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10.1. Introduction 
Impedance Spectroscopy (IS) has become a major tool to investigate the properties 

and quality of dye-sensitized solar cells (DSC) devices. In this chapter we provide an 

introduction of IS methods of interpretation focusing on the analysis of DSC impedance 

data, as well as a scope of the main results obtained so far. IS also gives access to 

fundamental mechanisms of operation of solar cells, therefore we will discuss our views 

of basic photovoltaic principles that are required to realize the interpretation of the 

experimental results. The chapter summarizes some 10 years of experience of the 

authors in modeling, measurement and interpretation of IS applied in DSC. 

A good way to start this subject is a brief recollection of how it evolved over the first 

years. The original “standard” configuration of a DSC1 that emerged in the early 1990s 

is formed by a large internal area nanostructured TiO2 semiconductor, connected to a 

transparent conducting oxide (TCO), coated with photoactive dye molecules, and in 

contact with redox I-/I3
- electrolyte, that is in turn connected to Pt-catalyzed 

counterelectrode (CE). The DSC developed initially as a photoelectrochemical solar 

cell. Electrochemical Impedance Spectroscopy (EIS) is a traditional method, central to 

electrochemical science and technology. Electrochemistry usually investigates 

interfacial charge transfer between a solid conductor (the working electrode, WE) and 

an electrolyte, by a voltage applied between WE and CE, with the assistance of a 

reference electrode (RE), that allows to identify the voltage drop at the interface 

between the WE and the electrolyte. In addition the electrolyte often contains a salt that 

provides a large conductivity in the liquid phase and removes limitations by drift 

transport in electrical field, thus electrochemistry is mostly concerned with interfacial 

charge transfer events, possibly governed by diffusion of reactants or products. EIS 

allows to readily separate the interfacial capacitance and charge-transfer resistance, and 

to identify diffusion components in the electrolyte as well. A good introduction to such 

applications is given by Gabrielli.2  

In solid state solar cell science and technology the most commonly applied frequency 

technique is Admittance Spectroscopy (AS). By tradition AS denominates a special 

method that operates at reverse voltage and evaluates the energy levels of majority 

carrier traps (in general, all those that cross the Fermi level) as well as trap densities of 

states.3 In work on DSCs and other solar cells we may be interested to probe a wide 
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variety of conditions, so we generally use the denomination Impedance Spectroscopy 

(IS) to denote the technique applied in this context (rather than EIS or AS). 

Before the advent of DSC, IS had been widely applied in photoelectrochemistry.4,5 

This is a field widely explored since the 1970s, using compact monocrystalline or 

polycrystalline semiconductor electrodes for sunlight energy conversion.6-8 In these 

systems IS provides information on the electronic carrier concentration at the surface, 

via Mott-Schottky plots (i.e. the reciprocal square capacitance versus the bias voltage) 

characterization and on the rates of interfacial charge transfer.9-11 Several important 

concepts, later to be applied in DSC, where established at that time, such as the 

bandedge shift by charging of the Helmholtz layer and the crucial role of surface states 

in electron or hole transfer to acceptors in solution.9,10,12-14 Nonetheless, it was clearly 

recognized that applying IS in these systems is far from trivial, for example due to the 

presence of frequency dispersion that complicates the determination of parameters.15 

It was natural to apply such well established electrochemical methods to DSC and 

several groups did so.16-19 However in the early studies it was necessary to clarify a 

conceptual framework of interpretation and this took several years. On the one hand, the 

early diffusion-recombination model,20 was generally adopted for steady-state 

techniques and produced very good results when extended to light-modulated frequency 

techniques.21 In this approach the only role of the applied voltage is to establish the 

concentration of electrons at the edge of the TiO2 in contact with TCO.20,21 On the other 

hand, classical photoelectrochemical methods heavily rest on the notion of charge 

collection at the surface space-charge layer, while diffusion is viewed as an auxiliary 

component, at best.22 Thus in photoelectrochemistry of compact semiconductor 

electrodes the main method to describe the system behavior is an understanding of the 

electric potential distribution between the bulk semiconductor and the 

semiconductor/electrolyte interface.7  

Owing to these conflicting approaches, in the DSC area there were many discussions 

about the distribution of the applied voltage as internal “potential drops”, the origin of 

photovoltage, screening, and the role of electron-hole separation at space-charge 

region.23-27 This is understandable since the DSC is a porous, heterogeneous system, and 

in models of systems with a complex morphology, it is generally difficult to match 

diffusion control with a precise statement about the electrical potential distribution. The 

key element for progress is to adopt a macrohomogeneous approach and focus in the 
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spatial distribution of the Fermi level. This approach emerged in the DSC area24,28-30 and 

eventually led to generalized photovoltaic principles based on splitting of Fermi levels 

and the crucial role of selective contacts.31-34 Another central concept that appeared in 

the DSC area was a “conduction band capacitance”,26,28,30 later to be generally defined 

as a chemical capacitance.35 This capacitive element is normally absent in classical 

photoelectrochemistry but it is central for the interpretation of frequency resolved 

techniques in DSC. Also important was the recognition26,36 that nanostructured TiO2 

should be treated as a disordered material, much like the amorphous semiconductors,37-

39 with electronic traps affecting not only the surface events, but any differential/kinetic 

measurements, including the chemical capacitance,35 recombination lifetime and 

transport coefficients.40 

The passage from established ideas of photoelectrochemistry to those best suited to 

the DSC inevitably required to treat the porous-mixed phase structure of the DSC. But 

Electrochemistry was already evolving in this direction for some decades, first with the 

description of porous electrodes,41 and then, with the introduction of truly active 

electrodes that become modified under bias voltage, such as intercalation metal-

oxides,42 conducting polymers43 and redox polymers.44 Especially the work of Chidsey 

and Murray44 importantly shows the modification of the diffusion coefficient in the solid 

phase, as well as the capacitance of the solid material as a whole, in opposition to the 

standard interfacial capacitance. In the analysis of these systems, either porous or not, it 

was well recognized the importance of coupling transport elements with interfacial 

and/or recombination components for proper description of IS data. Transmission line 

models provide a natural representation of the IS models and were widely used.43,45  

Transmission line models incorporating frequency dispersion that is ubiquitous in 

disordered materials where developed and applied to nanostructured TiO2 used in DSC, 

Fig. 1, and a very good realization of the model was soon found in the experiment, as 

shown in Fig. 2.46 Later, diffusion-reaction models were solved for IS characterization, 

and the models where put in relation to both nanostructured semiconductors and bulk 

semiconductors for solar cells.47 Disorder was included also in generalized transmission 

lines for anomalous diffusion.48 The role of macroscopic contacts was also analyzed in 

generalized transmission line models, as shown in Fig. 1(b),49 and this effect would take 

relevance because of the TCO contribution to the measured impedance.50,51 
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Fig. 1. (a) General two-channel transmission 
line equivalent circuit for a porous electrode 
or diffusion coupled with recombination, 
with blocking boundary conditions at both 
channel ends.46 (b) The two channel 
transmission line with generalized boundary 
conditions.49 Notice that the AZ  box 
corresponds to the electrical properties of the 
electrolyte/substrate interface, although it is 
not drawn precisely at that point for 
convenience of representation. 

 

 

 

Fig. 2. Impedance spectroscopy of a 8 µm 
thick film of nanostructured TiO2 (10 nm 
nanoparticles anatase) in aqueous solution at 
pH 2, with –0.250 V bias potential vs. 
Ag/AgCl in dark and under UV illumination. 
The lines are fits to the model of a version of 
the transmission line in Fig. 1(a).46 

 

 

The calculation of the diffusion-recombination impedance47 opened the way for a 

direct measurement of conductivity of electrons in TiO2 by IS52 that provided a good 

validation of the method. Further, the diffusion-recombination impedance also reveals 

naturally47 the chemical capacitance of electrons in nanostructured TiO2 (associated to 

the rise of the Fermi level), which appears as well in measurements of cyclic 

voltammetry (at slow scan rates)53 and electron lifetime.54 

Application of these IS methods and models to DSC51 showed that IS provides a 

picture of the energetics of TiO2, which is a crucial tool for comparing different DSC 
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configurations.55 It also showed that it was possible to obtain simultaneously the 

parameters for transport and recombination at different steady-state conditions of a 

DSC, which is an unsurpassed power of the technique. The trends of the electron 

diffusion coefficient51 where similar to those found previously by L. M. Peter and 

coworkers by light-modulated techniques.56 The electron lifetime derived from IS 

measurements was also consistent55 with that obtained from open-circuit voltage 

decays.54,57 The variation of parameters with the bias voltage (correspondent to the 

electron Fermi level) observed by IS and other methods was related to multiple trapping 

characteristics in an exponential distribution of states.33,58 This subject has been recently 

summarized in review articles.59-61 

 The consistency of the different experimental methods provided a great confidence 

of the significance of modeling and experimental tools. The usefulness of IS for DSC 

characterization became apparent, since IS allows a full picture of the different device 

aspects to be obtained.18,19 Several groups presented detailed and systematic IS 

characterization of DSC.62-64 The literature of papers applying IS in DSC is very large 

and we do not aim to cite all the contributions. We highlight a paper on high efficiency 

DSC65 that provides excellent examples of diffusion-recombination impedances, a full 

analysis of electron transport data, as well as the reconstruction of the current density-

potential ( Vj − ) curve from the resistance obtained by IS. Subsequently, IS has been 

applied in different and important configurations of DSC, such as those using ionic 

liquids,66 ordered TiO2 nanotubes,67 and solid hole conductor.68  

 

2. A basic solar cell model 
2.1. The ideal diode model 

Many general aspects of solar cell operation can be understood starting with an ideal 

model that represents optimal performance. Fig. 3(a) shows the steady-state 

characteristic Vj −  curve of a solar cell. This curve was drawn using the ideal diode 

model: 

( )1/ −−= TmkqV
dsc

Bejjj  (1) 

Here 𝑗 is the electrical current density, 𝑉 is the voltage difference between the 

contacts, scj  the short-circuit current density, dj  the dark reverse current density, 𝑞 is 

the positive elementary electrical charge, 𝑘𝐵 is Boltzmann’s constant and 𝑇 the absolute 

temperature. The coefficient 𝑚 is an ideality factor, the “ideal” model being for 𝑚 = 1. 
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From Eq. (1) we obtain the open-circuit voltage ocV : 
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Fig. 3. (a) Theoretical calculation of the 
current density-voltage characteristic of a 
solar cell (ideal diode model) with 

-2cmmA  25=scj , 𝑚 = 1 and 
V 8.0=ocV . Also indicated are the 

different regions of the applied bias voltage 
and of the dominant current, and calculation 
of dc resistance dVdjRdc /1 =−  at a 
particular point ),( 00 jV . (b) The power 
output of the solar cell. The left vertical axis 
is normalized to the incident power of 1 sun 
(approximately) and estimates the 
conversion efficiency, and the right axis 
normalization gives the fill factor at the 
maximum point. 

 

 

Bias voltage is denoted “forward” when it injects charge in the solar cell and induces 

recombination, and otherwise “reverse”. Changing the illumination intensity 0Φ , one 

can trace different curves similar to Fig. 3(a) with other values of scj  and ocV . The 

values and shape of these curves for a given solar cell allow us to determine the energy 

conversion efficiency of the photovoltaic device, Fig. 3(b). Another crucial parameter is 

the fill factor (FF), which is the maximum electrical power delivered by the cell with 

respect to ocsc Vj ⋅ , Fig. 3(b). A high FF requires that the current remains high at the 

maximum power point. This is obtained if the j-V curve is reasonably “squared” as in 

Fig. 3(a). 
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2.2. Physical origin of the diode equation for a solar cell 

It is important to clarify the physical interpretation of the diode equation. We 

consider a slab of p-type semiconductor with thickness 𝐿. At position 𝑥, 𝑛  is the density 

of minority carriers (electrons), and nJ  the flux in the positive 𝑥 direction. The 

conservation equation is 

)()()()()( xUx
x

J
xGxGx

t
n

n
n

d −
∂

∂
−+=

∂
∂

Φ  (4) 

In Eq. (4) ΦG  is the rate of optical photogeneration (per unit volume) due to the 

illumination intensity 0Φ  (photons·cm-2), while dG  is the rate of generation in the dark 

by the surrounding blackbody radiation. nU  is the rate of recombination of electrons per 

volume. A simple an important model is the linear form, with electron lifetime 0τ  

0τ
nU n =  (5) 

Eq. (4) must hold locally, in equilibrium, therefore, assuming Eq. (5), we have 

0

0
τ
n

Gd =  (6) 

where 0n  is the carrier density in dark equilibrium. This is because in dark equilibrium, 

by detailed balance principle, the rate of generation equilibrates the recombination 

rate.31 A similar constraint on dG  applies for any recombination model. 

The flux of electron carriers with the diffusion coefficient 0D   relates to the gradient 

of concentration by Fick’s law 

x
nDJ n ∂

∂
0−=  (7) 

While Eq. (4) can be solved for any kind of generation profile and boundary 

conditions, we now adopt some assumptions that lead to the central diode model (1) in 

the simplest way. We assume that the photogeneration of carriers is homogeneous, and 

we consider that the transport of electrons is very fast. Thus we assume that 0D  is very 

large implying that the gradient of concentration required to maintain the flux is very 

small. With these assumptions all the quantities in Eq. (4), except the carrier flux, 

become independent of position. We now integrate between 0 ≤ 𝑥 ≤ 𝐿 and we obtain 

[ ] nnnd UJLJ
L

GG
t
n

−−−+=
∂
∂

Φ )0()(1  (8) 
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The next condition we need is to assume that the semiconductor is supplemented with 

ideal selective contacts to form a solar cell, as shown in Fig. 4.33 Thus the left contact 

extracts all the arriving electron carriers.  

