Aj(0) \dv

That is, the small quantities give a derivative of voltage with respect to current. This
is the reciprocal of the slope of the j—V curve, which is in turn the dc resistance of the
solar cell R, (per area) in those particular conditions.

A similar process occurs if we measure the modification of electrical charge Q under
a perturbation of the voltage. The quotient is a capacitance

O _do_ 2

V() dVv

In general the parameters obtained by IS are related to derivatives of the steady state
variables describing the system, i.e.,, IS gives differential resistance, differential
capacitance, etc. But we usually omit the specification of “differential” in the context of
IS; it is implicitly assumed.

It is useful to observe that, since R, is the reciprocal of the slope of the current
density-potential curve, Fig. 3(a), knowledge of R, at several points allows us to
construct de full curve, provided that a single point of the curve is known (for example,
the value of j):

i) = Jo = [ Ry dV (25)

Therefore, understanding the different elements that determine R, is a key step for
analyzing the factors governing the efficiency of the solar cell.

From the steady state characteristic we can only derive Z(0), that is, the impedance
at the frequency @ =0. But in order to understand the operation of the solar cell we
wish to know which is the origin of R,, in terms of the internal processes occurring in
the device: transport of charges, accumulation at certain points, recombination of
carriers, and so on. Eventually we are interested also in the dynamic behavior of the
solar cell, i.e., how it responds with time to a certain perturbation.

One way to obtain the dc parameters of the solar cell is to apply a certain model of
steady state operation. This can be done by an equivalent circuit that describes dc
current distribution, including diode elements. This is different to ac equivalent circuits
for IS spectra that will be amply discussed below. In fact since the diode is not a linear
impedance, thus it is not a differential element in the sense explained previously.

In particular a dc model including an ideal diode, shunt resistance r,,,, and series
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resistance r_... is amply used in this context, see Fig. 5. This procedure normally

series

assumes that g, and r,. are independent of voltage along the j—V characteristics.

series
This assumption may work well in some classes of solar cells such as monocrystalline Si
solar cells. But it other cases, especially in devices including electrochemical processes
such as in DSC, it is far from clear that resistances remain constant, even at reverse
voltage. Great care should be taken with applying dc models to DSC, since one may
impose a model that does not occur in the device and the results may have little

meaning.

Fig. 5. Typical electrical model for
Feries inorganic semiconductor based solar cells.
- The current source accounts for the

generation of electrons in the cell, the
jsc diode represents the recombination
—l— 7 6) characteristics, rgwnt IS a constant

f toad l j resistance accounting for charge losses
] Fshunt crossing the cell through the sides, and

leries accounts also for a constant
resistance (contacts, wires, etc.)

O g

We will see later how to construct a dc model that is normally useful for the analysis
of DSC, but first we need to discuss the origin of the elements that appear in equivalent
circuits. To this end we describe a much more powerful approach, applying IS, to obtain
all the stationary and dynamic information about the current-voltage behavior of the

system.

3.3. The frequency domain

In general, the method of IS, consists on measuring the quotient in Eq. (22) when the
signal \7(a)) varies at different angular velocities. When the velocity o is very slow, we
are close to the steady state conditions and we obtain exactly the dc resistance as
indicated in Eg. (23). But when @ becomes faster, some processes in the system are not
able to respond to the applied perturbation. Therefore Z(w) contains contributions from
“things faster than” @ .

By scanning the frequency we obtain a changing response (the impedance spectrum)
that can be treated by several methods (analytical, numerical, and importantly, by visual
inspection of the shape of the response) in order to provide a detailed physical picture on
the dynamic properties of the system. In particular, it is very important for solar cell
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applications that this method allows to dissect the steady-state response into its
elementary components. A vivid explanation of the physics and interpretation of the
electrical magnitudes in the frequency domain for dielectric materials is given in the
book “Dielectric Relaxation in Solids” by A. K. Jonscher.”

One may wonder why to use so many different angular frequencies in the
measurement, when the same processes can be probed by time transients, i.e. applying a
voltage step and monitoring the subsequent evolution towards equilibrium. One could
therefore observe the fast and progressively slower processes in the system, in a similar
fashion as by the variation of the frequency of the perturbation.