 

 

Fig. 4. Basic model of a solar cell formed by 
a light absorber and two selective contacts 
for electrons and holes. Shown are the 
processes of (1) Generation ( dGG +Φ ) (2) 
recombination ( nU ) and (3) charge 
extraction. 

 

 

The electrical current density in the positive 𝑥 direction is 

)0(nqJj −=  (9) 

and the right contact is perfectly blocking to electrons:   

0)( =LJ n  (10) 

Therefore, the output current at time 𝑡 is: 







∂
∂

−−+= Φ t
nUGGqLj nd  (11) 

If we restrict our attention to steady-state condition, Eq. (11) reduces to 

[ ]dn GUqLqLGj −−= Φ  (12) 

Comparing Eqs. (1) and (12) we obtain that the photocurrent generated at short-

circuit is  

Φ= qLGjsc  (13) 

The total generation per unit area, ΦLG , is proportional to the incident light 

intensity, 0Φ=Φ optLG η , where optη  is an optical quantum yield, that depends on the 

properties of absorption of the radiation by the solar cell. We also obtain that 

dd qLGj =  (14) 

Therefore the dark reverse current corresponds to the extraction of the carriers 

generated by the thermal surrounding radiation.  
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We already appreciate that the ideal diode model of a solar cell, states that a constant 

current is drawn out of the cell, namely dsc jj + , corresponding to all the electron 

carriers generated in the semiconductor. In addition, the recombination term produces a 

current in the opposite direction. At high forward bias the recombination term dominates 

and bends the Vj −  curve, as it is indicated in Fig. 3(a). Note that this ideal model does 

not contain any trace of diffusion at all. The only necessary element to obtain the diode 

model is to state that the contacts are selective and extract only one carrier at each side, 

as indicated in Fig. 4. 

Another step to convert the conservation equation into a Vj −  characteristic is to 

relate the carrier density 𝑛 to the applied voltage 𝑉 by means of the introduction of 

Fermi levels. We assume the extended states for electrons at the level cE  (conduction 

band edge), with effective density cN . With respect to the electron Fermi level FnE , we 

have 
TkEE

c
BcFneNn /)( −=  (15) 

and considering the dark (equilibrium) Fermi level 0FE  
TkEE

c
BcFeNn /)(

0
0 −=  (16) 

we obtain 
TkEE BFFnenn /)(

0
0−=  (17) 

The voltage 𝑉 is measured at the selective contacts, and corresponds to the difference 

of Fermi levels of carriers at the contacts. If the contacts are ideally reversible,33 each 

contact separately equilibrates with the Fermi level of electrons, FnE , and holes, FpE , 

therefore we have 
qEEV FpFn /)( −=  (18) 

 For a p-semiconductor the holes Fermi level remains at the dark equilibrium level, 

0FFp EE = , and so Eq. (18) can be written 

qVEE FFn += 0  (19) 

In consequence 
TkqV Benn /

0=  (20) 

Using the linear recombination of Eq. (5) in Eq. (12), and applying the Boltzmann 

statistics indicated in Eq. (20), we obtain the diode equation (1) with 𝑚 = 1. But if we 

assume a nonlinear recombination model, more general than that used previously  
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βnkU rn =  (21) 

we obtain the general diode equation with 𝑚 = 1/𝛽. Here, Eq. (21) is written as a 

purely empirical law but its origin will be further discussed below.  

It should be noted that the recombination mechanism has a major impact in the shape 

of 𝑗 − 𝑉 curve, especially on the FF, and therefore on the solar cell conversion 

efficiency. In fact, as we have shown with the above model, for ideal selective contacts, 

the diode ideality factor 𝑚 is entirely determined by the bulk recombination mechanism. 

This point is well understood in solid-state electronics.69 
 

3. Introduction to IS methods 
In general, IS is applied in a system with electrical contacts. It consists on the 

measurement of the ac electrical current )(ˆ ωI  at a certain angular frequency ω , when a 

certain ac voltage )(ˆ ωV  is applied to the system, or vice versa, measurement of )(ˆ ωV  at 

applied )(ˆ ωI . The impedance is 

)(ˆ
)(ˆ

)(
ω
ωω

I
VZ =  (22) 

The symbol x̂  over a quantity x  indicates that x̂  has the following properties. It is 

(1) the complex amplitude of a sinusoidal (ac) perturbation of 𝑥 and  

(2) a small perturbation.  

The “smallness” of x̂  is required in order to obtain in Eq. (22) the linear impedance, 

i.e., )(ˆ ωI  is linear with respect to )(ˆ ωV , or vice versa, so that )(ωZ  is independent of 

the amplitude of the perturbation. In modeling work, this is ensured if the absolute value 

of 𝑥� is much less than that of the steady state quantities 𝑥̅, 𝑦�, … In practice this means 

that the amplitude of the voltage must be of the order of several mV. However in some 

situations, e.g. close to a phase transition, a small perturbation of voltage induces very 

large variations of charge or current, and the conditions of linearity must be carefully 

inquired. 

In the impedance measurement the system is (ideally) kept at a fixed steady state by 

imposing stationary constraints such as dc current, illumination intensity, etc., and the 

)(ωZ  is measured scanning the frequency at many values πω 2/=f , typically over 

several decades, i.e. from mHz to 10 MHz, with 5-10 measurements per decade. At each 

frequency the impedance meter must check that the )(ωZ  is stable. At low frequencies 

this takes considerable time, i.e., stabilizing a measurement at mHz 10=f  consumes 
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minutes. But measurement at low frequencies is often important in order to check that 

one is approaching the dc regime, as further explained below. So judicious selection of 

the frequency window of measurement is necessary, and this is often aided by 

experience.  

In addition to scanning the frequencies, it is usually very important to determine the 

IS parameters at different conditions of steady state. This is the key approach in order to 

relate the measurement to a given physical model. At each steady state the )(ωZ  data is 

related to a model in the frequency domain, which usually is represented as an 

equivalent circuit. By changing the steady state, the change of impedance parameters 

(resistances, capacitances, etc.) can be monitored in relation to the physical properties of 

the system. Since the impedance measurement takes considerable time, it is often the 

case that the steady state changes along the impedance measurement, and precautions 

should be taken to avoid a serious drift of the parameters. In particular, care should be 

taken with unintentional changes of temperature in solar cells, since this introduces 

additional and unwanted variation of parameters.  

Note that at each steady state a full scan of frequencies is necessary. Thus many 

steady state points imply a long measurement, perhaps a whole day. However, data that 

do not cover different steady states may be in some cases of little value, if there is 

uncertainty about the meaning of the parameters. It is also important to check the true 

significance of parameters by materials variation of the samples, e.g., to confirm the 

correlation of a transport resistance with the reciprocal length of the sample. The extent 

to which these approaches must be realized judiciously depends on preliminary 

knowledge and experience about the particular system. 

 

3.2. Steady state and small perturbation quantities 

As an example of the relationship between ac impedance and steady-state quantities, 

we discuss a characteristic experiment on a solar cell using the ideal model outlined 

above in Figs. 3 and 4. We choose a certain point of bias voltage 0V  with the associated 

current density 0j . At this point, a small displacement of voltage )0(V̂  implies a change 

of current )0(ĵ . The value 0=ω  in parenthesis indicates that the displacement is 

infinitely slow, i.e., )0(V̂  and )0(ĵ  attain a value that is independent of time. The 

displacement of the current and voltage is indicated in Fig. 3(a) with arrows. 

For a solar cell with area 𝐴 the quotient of the small quantities gives 
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dcR
dV
Adj

jA
VZ =






==

−1

)0(ˆ
)0(ˆ

)0(  (23) 

That is, the small quantities give a derivative of voltage with respect to current. This 

is the reciprocal of the slope of the Vj −  curve, which is in turn the dc resistance of the 

solar cell dcR  (per area) in those particular conditions.  

A similar process occurs if we measure the modification of electrical charge Q̂  under 

a perturbation of the voltage. The quotient is a capacitance 

C
dV
dQ

V
Q

==
)0(ˆ
)0(ˆ

 (24) 

In general the parameters obtained by IS are related to derivatives of the steady state 

variables describing the system, i.e., IS gives differential resistance, differential 

capacitance, etc. But we usually omit the specification of “differential” in the context of 

IS; it is implicitly assumed. 

It is useful to observe that, since dcR  is the reciprocal of the slope of the current 

density-potential curve, Fig. 3(a), knowledge of dcR  at several points allows us to 

construct de full curve, provided that a single point of the curve is known (for example, 

the value of scj ): 

∫ −−=
V

dcsc dVRjVj
0

1)(  (25) 

Therefore, understanding the different elements that determine dcR  is a key step for 

analyzing the factors governing the efficiency of the solar cell.  

From the steady state characteristic we can only derive )0(Z , that is, the impedance 

at the frequency 0=ω . But in order to understand the operation of the solar cell we 

wish to know which is the origin of dcR  in terms of the internal processes occurring in 

the device: transport of charges, accumulation at certain points, recombination of 

carriers, and so on. Eventually we are interested also in the dynamic behavior of the 

solar cell, i.e., how it responds with time to a certain perturbation. 

One way to obtain the dc parameters of the solar cell is to apply a certain model of 

steady state operation. This can be done by an equivalent circuit that describes dc 

current distribution, including diode elements. This is different to ac equivalent circuits 

for IS spectra that will be amply discussed below. In fact since the diode is not a linear 

impedance, thus it is not a differential element in the sense explained previously.   

In particular a dc model including an ideal diode, shunt resistance shuntr , and series 
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resistance seriesr  is amply used in this context, see Fig. 5.70,71 This procedure normally 

assumes that shuntr  and seriesr  are independent of voltage along the Vj −  characteristics. 

This assumption may work well in some classes of solar cells such as monocrystalline Si 

solar cells. But it other cases, especially in devices including electrochemical processes 

such as in DSC, it is far from clear that resistances remain constant, even at reverse 

voltage. Great care should be taken with applying dc models to DSC, since one may 

impose a model that does not occur in the device and the results may have little 

meaning.  

 
 

Zload V 
 j 

jsc 

rshunt 

rseries 

 

Fig. 5. Typical electrical model for 
inorganic semiconductor based solar cells. 
The current source accounts for the 
generation of electrons in the cell, the 
diode represents the recombination 
characteristics, rshunt is a constant 
resistance accounting for charge losses 
crossing the cell through the sides, and 
rseries accounts also for a constant 
resistance (contacts, wires, etc.)  

 

We will see later how to construct a dc model that is normally useful for the analysis 

of DSC, but first we need to discuss the origin of the elements that appear in equivalent 

circuits. To this end we describe a much more powerful approach, applying IS, to obtain 

all the stationary and dynamic information about the current-voltage behavior of the 

system. 

 

3.3. The frequency domain 

In general, the method of IS, consists on measuring the quotient in Eq. (22) when the 

signal )(ˆ ωV  varies at different angular velocities. When the velocity ω  is very slow, we 

are close to the steady state conditions and we obtain exactly the dc resistance as 

indicated in Eq. (23). But when ω  becomes faster, some processes in the system are not 

able to respond to the applied perturbation. Therefore )(ωZ  contains contributions from 

“things faster than” ω .  

By scanning the frequency we obtain a changing response (the impedance spectrum) 

that can be treated  by several methods (analytical, numerical, and importantly, by visual 

inspection of the shape of the response) in order to provide a detailed physical picture on 

the dynamic properties of the system. In particular, it is very important for solar cell 
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applications that this method allows to dissect the steady-state response into its 

elementary components. A vivid explanation of the physics and interpretation of the 

electrical magnitudes in the frequency domain for dielectric materials is given in the 

book “Dielectric Relaxation in Solids” by A. K. Jonscher.72  

One may wonder why to use so many different angular frequencies in the 

measurement, when the same processes can be probed by time transients, i.e. applying a 

voltage step and monitoring the subsequent evolution towards equilibrium. One could 

therefore observe the fast and progressively slower processes in the system, in a similar 

fashion as by the variation of the frequency of the perturbation.  

Indeed, time transient methods are very important experimental tools, and 

mathematically, small amplitude time transients contain the same information as the 

small frequency linear impedance. Both are related by the operation of Laplace 

transform. Indeed, when the decay of the system is governed by a single process 

(usually an exponential decay, with a characteristic time constant τ ), IS and time 

transients are equally valid approaches. The difference arises when the response is 

composed by a combination of processes. Then it turns out that it is much easier to 

deconvolute the response, in terms of models, from the spectroscopic response )(ωZ  

than from the much featureless time-dependent signal. 

As another example of the advantages of the frequency domain, let us find the kinetic 

response of the capacitance that was derived in equilibrium conditions in Eq. (24). In the 

time domain we apply a small step of the voltage )()(ˆ tuVtV ⋅∆= , being 𝑢(𝑡) the unit 

step function at 0=t , and we observe the consequent evolution of the charge )(ˆ tQ  that 

passes to the system. However, it is not usually feasible to measure a charge transient, 

thus we need to observe the current transient )(ˆ tI  and perform an integration: 

∫ ′′=
t

tdtItQ
0

)(ˆ)(ˆ  (26) 

Let us look at this process in the frequency domain. We use the variable ωis = , 

being 1−=i . The Laplace-transformation of a function 𝑓(𝑡) to the frequency domain 

is defined as  

∫
∞ −=
0

)()( dttfesF st  (27) 

Application of the transform to Eq. (26) gives 

s
sIsQ )(ˆ)(ˆ =  (28) 
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Now we introduce a frequency-dependent capacitance that generalizes Eq. (24) 

)(ˆ
)(ˆ

)(*
ω
ωω

V
QC =  (29) 

 )(* ωC  is a function of the frequency, that coincides with the static differential 

capacitance C  at 0=ω . Applying Eq. (22) we obtain from (28) 

)(
1

)(ˆ
)(ˆ)(*

ωωωω
ωω

ZiVi
IC ==  (30) 

This result shows that it is straightforward to resolve the small step charging 

experiment if the impedance is known. We observe in Eq. (30) that the conversion of 

impedance data to capacitance turns out to be a very simple operation. This simplicity of 

conversion between very different electrical magnitudes appears because of the 

convenient properties of complex numbers, and by the fact that in the frequency domain, 

derivatives and integrals consist on arithmetic operations involving s . 

Switching the data between different representation is a very useful tool of analysis in 

IS. The most frequently used functions are described in Table 1,73 indicating also the 

separation of the magnitudes in real and imaginary part. 

 

Table 1. Impedance representations 

Denomination Definition* Real and imaginary parts 

Impedance )(ωZ  ZiZZ ′′+′=  

Admittance 
)(

1)(
ω

ω
Z

Y =  YiYY ′′+′=  

Phase angle 
Z
Z

′
′′

=δtan   

Complex capacitance 
)(

1)(*
ωω

ω
Zi

C =  CiCC ′′+′=*  

Conductivity 
)(

)(*
ω

ωσ
AZ

L
=  σσσ ′′+′= i* , 

σσ ≡′ )0(  

Complex dielectric constant ALC /)*)(* ωωε (=  εεε ′′+′= i*  
** ωεσ i=  
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Complex electric modulus 
)(

1)(*
ωε

ω =M  MiMM ′′+′=*  

(*)𝐿 is the length of the sample, 𝐴 the area. 

 

3.4. Simple equivalent circuits 

Many measurements of IS in electrochemistry and materials devices can be described 

by equivalent circuits composed by combinations of a few elements, that are indicated in 

Table 2. Equivalent circuits are formed by the connection of these and other elements by 

wires, that represent low resistance paths in the system. Two elements are in series when 

the current through them is the same, and are in parallel when the voltage acting on 

them is the same. Using Kirchhoff rules, we add the impedances for two elements in 

series and the resulting impedance is an equivalent description of the initial connection 

(it produces the same current under applied voltage as the combination that it replaces). 

For elements in parallel we add the admittances (or the complex capacitances) to form 

the equivalent impedance.  

Table 2. Basic ac electrical elements 

Denomination Symbol Scheme Impedance 

Resistance R   R  

Capacitance 𝐶  
Ciω

1  

Inductor 𝐿  Liω  

Constant phase 

element (CPE) 
nQ   

n

n

Q
i −)( ω  

 

A first example of equivalent circuit is the 11CR  series combination. From the 

impedance 

1
1

1)(
Ci

RZ
ω

ω +=  (31) 

we obtain the complex capacitance 

1

1
1

)(*
ωτ

ω
i
CC

+
=  (32) 

where the relaxation time is defined as 
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11CR=τ  (33) 

Let us look more closely at the meaning of the relaxation time 1τ  in relation to the 

response of the system in the time domain. We consider the type of measurement 

commented before in which a change of voltage V∆  is applied at time 𝑡 = 0  and the 

subsequent evolution of the electrical current is monitored. In the frequency domain the 

step voltage )()(ˆ tuVtV ⋅∆=  has the expression 

s
VsV ∆

=)(ˆ  (34) 

and the electrical current is  

)1()()(
)(ˆ

)(ˆ
11

1
τ

τ
sR
V

ssZ
V

sZ
sVsI

+
∆

=
∆

==  (35) 

Inverting Eq. (35) to the time domain we obtain 

1/)( τte
R
VtI −∆

=  (36) 

 

 

Fig. 6. Representations of the impedance of 
an equivalent circuit. Ω= k 11R , 

mF 11 =C ,  s 11 =τ . The thick arrows 
indicate the direction of increasing angular 
frequency ω. 

 

In general the process described by Eqs. (32) or (36) is an elementary relaxation with 

the characteristic frequency 
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111
1

11
CR

==
τ

ω  (37) 

 The plot of the complex capacitance is shown in Fig. 6(a). The capacitance displays 

an arc from the dc value 1)0(* CC =  to the high frequency value. The top of the arc 

occurs at the characteristic frequency of the relaxation 1ω . The impedance, shown in the 

complex plane in Fig. 6(b), forms a vertical line. This is a “blocking” circuit, since the 

impedance of a capacitor is ∞ at low frequency, and effectively constitutes an open 

circuit connection, so dc current cannot flow. But the impedance of the capacitor 

decreases as the frequency increases. At very large frequencies, with respect to 1ω , the 

capacitor becomes effectively a short-circuit. So there remains only the resistance 1R . 

The impedance of a resistor is the same at all frequencies, hence the vertical line in Fig. 

6(b). The arc in Fig. 6(a) is the manifestation of an elementary relaxation process that 

corresponds to an exponential decay in the time domain, indicated in Eq. (36). 

Another important example of equivalent circuit is the 𝑅𝐶 parallel combination, Fig. 

7. The admittance of the combination is 

1
1

1
1)( Ci
R

Y ωω +=  (38) 

With the addition of a series resistance 2R  we obtain the circuit shown in Fig. 7. The 

impedance is 

1

1
212 1

)(
ωτ

ω
i
RRYRZ

+
+=+=  (39) 

The complex impedance plot is shown in Fig. 7(a). The parallel 𝑅𝐶 forms an arc in 

the complex plane that is shifted positively along the real axis by the series resistance, 

2R . As we remarked before, at zero frequency the capacitor can be substituted by open-

circuit connection. In contrast to Fig. 6, we observe in Fig. 7 that this is a circuit with dc 

conduction determined by the low frequency intercept, 21)0( RRRZ dc +== .  

In Fig. 7(a) the three plots correspond to a variation of the parallel resistance, which 

implies a change of the characteristic time 111 CR=τ  . In the complex plane we readily 

infer the structure of the circuit from the shape of the spectra, but frequency values and 

time scales cannot be directly read. To this end it is useful to apply the plot with respect 

to frequency (sometimes termed a Bode plot). Fig. 7(b) shows the transition of the 

resistance from the low frequency ( dcR ) to the high frequency value ( 2R ). This high 

frequency value occurs by the fact that the capacitor impedance disappears at very high 
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frequency, 0)( =∞=ωZ , and shunts the parallel resistance. Another representation 

often used to display the characteristic frequencies is the phase angle. Fig. 7(c) shows 

that the peak of phase angle moves to higher frequencies when 1τ  decreases. 

 

 

Fig. 7. Representations of the impedance of 
an equivalent circuit. 1R  takes values 

Ωk 2,4,5 , mF 101 =C , 
 s 20,40,501 =τ ,   Ω= k 12R . 

 

In measurement of material systems it is rather frequent that the IS response is 

composed of the combination of several processes. The time constants, and the 

connection of the elements describing such processes, depend on the internal structure 

of the system. A primary aim of the data analysis is to identify the contribution of 

separate relaxation processes in the frequency response of the system and such aim is 

greatly assisted by picking the appropriate form of data display. In IS measurement we 

obtain the data, and such data we may transform as desired between the different 

representations of Table 1.  

As we remarked in a previous section, the most critical information concerning solar 
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cell device operation in stationary conditions relates to the separation of resistances. 

However, in IS capacitances also play a crucial role, since different elements with 

similar resistance, provide very distinct spectral features if their associated capacitances 

sufficiently differ in magnitude. The capacitance is, therefore, a key to the 

understanding of the origin of the measured resistances. 

Fig. 8 shows the example of a system composed of several relaxations represented by 

two series 𝑅𝐶 circuits connected in parallel. This circuit is relevant for the analysis of 

multiple-trap systems in electronic materials.74,75 Inspection of the complex impedance 

plane in Fig. 8(b) only shows the blocking response at low frequencies and an additional 

feature at high frequency. For a blocking circuit it is natural to analyze the capacitance, 

and the plot of the capacitance components with respect to the frequency, Fig. 8(c), 

usually reveals a great deal of information. In Fig. 8(c) we observe two plateaus of the 

real part of the capacitance that clearly indicate two distinct relaxation processes. These 

relaxations are manifest in the peaks of the loss component of the capacitance, 𝐶′′. 
When increasing the frequency, each peak of 𝐶′′ indicates the occurrence of a relaxation 

and a consequent decrease of the capacitance.72 These features can be observed also in 

the complex capacitance plot in Fig. 8(a), that show separate arcs for the two 

relaxations. 

 

 

Fig. 8. Representations of the impedance of 
an equivalent circuit. Ω= k 11R , 

mF 51 =C ,  s 51 =τ ,  Ω= k 1.02R , 
mF 12 =C ,  s 1.02 =τ ,   

 

Let us consider in more detail how to obtain the parameters of a given IS data set. 

The main method is the fitting by least squares methods using equivalent circuit 

software that is available in many kinds of measurement equipments. But the fitting 
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process requires the assumption of a given equivalent circuit, and sometimes, in 

addition, the input of reasonable trial parameters. As we have mentioned before, 

inspection of the data set in several complementary representations usually gives a good 

hint of the equivalent circuit structure, at least in the less complex cases. Another useful 

approach is to read the values of parameters directly from the data representation, e.g. 

resistances and capacitances of separate contributions, and this can be done as already 

discussed in the examples of Fig. 7(b) and 8(c). However, the values of capacitance or 

impedance in a certain frequency domain can be influenced by the whole equivalent 

circuit. So to obtain the circuit parameters, in many occasions there is no substitute for 

integral data fitting. Treating separately a part of the spectral data is a valuable resource 

but must be used with care.  

For example, in Fig. 7(a) we observe that when approaching the dc limit, the 

impedance displays a vertical line. Therefore, at low frequency Fig. 7(a) can be simply 

described by 𝑅𝐶 parallel combination. The low frequency resistance is clearly given by 

dcR . But what should be the low frequency capacitance lfC ? It cannot be 1C , otherwise 

the arc would finish in the origin of Fig. 7(a), and it doesn’t. In general it is very useful 

to obtain the impedance formula in a restricted frequency domain, and we show the 

method with this example. 

First, from the expression of the impedance in Eq. (39) we find the low frequency 

limit which gives 

1
2

121)( CRiRRZ ωω ++=  (40) 

This last equation does not correspond to any recognizable circuit elements 

combination. In fact we are looking for a parallel combination, which should describe 

well the data in Fig. 7(a) at low frequencies, thus we transform Eq. (40) to the 

admittance, maintaining the first order approximation in ω, with the result 

12
21

2
1

21 )(
1)( C

RR
Ri

RR
Y

+
+

+
= ωω  (41) 

In Eq. (41) we readily recognize the parallel 𝑅𝐶 admittance formula. The low 

frequency capacitance is 

12
21

2
1

)(
C

RR
RClf
+

=  (42) 

Therefore the capacitance depends on the resistances of the original circuit. This 
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result is quite natural, since the capacitance relates to the reciprocal of the impedance 

(see Table 1), and the later is greatly influenced by the series resistance. However, the 

result in Eq. (42) cannot be inferred without a proper calculation.  

Let us continue with the analysis of the effect of different types of equivalent circuit 

elements. While the combination of resistances and capacitors provide a spectra that 

remains in the first quadrant of the complex impedance plane, it is not uncommon to 

find that the data cross to the fourth quadrant. One reason for this is the inductance of 

the leads, which very frequently causes a tail at high frequencies in which the spectrum 

crosses the real axis. A different feature is often found in several types of solar cells at 

low frequency, consisting on a loop that forms an arc in the fourth quadrant.76 One of the 

representations of this effect is a series RL branch complementing the RC circuit of Fig. 

7. The model is shown in Fig. 9, and the total admittance has the value 

1
331

11)( Ci
LiRR

Y ω
ω

ω +
−

+=  (43) 

The low frequency limit of Eq. (43) is 











−+= 2

3

3
1

0

1)(
R
L

Ci
R

Y ωω  (44) 
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Fig. 9. Representations of the impedance of 
an equivalent circuit. Ω= k 11R , 

mF 11 =C ,  kH 13 =L ,  aRR /13 = , 
a  varies as indicated. 

 

Eq. (44) shows that when 3R  is small, the capacitance becomes negative at low 

frequencies, NCC −=  with the value 

12
3

3 C
R
L

CN −=  (45) 

The different spectra both with positive and negative low frequency capacitance are 

shown in Fig. 9(a). If 2/1
133 )/( CLR < ) the impedance traces a low frequency arc in the 

fourth quadrant, otherwise, the impedance remains in the first quadrant. The intercept of 

Z  with the real axis (i.e. the transition of )(' ωC  to negative values) is at the frequency 
2/1

3

2
3

1

11






















−=

L
R

CLNCω  (46) 

In the capacitance vs. frequency representation, Fig. 9(b), the presence of the inductor 

appears as the negative contribution that becomes more negative towards lower 

frequencies. At high frequencies the plot is dominated by 1C  , and at lower frequencies 

the circuit capacitance begins to decrease due to the inductive effect. It shows a dip at 

the transition from positive to negative values, at NCω , and then the absolute value 
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increases towards lower frequencies, until it saturates at the value NC− . 