Indeed, time transient methods are very important experimental tools, and
mathematically, small amplitude time transients contain the same information as the
small frequency linear impedance. Both are related by the operation of Laplace
transform. Indeed, when the decay of the system is governed by a single process
(usually an exponential decay, with a characteristic time constant 7), IS and time
transients are equally valid approaches. The difference arises when the response is
composed by a combination of processes. Then it turns out that it is much easier to
deconvolute the response, in terms of models, from the spectroscopic response Z(w)
than from the much featureless time-dependent signal.

As another example of the advantages of the frequency domain, let us find the kinetic
response of the capacitance that was derived in equilibrium conditions in Eq. (24). In the
time domain we apply a small step of the voltage \7(t) = AV -u(t), being u(t) the unit
step function at t =0, and we observe the consequent evolution of the charge Q(t) that
passes to the system. However, it is not usually feasible to measure a charge transient,
thus we need to observe the current transient f(t) and perform an integration:

Q) = [Tt (26)

Let us look at this process in the frequency domain. We use the variable s=iw,
being i =+/—1. The Laplace-transformation of a function f(t) to the frequency domain
is defined as

F(s) = j:’e—st f (t)dt (27)
Application of the transform to Eq. (26) gives

O(s) =) (28)

S
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Now we introduce a frequency-dependent capacitance that generalizes Eq. (24)

C*(a) = 2 (29)
V(w)
C*(w) is a function of the frequency, that coincides with the static differential
capacitance C at w =0. Applying Eq. (22) we obtain from (28)
() 1

@)= iV (0) i0Z(0)

(30)

This result shows that it is straightforward to resolve the small step charging
experiment if the impedance is known. We observe in Eq. (30) that the conversion of
impedance data to capacitance turns out to be a very simple operation. This simplicity of
conversion between very different electrical magnitudes appears because of the
convenient properties of complex numbers, and by the fact that in the frequency domain,
derivatives and integrals consist on arithmetic operations involving s.

Switching the data between different representation is a very useful tool of analysis in
IS. The most frequently used functions are described in Table 1, indicating also the
separation of the magnitudes in real and imaginary part.

Table 1. Impedance representations

Denomination Definition* Real and imaginary parts
Impedance Z(w) Z=7"+iZ"
Admittance Y () = 1 Y=Y"+IY
Z(w)
Phase angle ans = 2.
Zl
H * _ [ HaX/
Complex capacitance C*(w) =- 1 C*=C'+iC
10Z ()
. * ’ H
Conductivity o* (@) = L oc*=0o'+ic"
AZ (w) c'(0)=0o
Complex dielectric constant e*(w)=LC*(w)! A e =¢"+ig"
o*=lwe*
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H * _ [ H ”
Complex electric modulus M * () = 1 M*=M"+IM
&(w)

™)L is the length of the sample, A the area.

3.4. Simple equivalent circuits

Many measurements of IS in electrochemistry and materials devices can be described
by equivalent circuits composed by combinations of a few elements, that are indicated in
Table 2. Equivalent circuits are formed by the connection of these and other elements by
wires, that represent low resistance paths in the system. Two elements are in series when
the current through them is the same, and are in parallel when the voltage acting on
them is the same. Using Kirchhoff rules, we add the impedances for two elements in
series and the resulting impedance is an equivalent description of the initial connection
(it produces the same current under applied voltage as the combination that it replaces).
For elements in parallel we add the admittances (or the complex capacitances) to form
the equivalent impedance.

Table 2. Basic ac electrical elements

Denomination

Resistance R M- R
Capacitance C 1k 1
iC
Inductor L LT ol
Constant phase Qn, 3 (iw)™"
element (CPE) Qn

A first example of equivalent circuit is the R;C; series combination. From the

impedance
Z(w) =Ry +— (31)
1
we obtain the complex capacitance
C*(@) = —2— (32

1+i60T1

where the relaxation time is defined as
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7 =R C; (33)
Let us look more closely at the meaning of the relaxation time z; in relation to the
response of the system in the time domain. We consider the type of measurement
commented before in which a change of voltage AV is applied at time t = 0 and the
subsequent evolution of the electrical current is monitored. In the frequency domain the
step voltage \7(t) = AV -u(t) has the expression
AV