 

 

Fig.  Representations of the impedance of an 
equivalent circuit. Ω= k 21R , 

1-n
1 smF 10 ⋅=C , 𝑛 varies as indicated, 

and  Ω= k 1.02R . 

 

As a final example of the simple equivalent circuits we consider the presence of a 

Constant Phase Element (CPE) as shown in Fig.  The normal application of a CPE is to 

describe a capacitive process that presents some frequency dispersion, which occurs 

when the CPE index 𝑛 departs from 1. In fact the pure capacitance response with 𝑛 = 1 

is very rare, and it is often necessary to use CPEs with 𝑛 < 1 in fitting of data.46 Despite 

such a widespread occurrence, a general origin for CPE response in terms of a unique 

physical process has not been identified. CPE is related to systems that show some kind 

of self-scaling, either of geometric origin (such as fractal electrodes77) or dynamical 

origin (like in some multiple trapping systems75). Due to self-scaling properties of CPE 

response, it is normally difficult to identify the specific factor causing the dispersion, 

and CPE should be regarded as a useful and often indispensable tool for data 

description.  

When index 𝑛 becomes small the modification of the capacitive response is rather 

large, and the RQ arc becomes progressively depressed, as shown in Fig. 10(a). The 

CPE also produces a strong slowing down of the response. Fig. 10(b) shows that for the 
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capacitor response the transition from low to high frequency resistance is completed in 

less than two decades of frequency, while for 𝑛 = 0.6 it requires more than four 

decades. Consequently, the characteristic frequency shows an important decrease as 𝑛 

decreases, according to the expression46 

( ) nQR /1
11

1
1

=ω  (47) 

The foregoing discussion has shown that equivalent circuit representations are a very 

powerful resource for the inverse problem that is usually a main task in IS data 

treatment: to establish an impedance model from a set of data. Importantly, equivalent 

circuits allow to visualize the structure of the model and to separately treat data portions 

in certain relevant frequency windows. However, equivalent circuits are by no means 

necessary to establish a physical model; what is needed is an impedance function, in any 

of its all possible analytical representations.  

It should also be mentioned, that not all complex functions of frequency are valid 

impedance responses. The complex function )(ωZ  must obey causality conditions (i.e., 

the stimulus must precede the response), which imposes analytical constraints known as 

Kramers-Kronig transforms.72 These transforms allow to construct the real part of )(ωZ  
if the imaginary part is known at all the frequencies, and vice versa. Using equivalent 

circuit elements such as those of Table 1, ensures that the resulting model obeys the 

Kramers-Kronig relations. 

 
4. Basic physical model and parameters of IS in solar cells 
4.1. Simplest impedance model of a solar cell 

In the process of obtaining physical information from IS data, it is necessary to relate 

the observable equivalent circuit elements with the system properties. As mentioned 

before, equivalent circuits are a useful tool for interpretation, and the meaning attached 

to the circuit elements, the potential in the circuit, etc., may be quite different from the 

standard physics textbook examples.  

This is particularly the case in the analysis of solar cells. Note that the ac equivalent 

circuits that we have discussed are composed of passive elements (resistances, 

capacitances). It is usual to interpret the flow of charges in circuits in terms of the 

mechanistic view of drift of charges in electrical field caused by potential differences. 

This image is also very popular for explaining the photovoltaic action, e.g. in a p-n 
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junction, in terms of an electric field that sends oppositely charged carriers in different 

directions. However, a solar cell is a kind of battery, which is an element that produces 

an electromotive force, and such element cannot work with electrostatic voltage 

differences alone. According to Volta’s idea the electromotive force is an 

nonelectrostatic action on charges in conductors that causes unlike charges to separate 

and remain separated.78 Thus we wish to obtain the internal ac equivalent circuit of a 

solar cell, using only linear elements associated to small signal ac perturbation, with 

emphasis on the interpretation of the elements that make it work as a device for 

production of electricity. The key approach for useful reading of ac equivalent circuits 

of DSC is that potentials in the circuit represent electrochemical potential of electrons 

(or holes) in the actual device. 

To clarify this, we start with the simplest model of a solar cell, discussed above in 

Sec. 2.2, that contains the necessary elements without complications of carrier transport, 

specific features of selective contacts, etc. We calculate the IS response of the solar cell 

of Fig. 4,35 corresponding to the application of a small ac electrical perturbation.  

We showed before that the dynamic response of the simple solar cell model in Fig. 4 

is determined by the equation 

qL
jUG

t
n

n −−=
∂
∂

 (48) 

where dGGG += Φ  is the carrier generation rate. For calculating the IS response we 

need to combine two approaches: (1) All physical quantities are composed of a 

stationary part (e.g., n ) and a small perturbation part that varies with time. (2) We must 

reduce all the dependencies implicit in Eq. (48), explicitly to voltage, so that the result is 

an impedance. 

For example the carrier density dependence on time takes the form 

)(ˆ)( tnntn +=  (49) 

The variation of voltage applied in the solar cell produces a variation of the electron 

Fermi level, which changes as 

)(ˆ)( tqEtE nFnFn ϕ+=  (50) 

where nϕ̂  is the small perturbation voltage. But by Eq. (15) there is a unique 

dependence of 𝑛  on FnE . Thus 

)ˆ()( nFnEntn ϕ+=  (51) 



  28 

Expanding to first order Eq. (51) we obtain 

n
Fn

c

E
n

ntn ϕ̂)(
∂
∂

+=  (52) 

The derivative in Eq. (52) appears recurrently in solar cell theory and requires a 

special denomination. We introduce the chemical capacitance, a thermodynamic 

quantity that reflects the capability of a system to accept or release additional carriers 

with density iN  due to a change in their chemical potential, iµ .35,79 In general, for a 

volume element that stores chemical energy due to a thermodynamic displacement, the 

chemical capacitance per unit volume is defined as 

i

iN
qc

µµ ∂
∂

= 2  (53) 

More generally, we use in Eq. (53) the electrochemical potential, that coincides with 

the electron Fermi level.60 Thus the chemical capacitance for conduction band electrons 

is35  

( )[ ]TkEE
Tk
qN

Tk
nq

E
nqc BFnC

B

c

BFn

cb /exp
22

2 −−==
∂

∂
=µ  (54) 

The macroscopic capacitance for a film of thickness 𝐿, area 𝐴 and porosity p is 
cbcb cpLAC µµ )1( −=  (55) 

being the amount )1( pLA − , the volume of the film, fV . Using Eqs. (49), (52) and (54), 

we arrive at the relationship between the small perturbation of carrier density and 

voltage: 

n
cbc

q
n ϕµ ˆ

1
ˆ =  (56) 

Next we expand the recombination term in Eq. (48) and we obtain 

n
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And finally, the current is 

)(ˆ)( tjjtj +=  (58) 

When we insert the different expanded expressions into Eq. (48), we obtain, first, a 

time-independent equation that was already discussed, (12), and which gives the 

stationary condition of the solar cell according to bias voltage and illumination. In 
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addition, the time dependent terms provide a new equation that takes the form: 

0
ˆˆˆ

=++
∂

∂
L
j
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c cb

r

nncb ϕϕ
µ  (59) 

where the recombination resistance per unit volume is given by 
11 −
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Note that Eq. (60) corresponds to the following expression 
1

2
−
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and the macroscopic recombination resistance, that corresponds to the reciprocal 

derivative of the recombination current with respect to voltage, is 

cb
r

cb
r r

pLA
R

)1(
1
−

=  (62) 

The fundamental parameter describing recombination, however is the recombination 

per unit of effective internal area (Aeff)  rrreffr hrhRpLARAr =−== )1(' , being h the 

ratio between the effective area and the volume of the TiO2 film, )1(/ pLAAh eff −= .  

We remark that the carrier generation terms are absent from Eq. (59), since in IS we 

can only modulate electrical injection of carriers; the situation is different in light-

modulated techniques, as explained in the Chapter by Peter and Hagfeldt. 

From Eq. (59) the structure of the impedance model can be inferred directly.35 nϕ̂  

can be viewed as the potential in an equivalent circuit (but remember that physically it is 

the electrochemical potential!). Then Eq. (59) is Kirchoff’s rule for current conservation. 

The first term is a capacitive current, the second one is an ohmic current through the 

resistor rR , and the third is the extraction current. Note that the two first currents do not 

represent transport currents (i.e., an ensemble of carriers moving in a certain direction in 

space), but the rates of creation and destruction of conduction band electrons. In fact 

recombination is what maintains the current in a diode, as explained in the book of 

Sha.69 

For calculating the impedance we apply the Laplace transform ( ωit →∂∂ / ) in Eq. 

(59) and use the definition in Eq. (22) 
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Eq. (63) clearly corresponds to the parallel combination of the chemical capacitance 

and recombination resistance, which is the minimal IS model of a solar cell. Fig. 11(b) 

shows the equivalent circuit corresponding to the basic solar cell scheme of Fig. 11(a).  

 

 

Fig. 11. (a) Scheme of voltage injection of 
electrons (1) and holes (3) and recombination 
(2) processes in a DSC. (b) The basic 
equivalent circuit for ac electrical perturbation 
are shown. (c) The dashed lined shows an 
internal short-circuit. 

 

In Fig. 11(b) we can observe that the chemical capacitance is a necessary element of 

the solar cell: it produces a voltage (associated to splitting of Fermi levels) by the 

creation of excess carriers from photons. An important message of Fig. 11 is that 

recombination resistance must be large, as this will allow carriers accumulated in the 

capacitive element to flow through the external circuit when they return to the 

equilibrium situation. We point out that the recombination resistance in Fig. 11(b) 

corresponds to the diode in the dc circuit of Fig. 5. 

Figure 11(b) displays also the special structure of connection of the R and C elements 
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by selective contacts that is implicit in the derivation of the result in Eq. (63). This 

connection is essential to channel the carriers in the desired direction. An example of the 

failure of selective contacts is shown in Fig. 11(c). Electrons and holes meet directly at 

the left contact, producing an internal short circuit. Such device cannot produce a 

photovoltage.  

It should be also recognized that in contrast with electrochemical batteries and 

capacitors, in solar cells there is always an electrical connection between the outer 

electrodes via the internal resistance rr . In fact the solar cell works by promotion of 

carriers from a low to a high energy level, with the energy of the photons,33 and such 

energy levels are separately connected to the outer electrodes. Since the excitation is 

possible, the converse process, which is the decay from high to low energy level by 

radiative recombination, must be possible as well. This is the most favorable case of the 

recombination resistance, which is unavoidable, as it is an intrinsic component of the 

photophysical process that makes the solar cell produce useful work. In this sense we 

regard Fig. 11(b) as the minimal model.  

But while certain recombination processes are unavoidable in the solar cell, 

additional sources of recombination are detrimental to the performance. For example, in 

Fig. 11(c) a strong recombination at the left contact produces a low internal resistance, 

in a process that does not contribute at all in carrier generation. This must be regarded as 

a failure of the device. In fact reducing surface recombination is the most critical step in 

the preparation of high efficiency industrial silicon solar cells.80 In general, equivalent 

circuits illustrate a main point about solar cell operation: the dc current follows 

predominantly the path of least resistance. Therefore, low resistances in parallel to the 

chemical capacitance reduce the output power. 

The ideal model provides a very useful reference to understand IS results of solar 

cells. However, it should be emphasized that one of the goals of hybrid nanostructured 

organic-inorganic solar cells is to obtain low cost photovoltaic devices, and therefore 

there are additional elements contributing to the photovoltaic conversion process. A key 

feature that makes IS attractive is that it can be applied in full devices and indicate 

thereof the main limitations to photoelectrical performance. We will progress in 

subsequent sections towards a full realistic model for DSC devices, but a simple 

example may be illustrative.  

The usual way to construct a selective contact for holes is using a hole transport 
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material that readily conducts hole carriers and blocks electrons, and this is shown in 

Fig. 12. However, it is generally the case that organic conductors, that can penetrate the 

pores of TiO2 nanostructures, posses a limited carrier mobility. Being the conductivity 

low, a gradient of the hole Fermi level is required to inject, as in Fig. 12 (a), or to extract 

the holes across the layer. Comparing this case with the ideal selective contact in Fig. 

11(a), the difference is that in the latter case the extraction of holes has no cost at all in 

terms of Fermi level gradient. We have mentioned above that parallel resistances should 

be large, and from the present example we appreciate that series resistance must be 

relatively small to avoid power losses. 

 The Fermi level drop for hole transport in Fig. 12 implies a “potential drop” in the 

equivalent circuit, with an associated impedance which is related to hole diffusion. 

Therefore, problems in the performance of contacts, or transport layers, can be detected 

with IS measurement. To do so, we must be able to separate, in the IS data, following 

the previous example, the contribution of recombination resistance and transport layer 

resistance. This will depend largely on the values of capacitances of the two elements. 

Interpreting the capacitance, is a major tool for identifying the physical origin of 

processes observed in IS measurement, as mentioned before. 

 

 

Fig. 12. Scheme of voltage injection of 
electrons (1) and holes (4) and recombination 
(2) processes a DSC, including transport 
losses in the hole conducting layer (3). The 
energetic diagram of the solar cell, and the 
basic equivalent circuit for ac electrical 
perturbation are shown. 