V(s) = -~ (34)

and the electrical current is

V() AV AV (35)
©Z(s)  sZ(s) Ry(l+s7y)

I(s)

Inverting Eq. (35) to the time domain we obtain

AV _
I(t)=—e V7 (36)
R
Fig. 6. Representations of the impedance of
—R’W\«—CH— an  equivalent circuit. Ry =1kQ,
05 S C,=1mF, 7y =1s . The thick arrows
@ indicate the direction of increasing angular
— frequency o.
L 044
£ f=1/2z", '\‘D
O o024
C1
00 1 . . .
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In general the process described by Egs. (32) or (36) is an elementary relaxation with

the characteristic frequency
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_1_ 1
“ 1 RiC

(37)

The plot of the complex capacitance is shown in Fig. 6(a). The capacitance displays
an arc from the dc value C*(0) =C; to the high frequency value. The top of the arc
occurs at the characteristic frequency of the relaxation @, . The impedance, shown in the
complex plane in Fig. 6(b), forms a vertical line. This is a “blocking” circuit, since the
impedance of a capacitor is oo at low frequency, and effectively constitutes an open
circuit connection, so dc current cannot flow. But the impedance of the capacitor
decreases as the frequency increases. At very large frequencies, with respect to @y, the
capacitor becomes effectively a short-circuit. So there remains only the resistance R;.
The impedance of a resistor is the same at all frequencies, hence the vertical line in Fig.
6(b). The arc in Fig. 6(a) is the manifestation of an elementary relaxation process that
corresponds to an exponential decay in the time domain, indicated in Eq. (36).

Another important example of equivalent circuit is the RC parallel combination, Fig.
7. The admittance of the combination is

Yi(w) = Ri +iwCy (38)
1

With the addition of a series resistance R, we obtain the circuit shown in Fig. 7. The
impedance is

Ry
1+ion

Z(a)) = RZ +Y1 = RZ + (39)

The complex impedance plot is shown in Fig. 7(a). The parallel RC forms an arc in
the complex plane that is shifted positively along the real axis by the series resistance,
R,. As we remarked before, at zero frequency the capacitor can be substituted by open-
circuit connection. In contrast to Fig. 6, we observe in Fig. 7 that this is a circuit with dc
conduction determined by the low frequency intercept, Z(0) = R4c =R +R>.

In Fig. 7(a) the three plots correspond to a variation of the parallel resistance, which
implies a change of the characteristic time z; = R;C; . In the complex plane we readily
infer the structure of the circuit from the shape of the spectra, but frequency values and
time scales cannot be directly read. To this end it is useful to apply the plot with respect
to frequency (sometimes termed a Bode plot). Fig. 7(b) shows the transition of the
resistance from the low frequency (Ry.) to the high frequency value (R,). This high
frequency value occurs by the fact that the capacitor impedance disappears at very high
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frequency, Z(w =x)=0, and shunts the parallel resistance. Another representation
often used to display the characteristic frequencies is the phase angle. Fig. 7(c) shows

that the peak of phase angle moves to higher frequencies when z; decreases.

Fig. 7. Representations of the impedance of
an equivalent circuit. R, takes values
54,2kQ, C,; =10 mF,
7, =50,40,20s , R, =1kQ.
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In measurement of material systems it is rather frequent that the IS response is
composed of the combination of several processes. The time constants, and the
connection of the elements describing such processes, depend on the internal structure
of the system. A primary aim of the data analysis is to identify the contribution of
separate relaxation processes in the frequency response of the system and such aim is
greatly assisted by picking the appropriate form of data display. In IS measurement we
obtain the data, and such data we may transform as desired between the different

representations of Table 1.
As we remarked in a previous section, the most critical information concerning solar
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cell device operation in stationary conditions relates to the separation of resistances.
However, in IS capacitances also play a crucial role, since different elements with
similar resistance, provide very distinct spectral features if their associated capacitances
sufficiently differ in magnitude. The capacitance is, therefore, a key to the
understanding of the origin of the measured resistances.