 

4.2. Measurements of electron lifetime 

It is interesting to explain in more detail the relationship between the equivalent 

circuit elements describing the solar cell IS response and the electron lifetime. In order 

to describe IS behavior we have considered in Eq. (63) an experiment that relates 

voltage to electrical current measurement. But we can apply the general dynamic 
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equation (59) in experiments in which we apply a perturbation and let the system decay 

by itself.54,57 Since no current is extracted we obtain 
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Eq. (64) describes, for example, the exponential decay of a small step of excess 

carrier concentration by recombination. From Eq. (64), the time constant of the decay 

process, which we denote the response time, is 
cbcb

rr cr µτ =  (65) 

and this gives also, in the model outlined above 
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With the normal assumption of first order reaction for direct electron transfer from 

the conduction band, Eq. (5), we obtain simply 0ττ =r . In this simple model the 

lifetime is constant, and the response time and electron lifetime have the same meaning. 

But in general, the lifetime can be dependant of steady-state conditions, as it is obvious 

in Eq. (66). In addition, in the presence of additional relaxation processes such as 

trapping and release in localized electronic states, the response time contains 

components due to kinetic delays in addition to the free carrier lifetime.40 

 

5. Basic physical models and parameters of IS in dye-sensitized 
solar cells 
5.1. Electronic processes in a DSC 

A general view of the electronic and ionic processes occurring in a DSC are shown in 

Fig. 13. With respect to the basic solar cell model in Fig. 4, in a DSC the sensitizer 

(molecular dye, inorganic quantum dot, etc.) is the absorber.33 The selective contacts to 

the absorber are formed, first, by an electron transport material (ETM), which is the 

wide bandgap semiconductor nanostructure on top of a TCO, being TiO2 the 

archetypical semiconductor. The second selective contact is a hole transport material 

(HTM), which in original DSC is a redox carrier in liquid electrolyte, but in full solid 

devices is an organic hole conductor, as explained in the Chapter by Snaith. 

In IS we do not monitor directly the photoinjection process, as explained above, and 

the main attention is focused on electronic processes of electrons in the ETM (and 
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eventually holes in solid state HTM), which are described in Fig. 14. The reason why IS 

relates predominantly to electrons in the wide bandgap semiconductor, is that the 

concentration of redox carrier in electrolyte is very high (approaching 1020 cm-3), and it 

is hardly affected by the bias, while electron concentration changes by many orders of 

magnitude when the potential is displaced.81 We can therefore monitor wide variations 

of the IS parameters related to electronic processes, as discussed below. 

Materials for hybrid solar cells based on low cost semiconductors, usually include a 

large extent of electronic energy disorder, implying a wide distribution of localized 

electronic states in the bandgap, as indicated in Fig. 14.61 The transport of electrons is 

usually described in terms of classical multiple trapping transport.61 This model includes 

two classes of electronic states: the transport states above the mobility edge (that may be 

associated with extended states in the conduction band), and localized states in the 

bandgap. The latter states do not participate in spatial displacement but retain the 

carriers for a certain time by trapping-detrapping process. A process of injection (or 

extraction) of carriers causes diffusion of electrons along the extended states, and these 

carriers have the chance to be captured, and later released, by traps.  

In addition free carriers have a possibility to be captured in recombination process. 

Specifically shown in Fig. 14, is the electron transfer from the metal oxide nanoparticles 

towards ionic species in solution (these are depicted around their own Fermi level, the 

redox potential). This is the dominant recombination mechanism in standard liquid 

electrolyte DSC,1 where the I-/I3
- redox couple is normally used to regenerate the 

oxidized dye molecules from the counterelectrode. In DSC with solid HTM82 the 

interfacial charge transfer implies recombination of electrons and holes in the separate 

materials. 

In the following subsections we discuss the impedance elements associated with the 

electronic processes shown in Fig. 14. 
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Fig. 13. Schematic energy drawing of the 
electron and hole transfer processes at the 
metal-oxide (ETM)/dye layer/ hole transport 
material in a DSC. The boxes indicate 
available electronic states, EF0 is the dark 
Fermi level, and Ec is the lower edge of the 
metal oxide conduction band. (1) 
Photoexcitation. (2) Electron injection from 
the dye LUMO to the metal oxide. (3) 
Electron diffusion in ETM. (4) Electron 
injection to the TCO. (5) Hole transfer from 
the dye HOMO to the HTM HOMO. (6) Hole 
diffusion in HTM. (7) regeneration with an  
electron form the counter electrode. (9) 
Electron transfer from metal oxide to HTM 
and to (8) dye HOMO. 

 

Fig. 14. (a) Mesoporous semiconductor film 
deposited over a conducting substrate, the 
matrix of the active layer in a DSC. (b) 
Electronic processes in the porous film, when 
it is immersed in a redox electrolyte. 
Electrons injected from the substrate diffuse 
by displacement in the extended states. They 
have a probability of being trapped and 
further released by localized states in the 
bandgap. In addition, electrons in the 
conduction band have a chance to be captured 
by the oxidized form of the redox ions, that 
are indicated below, around the redox 
potential level. The electron Fermi level is 
shown inclined, indicating that macroscopic 
diffusion of electrons occurs towards the right 
direction. 

 

 

5.2. The capacitance of electron accumulation in a DSC 

We have already described in Eq. (54) the chemical capacitance associated with 

delocalized, transport states, using the Boltzmann distribution (nondegenerate 

conditions). The presence of bandgap states introduces additional possibilities for 

loading the semiconductor with charges. For one specific electronic state characterized 

by the energy E  (this energy is defined to be increasingly negative for states deeper in 

the gap), the average equilibrium occupancy is determined by the Fermi level as 

described by the Fermi-Dirac distribution function 
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1)(
−+

=−  (67) 

If the distribution of localized states is )(Eg , the chemical capacitance is obtained 
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integrating all the contributions through the bandgap 
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Using dEEEdfdEEEdf FnFnFn /)(/)( −−=−  and integrating Eq. (68) by parts, we 

arrive at 
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A simple solution to Eq. (69) is obtained by the zero-temperature limit of the Fermi 

function, i.e. a step function at FnEE =  separating occupied from unoccupied states. 

Then it follows that 
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In this approximation, Eq. (70), the charging related to the perturbation dV  

corresponds to filling a slice of traps at the Fermi level, as explained in Fig. 15, and the 

chemical capacitance is proportional to the density of states (DOS). 

 

 

Fig. 15. Electron energy diagram illustrating 
the behavior of a nanostructured TiO2 
electrode (shown in the top scheme) when a 
variation dV of the electrochemical potential 
of electrons FnE  (Fermi level) is applied, 
assuming that conduction band energy ( CE ) 
remains stationary with respect to the redox 
level, redoxE . Changes of occupancy both of 
conduction band, cdn , and trapped electrons 
in localized levels, Ldn  (shaded region of the 
bandgap), are indicated. 

 

A common finding in nanostructured TiO2 is an exponential distribution of localized 

states in the bandgap as described by the expression 

[ ]0
0

/)(exp)( TkEE
Tk

NEg BC
B

L −=  (71) 

Here LN  is the total density and 0T  is a parameter with temperature units that 
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determines the depth of the distribution, which can be alternatively expressed as a 

coefficient 0/TT=α . According to Eqs. (70) and (71) the chemical capacitance should 

display an exponential dependence on applied potential: 
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/)(exp TkEE
Tk
qNc BC

B

Ltraps −=µ  (72) 

with a slope 0/ Tkq B  in log-linear representation with respect to voltage, a fact that has 

been observed many times in the literature, using IS (as discussed in the next Section) 

and cyclic voltammetry (CV).51,53,83,84 In addition, nanostructured TiO2 usually shows a 

nearly-monoenergetic state below the bandgap. Therefore the total chemical 

capacitance, due to occupation of electronic levels, displays the shape shown in Fig. 16, 

and this shape is indeed obtained in measurements.85 From here onwards we will use Cµ  

as the sum of the contributions from traps and extended states, see below Eq. (113).  

 

 

Fig. 16. Representation of the chemical 
capacitance of an exponential distribution of 
states with density -320

exp cm 10=N  below 
the lower edge of the conduction band (

eV 0=CE ) and a monoenergetic energy 
level with density -318 cm 10=mN  (

eV -0.4=mE ) at temperature K 300=T . 
Electrode of m 10 µ  thickness. 

 

One important parameter for nanostructured devices is the position of the 

semiconductor conduction band/transport level, CE , with respect to the Fermi level of 

holes, or redox potential of ion carriers. CE  determines, for example, the maximum 

photovoltage that can be obtained in a DSC,24 and also the efficient injection of 

photoexcited electrons from the sensitizer. CE  can be modified by absorption of dipolar 

species at the metal oxide/electrolyte interface, as indicated in Fig. 17(a).86 
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Measurements of capacitance by IS or CV immediately reveal the global displacement 

of the semiconductor energy levels as a shift along the potential axis, as illustrated in 

Fig. 17(b).  

 

 

Fig. 17. (a) The schematic energy diagram of 
a nanostructured semiconductor under 
application of a potential that rises 
homogeneously the Fermi level in the film. 
Modification of the semiconductor surface 
with dipolar molecules induces a permanent 
shift of the energy levels. (b) The capacitance, 
corresponding to the DOS for an exponential 
distribution of bandgap states in the 
nanoparticles. 

 

For maintaining charge neutrality into a nanostructured film under electron 

accumulation, it is required that the increasing electron charge in the nanoparticles be 

accompanied by positive ion charge at the semiconductor/electrolyte interface. In 

addition to the chemical capacitance, µC , ionic accumulation charges the Helmholtz 

capacitance, HC , which is usually a constant, and is connected in series. The total 

capacitance becomes 

( ) 111 −−− += HCCC µ  (73) 

Equation (73) also describes the distribution of the applied bias, either as a Fermi 

level in the semiconductor, or as interfacial potential drop. As discussed later in more 

detail, at strong forward bias it is usual to find that the capacitance saturates towards HC
, implying that the increasing potential modifies the voltage in the Helmholtz layer, so 

that the band shifts. 

It should be emphasized that in general µC  depends on the properties of the 

electrochemical potential of the carriers. The model explained above in terms of the 

distribution of electronics states is one possible approach that has been found very 
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useful in the interpretation of capacitance measurements of DSC.53,87  In general, 

however, ionic effects, interactions, etc., that govern the electrochemical potential,88 will 

affect the chemical capacitance. 

 

5.3. Recombination resistance 

In the Applications Section we will show that the DSC operation is very similar to 

the ideal photovoltaic model that has been outlined above. The main reason for this are: 

(1) The TCO/TiO2 contact and nanostructured TiO2 network provide a very good 

electron selective contact, whereby the Fermi level of the TCO follows the rise of 

the electron Fermi level in TiO2 nanoparticles. 

(2) Electron transport is fast enough to provide long diffusion lengths. 

Despite these properties, DSC performances remain far below the theoretical 

efficiencies that can be calculated on the basis of the absorption band of current 

sensitizers such as N719.89 One important limitation to present DSC efficiency is that 

the Fermi level (redox potential) of the dominant redox couple, I-/I3
- , is too high and 

limits the photovoltage. Other redox couples, with a more positive redox potential (in 

electrochemical scale) show poorer kinetic properties at the different internal 

interfaces,90 which yields higher recombination losses.68  

Governing recombination at the semiconductor/electrolyte interface is perhaps the 

most critical issue to improve the DSC performance. There are two basic approaches to 

analyze recombination in a DSC, either to study the recombination resistance in IS, or 

the electron lifetime. In the literature the second method is preferred since it can be 

directly measured by several techniques. From the point of view of IS, both quantities 

are related by the chemical capacitance as indicated in Eq. (65), and more generally, by 

the capacitance, which may or not be chemical in origin.91 However, the lifetime is a 

quantity that corresponds to the transient behavior of the solar cell, while the 

recombination resistance contains primary information about recombination rate at 

steady state,40 and we consider that this resistance, appearing in the fundamental circuit 

of Fig. 11, is the central quantity to discuss recombination in relation to the steady state 

performance of DSCs. Even if we choose to study electron lifetimes, the main 

information on charge transfer in the lifetime is the resistance, not the capacitance in Eq. 

(65). 

Let us specify the meaning of recombination flux. In Fig. 4 we showed that solar cell 
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operation under illumination consists basically in the competition between two currents, 

the photocurrent due to extraction of the photogenerated carriers, and the recombination 

current which goes in the opposite sense to generation. In Eq. (12) the recombination 

current is therefore nrec qLUj = . However in practice, the situation is much more 

complicated, both in terms of morphology and kinetics, and we need to identify the main 

components of recombination by measurement. We have already discussed that it is 

quite difficult to separate the components of measured dc current and this is why we 

adopt the analysis of IS.  

 As discussed in Eq. (61), we can calculate the macroscopic recombination resistance 

as the derivative 
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In Fig. 13 we have indicated that recombination process in a DSC is the interfacial 

charge transfer of electrons in the ETM, to oxidized ions in the electrolyte or holes in 

the HTM. In order to perform model calculations, precise assumptions on the 

recombination current dependence both on the electron density and the concentration of 

electron acceptors in solution, or in HTM, 𝑐, are required. A simple way to formulate 

the recombination rate is a first order reaction, as in Eq. (5) 

cnkU recrec =  (75) 

then the recombination current density is 

cnqLkqLUj recrecrec ==  (76) 

and we obtain from Eq. (74) 
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If we assume that electron recombination occurs from the conduction band energy 

level, this last equation can also be expressed as 
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Eq. (78) shows that the recombination resistance decreases as the applied forward 

bias increases, due to the increasing electron density that augments the recombination 

rate.  
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In the experimental results of measurements in DSC it is common to find an 

expression like in Eq. (78), but with a different exponent, that can be parameterized with 

a constant β  
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We should remark that Eq. (79) is an empirical approximation that works well in 

restricted domains of bias voltage. The observed dependence of recombination 

resistance on bias may contain additional features, such as a valley, i.e. a minimum of 

resistance, at low potential,92 see below Fig. 36. 