Fig. 8 shows the example of a system composed of several relaxations represented by
two series RC circuits connected in parallel. This circuit is relevant for the analysis of
multiple-trap systems in electronic materials.”*" Inspection of the complex impedance
plane in Fig. 8(b) only shows the blocking response at low frequencies and an additional
feature at high frequency. For a blocking circuit it is natural to analyze the capacitance,
and the plot of the capacitance components with respect to the frequency, Fig. 8(c),
usually reveals a great deal of information. In Fig. 8(c) we observe two plateaus of the
real part of the capacitance that clearly indicate two distinct relaxation processes. These
relaxations are manifest in the peaks of the loss component of the capacitance, C".
When increasing the frequency, each peak of €'’ indicates the occurrence of a relaxation
and a consequent decrease of the capacitance.’® These features can be observed also in

the complex capacitance plot in Fig. 8(a), that show separate arcs for the two

relaxations.
STRL Fig. 8. Representations of the impedance of
cick an  equivalent  circuit. Ry =1KkQ,
— . X C1:5mF’ ’[1:55, R2:01kQ,
Iia];g_ lb;‘.‘ C2 :1mF, (%) =0.1s ,
€] N
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Let us consider in more detail how to obtain the parameters of a given IS data set.
The main method is the fitting by least squares methods using equivalent circuit
software that is available in many kinds of measurement equipments. But the fitting




22

process requires the assumption of a given equivalent circuit, and sometimes, in
addition, the input of reasonable trial parameters. As we have mentioned before,
inspection of the data set in several complementary representations usually gives a good
hint of the equivalent circuit structure, at least in the less complex cases. Another useful
approach is to read the values of parameters directly from the data representation, e.g.
resistances and capacitances of separate contributions, and this can be done as already
discussed in the examples of Fig. 7(b) and 8(c). However, the values of capacitance or
impedance in a certain frequency domain can be influenced by the whole equivalent
circuit. So to obtain the circuit parameters, in many occasions there is no substitute for
integral data fitting. Treating separately a part of the spectral data is a valuable resource
but must be used with care.

For example, in Fig. 7(a) we observe that when approaching the dc limit, the
impedance displays a vertical line. Therefore, at low frequency Fig. 7(a) can be simply
described by RC parallel combination. The low frequency resistance is clearly given by
Rqc - But what should be the low frequency capacitance Cy; ? It cannot be C;, otherwise
the arc would finish in the origin of Fig. 7(a), and it doesn’t. In general it is very useful
to obtain the impedance formula in a restricted frequency domain, and we show the
method with this example.

First, from the expression of the impedance in Eq. (39) we find the low frequency
limit which gives

Z(w) =Ry +R, +iaR,’C, (40)

This last equation does not correspond to any recognizable circuit elements
combination. In fact we are looking for a parallel combination, which should describe
well the data in Fig. 7(a) at low frequencies, thus we transform Eq. (40) to the
admittance, maintaining the first order approximation in w, with the result

! +iw R12 C
Ry +R; (R +Ry)?

Y(w) = (41)

In Eq. (41) we readily recognize the parallel RC admittance formula. The low
frequency capacitance is
R’

Ch=—75C
(Ry +R;)?

(42)

Therefore the capacitance depends on the resistances of the original circuit. This
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result is quite natural, since the capacitance relates to the reciprocal of the impedance
(see Table 1), and the later is greatly influenced by the series resistance. However, the
result in Eq. (42) cannot be inferred without a proper calculation.

Let us continue with the analysis of the effect of different types of equivalent circuit
elements. While the combination of resistances and capacitors provide a spectra that
remains in the first quadrant of the complex impedance plane, it is not uncommon to
find that the data cross to the fourth quadrant. One reason for this is the inductance of
the leads, which very frequently causes a tail at high frequencies in which the spectrum
crosses the real axis. A different feature is often found in several types of solar cells at
low frequency, consisting on a loop that forms an arc in the fourth quadrant.”® One of the
representations of this effect is a series RL branch complementing the RC circuit of Fig.
7. The model is shown in Fig. 9, and the total admittance has the value

Y(a)):—+;_+ia)cl (43)
The low frequency limit of Eq. (43) is

Y (w) = Ri + ia)[Cl - %} (44)

0 3
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R, Fig. 9. Representations of the impedance of
an  equivalent circuit. Ry =1kQ,
b R C,=1mF, Ly=1kH, Ry=R/a,
. a varies as indicated.
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Eq. (44) shows that when Rj is small, the capacitance becomes negative at low

frequencies, C = —Cy with the value

CN :__Cl (45)