The parameter β in Eq. (79) obtains different denominations: it can be related to 

classical electrochemical behavior known as Tafel law, and it can also be associated 

with the nonideality factor of classic solar cell theory, i.e., m/1=β  in Eq. (1). But it 

should be recognized that the Tafel law in electrochemistry usually corresponds to the 

voltage dependence of charge transfer rate at the metal/solution interface. In contrast, in 

Eq. (79) 𝑉 is not an overpotential, but the Fermi level of electrons, thus the primary 

cause for the recombination resistance dependence on bias voltage in a DSC, is the 

increase of the electron density in the inorganic semiconductor, as it was already 

remarked before. These two causes for the exponential law are widely recognized in 

photoelectrochemistry of semiconductor electrodes.93 Eq. (78) expresses such model in 

the case of ideal statistics for electrons. Eq. (79) corresponds to the fact that 

recombination current is not simply proportional to the total electron density. As 

mentioned, such deviations are common in many classes of solar cells, even in highly 

efficient silicon solar cells,94 where the diode ideality factor often departs from 1.95 

Recombination in DSC, depends on a multitude of factors, and they are not easy to 

separate in experiments using working DSC devices. While no well established 

consensus has been achieved about fundamental quantitative description of 

recombination, we can provide a basic classification of the main elements determining 

recombination in the following way. Recombination is an interfacial charge transfer 

event at the surface between the semiconductor and the ionic/hole carrier. (Additionally, 

recombination from the substrate becomes important in some circumstances,96 and this 

is also treated in the Applications Section). Since a distance for electron tunneling 

should be of the order of 1 nm, we can naturally separate the recombination flux in three 

elements: 
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(1) Electrons reaching recombination sites in the semiconductor surface, 

(2) ions or holes reaching the surface from the electrolyte or hole conductor side, and 

(3) the interfacial events. 

The electronic density in semiconductor nanoparticles in a DSC can be readily varied 

by potentiostatic control, and is accessible by several means, for example we can obtain 

separate information about this by determination of the chemical capacitance and 

transport resistance, that we may use as an input in the analysis of the recombination 

resistance. However, due to spatial and energetic disorder in the semiconductor, there 

are several electronic paths for charge transfer at the surface, which complicates the 

analysis, as further discussed below. 

In contrast, as mentioned before, for redox ionic species in the electrolyte, the 

concentration is very high and cannot be varied in situ, maintaining the integrity of the 

solar cell. For the majority of studies the standard iodine/iodide was used as redox 

carrier. The overall recombination reaction is given by  
-

2
-

3 3I  )(TiO 2eI →+−  (80) 

The reaction (80) must consist on a multiple-step mechanism, very probably 

involving the species I2,97 and one of the steps will be rate determining. The oxidized 

species in the electrolyte may therefore be I2, and/or I3
-. Also very important for DSC 

operation, is the regeneration of the oxidized dye, and this may involve a transient 

(dye+-iodide) intermediate complex,98 though this process is difficult to access by IS. 

The formulation of models of charge transfer requires to specify the probability of 

electron transfer from an electronic state at the energy level E  to an acceptor species in 

the electrolyte with concentration c . This is usually given99,100 by the expression of the 

Marcus model 
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where 0k  is a time constant for tunnelling, which is dependent on the distance of the 

acceptor to the surface,101 and λ  is the reorganization energy.  

It is well established that recombination rates are mainly affected by two factors: (1) 

the position of the semiconductor energy levels, with respect to the redox levels, and (2) 

treatments of the surface that intercept charge transfer from the semiconductor without 

decreasing the rate of photoinjection from excited dye molecules.84 Recombination with 



  43 

oxidized dye molecules is thought to be of minor relevance. However, as already 

mentioned, while a quantitative control of electron density is possible, the measured 

lifetime or recombination resistance still contains a combination of mechanisms that 

have not been ascertained in detail. 

Leaving aside the complexity of individual charge transfer events, we discuss the 

density dependence of the recombination resistance analyzing the different electronic 

paths that may occur in the semiconductor surface in a DSC. Fig. 18(a) provides a 

possible outline of electronic states that participate in electron transfer at the 

surface.54,102,103 Consistent with the density of states that is measured by capacitance 

techniques, as indicated in Fig. 16, we assume that the surface may contain transfer 

states that we classify in three kinds: the transport (conduction band) states, an 

exponential distribution of surface states, and a monoenergetic deep surface state. 

 

 

 

Fig. 18. (a) Schematic representation of the 
steps involved in the recombination between 
the electrons in TiO2 nanoparticles and the 
oxidized species in the electrolyte. ( 0FE ) 
shows the position of the Fermi level in the 
dark, equilibrated with the redox potential (

redoxE ) of the acceptor species in solution. (
FnE ) is the Fermi level of electrons under 

illumination and Ec is the transport level 
(conduction band) energy. The following 
steps are indicated: (A) Electron transport; 
(B) capture by surface states; electron transfer 
through (C) conduction band, (D) deep mono-
energetic and (F) exponential distribution of 
surface states. On the left side we show the 
density of electronic states in the TiO2 
nanoparticles, and on the right side the 
fluctuating energy levels of oxidized species 
in solution according to the Marcus-Gerischer 
model. (b) Scheme of the processes of 
interfacial charge transfer. Shown is electron 
exchange between the transport levels, and a 
surface state in the bandgap at energy ssE , 
with rates trU  and reU  for trapping and 
release. The rate of interfacial charge transfer 
from transport states is cb

nU  and the rate of 
charge transfer from the surface state is ss

nU . 
λ is the reorganization energy of the acceptor 
species in the ionic or hole transport material, 
with an effective density of states D. oxE  is 
the most probable energy levels for the 
oxidized state of the acceptor species. 
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In Fig. 18(a) we appreciate that only transport states establish the electronic 

communication of the surface with the substrate. So in this model, there is a single 

channel for transport. But when the electrons arrive in the surface, the recombination 

current branches into several parallel channels. Fig. 18(b) shows more clearly the 

situation, by indicating in more detail the trapping and release events on a single surface 

state, that thereafter acts as recombination center.28,92 

It is clear now that in the situation of Fig. 18(b), the recombination current is no 

longer linearly dependant on the concentration of electrons in the transport state, cbn , 

but it depends also on the density at the surface state, ssn . In steady state ssn  depends 

uniquely on cbn , but the dependence may be quite involved.102,103 In any case in the 

presence of two channels for charge transfer, the recombination rate is 
ss
n

cb
nn UUU +=  (82) 

From the general form of the recombination resistance (per unit volume) in Eq. (61), 

we may write the reciprocal resistance as 
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Here, cbτ  is the lifetime of conduction band electrons. The first term in parentheses 

in Eq. (83) recovers Eq. (78), while the second term introduces a different dependence. 

Eq. (83) nicely shows that the different recombination branches immediately translate 

into parallel branches in the equivalent circuit for recombination. In order to obtain a 

detailed understanding of recombination mechanisms in DSCs, it is of critical 

importance to separately measure the different recombination paths. Is this possible 

using IS? 

The answer to this question depends on the dynamic response of the different 

recombination channels. That is, do the different channel have associated different 

capacitances? This would provide spectral features for discriminating the channels in the 

IS data.  
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Fig. 19. Equivalent circuit for the model of 
Fig. 18(b), with electron transfer both from 
conduction band and a surface state in the 
bandgap at energy ssE . cbcµ  is the chemical 
capacitance of free carriers, cb

rr  is the 
recombination resistance of free carriers, 

trapr  is the resistance for trapping and 
release, sscµ is the chemical capacitance of the 
surface state, ss

rr  is the charge transfer 
resistance from the surface state.  

 

 

Surface states do have, in general, a separate capacitive component. This is related to 

the chemical capacitance of each state, that is observable depending on rates of trapping 

and release that are shown in Fig. 18(b), and determine the trap resistance.75 Indeed, in 

the literature of photoelectrochemistry there are detailed treatment of the dynamic 

effects of surface states,13,14,104,105 and the equivalent circuit resulting from this approach 

is shown in Fig 19. Note in particular the resistances of the two recombination branches 
cb

rr , ss
rr , that corresponds to the two terms in Eq. (83). However, so far the dynamic 

effect of surface states in TiO2 based DSC has not been clearly identified in experiments 

of IS. Therefore we need to work under the assumption of a quasistatic 

approximation:40,75 we assume that the trapping and release rates, trU  and reU , in Fig. 

18(b) are so fast, that the density of the surface state, ssn , remains at quasiequilibrium 

level in the measurement. But then we measure a unique recombination resistance that 

will contain the contribution from all the transfer channels present, i.e., rr . The 

significance of the different channels has to be inferred from the steady state variation of 

the recombination resistance.92 

As suggested in Fig. 18(a), we should consider the charge transfer from a distribution 

of surface states )(Egss  in the semiconductor.102,103,106 The current per unit macroscopic 

area of an electrode of thickness L  is 

∫= c
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Here, 𝑓(𝐸) is the occupation of the surface state. In general we denote FnE   the 

Fermi level of electrons in transport states. For electrons in surface states, the 

equilibrium statistics is more complex, and in general it is not possible to define a Fermi 

level.92 As mentioned above, if the trapping-release rate is sufficiently fast, we can 

assume that the surface state is in equilibrium with the transport states, and the 
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occupancy of both is described by Fermi-Dirac distribution, Eq. (67), with a common 

Fermi level. 

The recombination resistance is 
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Applying the zero temperature limit of the Fermi-Dirac distribution, as before in Eq. 

(68), the following result is obtained 
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Eq. (86) states that the reciprocal charge-transfer resistance is proportional to the 

product of the density of surface states at the Fermi level, and the probability of electron 

transfer from such states. This result occurs because the resistance, as discussed before, 

is a differential quantity corresponding to the current gained by a small step of voltage. 

In Fig. 18(a), a small displacement of the Fermi level fills the surface states precisely at 

the Fermi level, hence the resistance detects only those states, as indicated in Eq. (86). 

Assuming that )(Egss  has the exponential shape of Eq. (71) with parameters sN  and 

0T , the resistance in Eq. (86) takes the form65 
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Eq. (87) can also be expressed as 
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where 
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E
0

221 λλαλµ +=+=  (90) 

Fig. 20(b) shows the characteristic probability of electron transfer according to 

Marcus-Gerisher model. The probability increases with the driving force for the 

transition which is redoxss EE −  and is maximum at λ=−= redoxFnox EEE , where 

activationless charge transfer occurs. According to Eq. (89) the resistance dependence 
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on voltage )( redoxFn EEqV −= , consists on a Gaussian function, centered at the energy 

µE  indicated in Eq. (90). The center µE  of the Gaussian, is shifted positive in the scale 

of the Fermi level, with respect to oxE , by an amount λα2 , in other words 

λαµ 2+= oxEE . The behavior of )( Fnr ER  in this model is illustrated in Fig. 20(a).  

When the Fermi level is below the minimum µE , we obtain a useful approximation 

of Eq. (89) 
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where 
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1

1 Tαβ +=  (92) 

Therefore, this model satisfactorily explains the Tafel dependence indicated in Eq. 

(79). In addition 1β  is predicted to increase linearly with the temperature.  

The model outlined should be taken as an example that a combination of charge 

transfer channels (in this case by a wide distribution of energies of the surface states) 

provides a new dependence of the recombination resistance on Fermi level (or electron 

density). Experimental application of this model will be discussed later on.  
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Fig. 20. Model simulations of: (a) Electron 
recombination resistance Rr normalized to the 
minimum value, as a function of Fermi level 
position, for the model of charge transfer in 
an exponential distribution of surface states 
with parameter K 8000 =T . (b) Charge 
transfer probability normalized to the 
maximum value, as a function of Fermi level 
position. Results are shown for different 
values of the reorganization energy, λ , at 
temperature K 300=T , and for different 
temperatures in the case eV 8.0=λ . The 
position of the conduction band, CE , is 
indicated. 

 

 

 

 

5.4. The transport resistance 

Obtaining high solar cell efficiency requires to absorb most of the incident photons. 

Depending on the absorption coefficient of the specific absorber, a certain thickness of 

the semiconductor is required. Therefore, photogenerated carriers must travel a certain 

distance to reach the contact, as indicated in Fig. 14(b), and this is often an important 

aspect of solar cell operation. Electron or hole transport is always driven by a gradient of 

the Fermi level, as discussed below, and therefore transport in the semiconductor is a 

loss of free energy of the carriers. In addition, the extraction of carriers to provide a 

photocurrent in the external circuit is in competition with recombination processes. 

Therefore it is important to determine the basic transport coefficients of the electronic 

carriers, such as the mobility, nu , and the diffusion coefficient, nD , since this allows us 

to evaluate the energy losses associated with carrier transport and the diffusion length. 
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The basic quantity that describes the transport features in IS is a transport resistance, tr . 

We will describe the method to obtain nD  from tr .  

Diffusion under concentration gradients is a collective phenomenon, and in DSC and 

in disordered materials in general, diffusion involves electronic states with widely 

varying energies.61 A clear manifestation of this is the fact that in DSC the diffusion 

coefficient varies several orders of magnitude under modification of bias voltage.56 

Therefore, it is useful to carefully establish the meaning of measured transport 

quantities. 

 To discuss the motion of electrons in a semiconductor material, with concentration 

)(xn  at position x , we assume that the Fermi level, or electrochemical potential, of the 

electrons has two basic components:60,107  

nCFn EE µ+=        (93)  

The first one, cE , is the energy of the edge of the conduction band (or transport 

level), which can be associated the Galvani (electrostatic) potential, φ , with respect to 

some suitable reference level, as follows 

φqEC −=        (94) 

The second component in Eq. (93), nµ , is the chemical potential of electrons. This is 

an entropic contribution that accounts for the dispersion of the carriers over all the 

available sites, and can be normally formulated in terms of the carrier density. If the 

species is distributed randomly in the available sites the following expression holds, 

which is equivalent to Eq. (67): 

nN
nTk

c
Bn −

= lnµ        (95) 

If the sites are far from saturated we obtain the ideal statistics 

c
Bn N

nTk ln=µ        (96) 

which is equivalent to Eq. (15). Eq. (95) and (96) are very important instances of the 

chemical potential, but the diffusion theory formulated below is more generally valid for 

any nµ . 

Now let us consider the system of main interest here, a nanostructured metal-oxide 

semiconductor, surrounded with electrolyte that contains abundant ionic species of both 

signs of charge. Fig. 21(a) shows a scheme of such a semiconductor in equilibrium. 
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When a bias voltage 𝑉 is applied in the substrate two basic situations may occur, shown 

in Figs. 21(b) and (c). Note that the voltage 𝑉 in these figures is positive according to 

the convention of photovoltage used in this chapter, but it is negative according to the 

usual convention of electrochemistry. In Fig. 21(b) the voltage causes a change of 

concentration of the electrons in the semiconductor, i.e. a change of their chemical 

potential, and therefore induces a diffusion force. In Fig. 21(c), the bias voltage 

promotes a bending of the band, and this creates an electric field xxF ∂−∂= /)( φ  at 

position x , while the concentration of electrons remains constant everywhere. In this 

case the electrons move under drift in the electrical field. 

 

 
Fig. 21. Scheme of a nanostructured semiconductor layer in contact with a conducting substrate at the 
left, showing the edge of the conduction band cE , the Fermi level of electrons FnE  and the conduction 
band of the substrate (TCO)cE  (a) Equilibrium situation. (b) and (c) two possible situations under 
application of a bias voltage 𝑉. 

 

What happens actually when we apply a voltage in a certain case, depends mainly on 

the conditions of shielding. In fact by applying a voltage at the contact, there is a 

difference of electrostatic potential that must be distributed somewhere into the film. 

The difference between Figs. 21(b) and (c) is that, in (b), the electrical field remains 

very close to the interface with the substrate, absorbed by a large change of the band 

offset (TCO)CC EE − . In contrast to this, in (c) (TCO)CC EE −  remains as in equilibrium 

and the electrical field enters deep into the semiconductor layer. 

In DSC we usually employ electrolytes which have large (about 1020 cm-3) 

concentration of ions. When electrons are injected into the nanostructured metal oxide, 

positive ions move to the surface of the charged nanoparticles and neutralize long range 

electrical fields. Therefore the change of electrical field occurs right at the substrate 

interface,108-110 as in Fig. 21(b) and electron transport occurs mainly by concentration 

gradient, i.e. by diffusion. This is the case also in crystalline p-silicon solar cells, due to 
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the fact that injected electrons are much less than the majority carrier holes.94 

Nonetheless, a drift component is possible also in nanostructured semiconductors 

surrounded by electrolyte. We have indicated in Eq. (73) that the shielding ions may 

cause a local shift of the conduction band. If the shift is not homogeneous, it induces a 

macroscopic field in the semiconductor nanoparticulate network.29,111 However this 

effect is minor in liquid electrolyte-based DSC and we may usually neglect it. 

In other devices, such as amorphous silicon solar cells,112 and organic light-emitting 

diodes,113 the intrinsic carrier density in the semiconductor layer is very low, and is 

overwhelmed by the number of injected carriers, which determine the electrical field 

self consistently via Poisson equation. This is called the space-charge limited 

transport,114 and it is governed by drift transport, and in a certain sense, it is an opposite 

extreme of transport situation, in comparison with diffusion. 

 

Diffusion. Turning our attention to the dominant conditions in DSC, we analyze 

diffusive transport of electrons.58,60,61 The driving force for diffusion is the gradient of 

the chemical potential of the electrons. In simple terms there are two forms of  the 

diffusion law: 

(1) In the Onsager form, a linear relationship is assumed115 between the diffusive flux 

and the gradient of the chemical potential 

xq
nu

J nn
n ∂

∂
−=

µ  (97) 

The prefactor qnuL nn /=  is known as the Onsager coefficient.  

(2) In the Fick form, diffusion is formulated in terms of the concentration gradient  

x
nDJ nn ∂

∂
−=  (98) 

The coefficient nD  in Eq. (98) is called the chemical diffusion coefficient.116,117 

Comparing Eq. (97) and (98) we obtain the expression  
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nD  contains two components: (i) a phenomenological coefficient nu  (the mobility) 

and (ii) the term nn n ∂∂ /µ , that accounts for the difference between a gradient in 

concentration, and a gradient in chemical potential. This last term is expressed in 

dimensionless form as the thermodynamic factor introduced by Darken118 
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The thermodynamic factor can be expressed with respect to the chemical capacitance 

as 

µ
χ
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Another way to approach the diffusion coefficient is to monitor the random walks of 

the electronic carriers. The resulting coefficient is termed the jump (or kinetic) diffusion 

coefficient, which is simply proportional to mobility: 

n
B

J u
q
TkD =  (102) 

It should be emphasized that JD is closely related to the tracer diffusion coefficient, 

*D . Now we can write the chemical diffusion coefficient as the product 

Jnn DD χ=  (103) 

Alternatively, we have 

nn
B

n u
q
TkD χ=  (104) 

Eq. (103) is an statement of the generalized Einstein relation.61  

The electron conductivity is 

nn nqu=σ  (105) 

Using Eqs. (101), (104) and (105), the conductivity can be expressed in terms of 

chemical diffusion coefficient and chemical capacitance as 

nn Dcµσ =  (106) 

 

Diffusion and drift. As mentioned above, in a system in which the electrochemical 

potential has the two components indicated in Eq. (93), we may view the electrical 

current as composed by the sum of conduction and diffusion currents 

x
nqDFqnuj nnn ∂

∂
+=  (107) 

Now Eq. (107) can be written as follows: 

x
E

nuj Fn
nn ∂

∂
−=  (108) 
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This relationship states that the electrical current associated with one kind of carrier 

is proportional to the gradient of the electrochemical potential, FnE . This approach is 

usually employed in electronic device modeling.25,29  

 

The transport resistance. Now we can obtain an expression for the transport 

resistance that we measure in IS. We recall that we are interested in systems, such as a 

semiconductor layer of thickness 𝐿, that may be far from homogeneous in terms of the 

carrier distribution. Therefore, we want to determine the resistance, associated with a 

specific kind of carrier (e.g., electrons), in a small spatial distance  x∆ . Associated with 

this distance, is a difference of electrochemical potential, that we may express as a 

difference of voltage as nFn qE ϕ∆=∆ , see Eq. (50). Applying the transport equation, 

(108), we obtain 

x
j n
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and therefore 
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In Eq. (110) we appreciate that the transport resistance depends on the geometric 

dimensions of the semiconductor slab, and on the reciprocal conductivity. 

 

Transport in a single level. Let us consider a semiconductor with a single transport 

level, in which the electron carriers are free from interactions. In this case the relation 

between the electrochemical potential and the carrier density is simply given by 

Maxwell-Boltzmann statistics, Eq. (17). Since this is the ideal statistics, the 

thermodynamic factor, chemical diffusion coefficient, etc., become considerably 

simplified.61 We have 1=nχ , thus 0DDD Jn == , we thus obtain Eq. (7) and the 

standard Einstein relation between diffusivity and mobility: 

n
B

n u
q
TkD =  (111) 

 

Multiple trapping transport. In classical multiple trapping transport119-121 we 

distinguish two classes of electronic states: the transport states above the mobility edge 

(that may be associated with extended states in the conduction band), and localized 
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states in the bandgap. Multiple trapping model describes the effect of trap levels over 

the rate of displacement through transport states. Such effect can be analyzed using the 

full set of transport-kinetic equations of the model, that provides the system’s response 

in any required set of conditions. However, if trapping and detrapping are fast processes, 

we apply the quasi-equilibrium approach, that was discussed above in the analysis of 

surface states. Then electron trapping kinetics can be readily described in terms of 

electrons densities in transport and trap states, and this second approach will be adopted 

herein.40 A detailed analysis75 shows that in fact the first, general, approach reduces to 

the second one whenever the traps can be considered in quasi-equilibrium conditions. 

In the transport states we have a number of carriers cbn , the chemical capacitance 
cbcµ , and assuming ideal statistics, jump and chemical diffusion coefficients, 

0DDD cb
n

cb
J == . The localized states (below the mobility edge), have a distribution 

)(EgL , the number of carriers Ln , and the chemical capacitance trapscµ . Note the 

relationships for the total carrier density and total chemical capacitance, respectively:  

Lcb nnn +=  (112) 
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It can be shown61 that the jump diffusion coefficient is given by 
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The thermodynamic factor can be written as 
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Hence, the chemical diffusion coefficient has the general form58 
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Alternatively, we can write Eq. (116) as 
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The effect of trapping in the chemical diffusion coefficient is dominant when 

1/ >>∂∂ cbL nn . In this case the result is 
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which can also be expressed 
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Eq. (118) shows that the chemical diffusion coefficient in the presence of traps is 

reduced by the relationship of free to trapped number of electrons for a small variation 

of the Fermi level.  

We obtain the following result for the conductivity: 
traps

nn cD µσ =  (120) 

This last equation is a formulation of the generalized Einstein relation that links the 

conductivity, the chemical diffusion coefficient and the chemical capacitance.61,122 

We can also express the conductivity in terms of the carrier density and jump 

diffusion coefficient 
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Equation (120) can also be expressed as cb
n cD µσ 0=  . This shows that in multiple 

trapping model, the conductivity is determined exclusively by the transport level and is 

completely independent of the presence and distribution of traps. The steady-state 

conduction is not affected by the trapping process, because the traps remain in 

equilibrium. 

 

Multiple trapping in exponential distribution. As mentioned before it is well 

established that nanostructured (anatase) TiO2 used in DSC shows this type of 

distribution of states in the bandgap.51,53,83,84,123 We discuss the regime of 

electrochemical potentials in which the Fermi level is well below the conduction band. 

Hence the free electron density is much lower than trapped electrons number, 

1/ <<Lcb nn . It is easy to show61 that the thermodynamic factor is constant58 
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where 0/TT=α  . For the typical values of 0T , 5≈nχ  at room temperature. The 

calculation of the jump and chemical diffusion coefficient, gives, respectively58,61 
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nJ DD α=  (123) 
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The diffusion length is usually defined for transport in a single level, as 

00
0 τDLn =  (125) 

being 0τ  the electron lifetime. 0
nL  is a very useful quantity that indicates the average 

distance that an electron travels before undergoing a recombination event. 

Transient techniques that induce a gradient of the Fermi level, such as IS, IMPS, etc., 

provide a determination of the chemical diffusion coefficient.124 Therefore 

experimentally we do not have direct access to 0D  . Similarly, when we measure the 

electron lifetime by transient methods we do not observe directly the decay time of 

carriers in the transport level. Using again quasi-equilibrium approach, the trapping and 

detrapping effects introduce a delay factor so that measured quantity is a response time40 
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If the carrier density is homogeneous, we can define a diffusion length nL  from the 

measured parameters nD  and nτ  . Combining Eqs. (116), (125) and (126) we obtain 
0
nnnn LDL == τ  (127) 

Therefore, the time constants determined by the transient or frequency techniques can 

be used to calculate the diffusion length in Eq. (125). Eq. (127) implies that despite the 

variation of nD  and nτ  , the diffusion length should be constant, since the variation of 

both quantities has the same origin in the delay by trapping factors.40  However Eq. 

(127) should used with some points of caution: (1) the time constants depend on local 

conditions of carrier density (or Fermi level), therefore both nD  and nτ  should be 

determined in the same conditions.125 (2) The free carrier lifetime 0τ  in Eq. (126) may 

include also a combination of processes by the different electron transfer channels as 

discussed in Sec. 5.3. Such variation of 0τ  with voltage has no counterpart in nD  and 

therefore nL  will not be constant. 

 

6. Transmission line models 
6.1. General structure of transmission lines 

Transmission line (TL) equivalent circuits as those shown in Fig. 1 are frequently 
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used in Electrochemistry in connection with porous electrodes or diffusion in active 

electrodes.41,43,46,126-128 Models for nanostructured semiconductor electrodes used in 

DSC are described in Refs. 46,47,49,129.  