The different spectra both with positive and negative low frequency capacitance are
shown in Fig. 9(a). If Ry < (L3 /Cl)l/z) the impedance traces a low frequency arc in the
fourth quadrant, otherwise, the impedance remains in the first quadrant. The intercept of

Z with the real axis (i.e. the transition of C'(w) to negative values) is at the frequency

1(1 Ry 2
one =| | -2 (46)
LIC, L

In the capacitance vs. frequency representation, Fig. 9(b), the presence of the inductor
appears as the negative contribution that becomes more negative towards lower
frequencies. At high frequencies the plot is dominated by C, , and at lower frequencies
the circuit capacitance begins to decrease due to the inductive effect. It shows a dip at

the transition from positive to negative values, at wyc, and then the absolute value
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increases towards lower frequencies, until it saturates at the value —C .

R, ' Fig. Representations of the impedance of an
R, equivalent gjreuit. Ry =2kQ,
o _); C, =10mF-s"™, n varies as indicated,
Q, and R, =0.1kQ.
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As a final example of the simple equivalent circuits we consider the presence of a
Constant Phase Element (CPE) as shown in Fig. The normal application of a CPE is to
describe a capacitive process that presents some frequency dispersion, which occurs
when the CPE index n departs from 1. In fact the pure capacitance response withn =1
is very rare, and it is often necessary to use CPEs with n < 1 in fitting of data.*® Despite
such a widespread occurrence, a general origin for CPE response in terms of a unique
physical process has not been identified. CPE is related to systems that show some kind
of self-scaling, either of geometric origin (such as fractal electrodes’’) or dynamical
origin (like in some multiple trapping systems”). Due to self-scaling properties of CPE
response, it is normally difficult to identify the specific factor causing the dispersion,
and CPE should be regarded as a useful and often indispensable tool for data
description.

When index n becomes small the modification of the capacitive response is rather
large, and the RQ arc becomes progressively depressed, as shown in Fig. 10(a). The
CPE also produces a strong slowing down of the response. Fig. 10(b) shows that for the
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capacitor response the transition from low to high frequency resistance is completed in
less than two decades of frequency, while for n = 0.6 it requires more than four
decades. Consequently, the characteristic frequency shows an important decrease as n
decreases, according to the expression*®

1

"~ Ra" “0

The foregoing discussion has shown that equivalent circuit representations are a very
powerful resource for the inverse problem that is usually a main task in IS data
treatment: to establish an impedance model from a set of data. Importantly, equivalent
circuits allow to visualize the structure of the model and to separately treat data portions
in certain relevant frequency windows. However, equivalent circuits are by no means
necessary to establish a physical model; what is needed is an impedance function, in any
of its all possible analytical representations.

It should also be mentioned, that not all complex functions of frequency are valid
impedance responses. The complex function Z(w) must obey causality conditions (i.e.,
the stimulus must precede the response), which imposes analytical constraints known as
Kramers-Kronig transforms.’? These transforms allow to construct the real part of Z (w)
if the imaginary part is known at all the frequencies, and vice versa. Using equivalent
circuit elements such as those of Table 1, ensures that the resulting model obeys the

Kramers-Kronig relations.

4.  Basic physical model and parameters of IS in solar cells
4.1. Simplest impedance model of a solar cell

In the process of obtaining physical information from IS data, it is necessary to relate
the observable equivalent circuit elements with the system properties. As mentioned
before, equivalent circuits are a useful tool for interpretation, and the meaning attached
to the circuit elements, the potential in the circuit, etc., may be quite different from the
standard physics textbook examples.

This is particularly the case in the analysis of solar cells. Note that the ac equivalent
circuits that we have discussed are composed of passive elements (resistances,
capacitances). It is usual to interpret the flow of charges in circuits in terms of the
mechanistic view of drift of charges in electrical field caused by potential differences.

This image is also very popular for explaining the photovoltaic action, e.g. in a p-n
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junction, in terms of an electric field that sends oppositely charged carriers in different
directions. However, a solar cell is a kind of battery, which is an element that produces
an electromotive force, and such element cannot work with electrostatic voltage
differences alone. According to Volta’s idea the electromotive force is an
nonelectrostatic action on cha