 

 

Fig. 22. (a) Basic energy diagram of a solar 
cell showing the main electronic processes: 
(1) generation, (2) bulk recombination, (3) 
electron transport, (4) hole transport, (5) 
recombination of electrons at the hole 
selective contact, (6) recombination of holes 
at the electron selective contact. (b) The 
general transmission line equivalent circuit. 
(c) The local RC equivalent circuit.  

 

 

The use of TL equivalent circuits in solar cells is a consequence of the necessary 

spatial extension of the absorber to optimize the capture of the solar photons. This 

introduces the need to transport the photogenerated carriers towards the external 

contacts, as mentioned in Sec. 5.4. The situation, indicating the different electronic 

processes in an extended solar cell, is schematically shown in Fig. 22(a). Carriers 

generated must travel to the contact and this process competes with recombination. In 

addition, the outer contacts often introduce major recombination sites that must be 

controlled separately, since the recombination mechanism is usually different at these 

points. 

The structure of Fig. 22(a) is a basic outline and can be realized in different ways. For 

example in crystalline Si solar cells electron and holes carriers travel in the same 

medium, and recombination at the back surface is a major point of concern.94 

Nanostructured hybrid solar cells and organic solar cells rapidly separate the charges to 

different transport media. Electrons and holes travel in different material phases,33 while 

the transport is intercepted by charge transfer events. We will take Fig. 22(a) as a basic 
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reference to generally discuss the impedance models of solar cells with outer planar 

contacts. 

Intuitively one can see that the local processes that where discussed in the 

fundamental model of Sec. 4.1 and Fig. 11, i.e. recombination resistance and chemical 

capacitance, are also present everywhere in Fig. 22(a). But due to the spatial extension, 

additional impedances are required to transfer the carrier from one point to the neighbor 

point.130 There are, consequently, two horizontal channels for transport, corresponding 

to each kind of carrier. Thus one obtains the connection of Fig. 22(b) that is a TL. The 

TL model includes specific elements at the boundaries that account for the particular 

properties of recombination, at the point where one carrier should be blocked, and the 

other one withdrawn by the contact. Note that the TL model can also be adapted to 

heterogeneous models, as in porous electrodes or nanostructured solar cells. This is 

illustrated in Fig. 1.  

In general, transport and recombination processes in solar cells with spatial extension 

should be described by highly nonlinear relations between the driving force (gradient or 

difference of electrochemical potentials) and carrier flux, such as Eq. (1). However, we 

have already discussed that IS uses a small perturbation over a steady state, hence all 

relations between difference of electrochemical potential and carrier flux are linear, the 

coefficient being a local impedance, and this is why the model may be represented as an 

ac equivalent circuit (we should recall that all the elements in Table 2 are linear 

impedances).  

With reference to Fig. 22(b), we denote kϕ̂ , the small perturbation of the 

electrochemical potential (in units of electrical potential) in channel k (where 𝑘 = 1, 2), 

corresponding to the Fermi level of the respective carrier. We denote kî , the small 

perturbation of electrical current in channel k. As explained before, the impedance 

model is formulated with a set of linear relationships between kϕ̂  and kî . There are two 

kinds of such relationships. One kind describes variation of kϕ̂  with position in relation 

to current kî , in a single channel. We call such a coefficient kχ , and it is related to the 

driving force for transport, so its archetypal form is a resistance (although more complex 

forms exist, associated to anomalous transport48).  

The other kind of relationship stands for a loss of current in one transport channel 

with gain in the other one. This current can basically occur (1) between different carriers 

in a homogeneous medium, Fig. 22, or (2) between carriers in different phases, Fig. 1. 
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The current, related to recombination and/or interfacial charge transfer, is in any case 

driven by the local difference of electrochemical potentials between the carriers. We 

describe this kind of process with local impedances ζ . The archetype element is an RC 

circuit if there is charge transfer or recombination, or just capacitance if these processes 

are not permitted.  

The elements χ , distributed in the spatial direction of each channel, are continuously 

interrupted by interphase elements ζ . This combination, that corresponds to the 

physical probabilities for electronic events (i.e., either lateral or “vertical” displacement) 

in Fig. 22(a), gives rise to the characteristic ladder structure of a TL. Generally, linear 

equations for physical quantities varying in space with local dissipation are represented 

with transmission lines, for example, acoustic waves.131 

In the model of Figure 22, considering a slab of thickness dx parallel to the 

macroscopic contact, we obtain the following equations:132 
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The last equation describes the conservation of current.  

It should be mentioned that a TL impedance model is derived from the preceding 

macrohomogeneous equations. Regardless of the morphological details of the active 

film, it is assumed that the carrier fluxes occur one-dimensionally, normal to the outer 

planar contacts. Therefore the TL must be regarded as a spatially continuous model in 

which the branching does not correspond to finite distances, or specific morphological 

elements in the system such as nanoparticles. Indeed, we have indicated before that the 

“voltage” in each channel is associated to the Fermi level (electrochemical potential) of 

one specific carrier, and the transport channel indicates the phase in which the 

displacement of such carrier occurs. 

We have emphasized in Fig. 11 the importance of the selective contacts. In the TL 

model this is represented by the boundary conditions that complement Eqs. (128)-(131). 



  60 

To realize ideal selective contacts in Fig. 22(a), the electrons must be blocked at Lx =  

and the holes at 0=x . Therefore 

0)(1̂ =Li  (132) 

0)0(2̂ =i  (133) 

The electrode impedance Z is given by 

021 ˆ)(ˆ)0(ˆ iZL =−ϕϕ  (134) 

where 210 ˆˆˆ iii +=  is the ac electric current flowing through the cell. From Eqs. (128-

134) the following expression is obtained:49 
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where [ ] 2/1
21 )/( χχζλ += . 

But if the outer boundaries are not perfectly selective, then there is some flow of 

current between the two channels at the endpoints, that we may associate with surface 

recombination. Therefore in the general case we can use the following boundary 

conditions:49  

)0(ˆ)0(ˆ)0(ˆ 221 iZ A=−ϕϕ  (136) 

)(ˆ)(ˆ)(ˆ 121 LiZLL B=−ϕϕ  (137) 

AZ  and BZ  are specific impedances describing charge transfer/recombination, and 

polarization at the boundaries.  The reflecting boundary conditions of Eqs. ( 132) and 

(133) can now be stated with the particular form 
∞→boundaryZ               (all frequencies) (138) 

where BAboundary  ,= . Notice that the reflecting boundary condition of Eq. (138) 

corresponds to an open circuit. 

The general expression of the TL model with the generalized boundary conditions is 

the following:49 



  61 

 [ ] [ ]













 +++

+
+








+++++









+

++++
+

=
−

BA

BA

BABA

ZZSLC

ZCLSZCLSSL

SZZCZZSZ

λλ

λλλλλ

λλλ

χχ
λ

χχχχ
χχ

χλχχχλχχχχχλχ

χχλ
χχλ

χχ

21
2

2
2

121
21

1222112121

1

21
21

21

)(21    

)(     

)(
1)()(1

  (139) 

where the shorthand notation )/cosh( λλ LC =  and )/sinh( λλ LS =  has been used. 

Several particular cases of Eq. (139) may be examined. 

First, if we have the following conditions: (i) ∞→AZ  and ∞→BZ  at all 

frequencies and (ii) large conductivity in channel 2 so that the lower transport channel 

becomes short-circuited, then the standard double-channel TL of Eq. (135) is recovered.  

Second, we assume again two conditions: (i) ∞→AZ  (reflecting boundary) and (ii) 

large conductivity in channel 2 so that the lower transport channel becomes short-

circuited, i.e. 02 =χ . Then we obtain the TL shown in Fig. 23(b). The following 

expression results: 

 
)/coth(
)/coth(

1

1
1 λλχ

λλχ
λχ

LZ
LZZ

B

B
+
+

=  (140) 

This model is also applied for diffusion with special boundary condition.133  

 

 

Fig. 23. Transmission lines with large 
conductance in the lower channel. (a) 
Blocking boundaries at the end of both 
transport channels. (b) General boundary 
condition at the end of the resistive transport 
channel. (c) General boundary condition at 
the  end of the conductive transport channel. 

 

 

Next we apply blocking boundary conditions at both ends of the transport channels in 
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the TL. We set ∞→AZ , ∞→BZ  in Eq. (140), and 02 =χ  in Eq. (135), and we get 

the TL shown in Fig. 23(a), with the impedance 

)/coth(1 λλχ LZ =  (141) 

Experimentally it is not easy to separate the transport elements in both channels of 

the TL.134 Normally one channel is much more conducting than the other one, and thus 

the simple expression in Eq. (141) is undoubtedly the most widely used type of TL 

model.  

Finally, Fig. 23(c) shows the case in which the generalized boundary condition is at 

the end of the more conductive transport channel. Note that the TL impedance is simply 

the parallel connection of AZ  and Eq. (141). 

TL models with three transport channels have been also solved analytically.129 

 

6.2. General diffusion transmission lines 

We turn our attention to the scheme of a DSC in Fig. 14(b) where electrons diffuse in 

a nanostructured semiconductor surrounded with redox electrolyte that provides for 

charge compensation and electrostatic shielding. We extend Eq. (4) in the following 

way:  

t
nU

x
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t
n L
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∂
∂
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−=

∂
∂

 (142) 

Here nJ  is the flux of free carriers at position x  that relates to the gradient of 

concentration by Eq. (7), where 0D  is the diffusion coefficient of the free electrons in 

extended states. The third term at the right in Eq. (142) stands for trapping of the free 

carriers in localized states. Eq. (142) must be complemented with dynamic equations of 

the traps.75 
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Fig. 24. (a) Transmission line representation 
of the diffusion impedance with the 
distributed diffusion resistance tr  and the 
general transverse element ζ . (b)-(f) 
Specific models are indicated, depending on 
the local electronic processes coupled with 
diffusion. 

 

 

The analysis of diffusion impedance models has been presented in several 

works.47,48,135 The solution of Eq. (142) for small ac perturbation, with a blocking 

boundary condition, is the general expression of the diffusion impedance in a film of 

thickness L ,  

 [ ] [ ]{ }2/12/1 )(coth)()( tt rsLrssZ ζζ= . (143)  

where  ωis = . This last equation corresponds to the TL shown in Fig. 24(a), that is a 

specific instance of Eq. (141). In Eq. (143) tr  is the resistivity of the material (or 

distributed transport impedance, per unit length per area) ( m⋅Ω ),  

LRpAr tt /)1( −=   (144) 

where tR  is the macroscopic transport resistance of the film of geometric area A . In 

accordance with Eq. (110), tr  is the reciprocal to the electronic conductivity nσ  
1−= ntr σ          (145) 

We recall that the conductivity is given by Eq. (121) 

The element ζ  in Eq. (143) and Fig. 24(a), adopts different forms, depending on the 

local processes included in the model (trapping, recombination, etc.). For example 

recombination,  introduces a vertical resistance, Fig. 24(c),47 and trapping, introduces 

the RC series connection, Fig. 24(d).74,75,135 In general each term that implies carrier loss 

from the transport level in Eq. (142), produces an additional parallel branch in ζ . So 
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one can obtain a variety of TL models that represent diffusion in a restricted layer 

coupled with additional processes, as shown in Fig. 24(b)-(e). 

The element in common to all these TLs is the chemical capacitance that occurs in ζ

. The origin of the chemical capacitance is the charging term at the left of Eq. (142), and 

this was explicitly shown in Eq. (59). It is not surprising that diffusive transport must 

produce always a chemical capacitance in ac conditions. A difference of potential 

between neighbor points in Fig. 24(b), in reality represents a difference of chemical 

potential. Therefore, neighbor chemical capacitors obtain different charge, i.e., 

concentration. This concentration gradient drives the transport of carriers across the 

transport resistance.130 

The model in Fig. 24(e) is special because the standard chemical capacitance is 

replaced by CPEs, and this is related to anomalous diffusion48 that often occurs in 

disordered systems. 

We discuss in more detail the simplest (ordinary) diffusion model, with no traps and 

no recombination, shown in Fig. 24(b). In this model the distributed admittance 1−ζ  

consists on the chemical capacitance  

[ ]sLpAC cb )1(/1 −=−
µζ  (146) 

Here, cbCµ  is the macroscopic chemical capacitance previously derived in Eq. (55). 

Eq. (146) gives 

( ) ( )[ ]2/12/1 /coth/)( ddt ssRsZ ωω=  (147) 

The characteristic transport frequency dω  is the reciprocal of the transit time through 

the layer of thickness L ,  

cb
t

d CRL
D

µ

ω 1
2
0 ==  (148) 
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Fig. 25. Representation of diffusion  
impedance of a film of thickness L  with 
blocking boundary. The intercept of the 
vertical feature with the real axis gives 1/3 of 
the transport resistance. The characteristic 
frequency (Hz) of the turnover from Warburg 
behaviour to low frequency capacitance 
(square point), related to the characteristic 
frequency µω CRtd /1=  is shown. 
Parameters Ω=  103

tR  F 101 3−×=µC
. 

 

 

The impedance spectrum of diffusion in a restricted layer is shown in Fig. 25. At high 

frequencies the spectrum exhibits a 45º line. In semi-infinite diffusion this 45º line 

extends indefinitely to low frequencies and is termed a Warburg impedance. In spatially 

restricted diffusion, at frequencies lower than dω  there is a change of the shape of the 

spectrum, and Eq. (148) may be approximated as  

 
ωµ

cbt C
RZ

i
1

3
1

+=                       (149) 

Therefore, at low frequencies the impedance becomes capacitive, and the capacitance 

is of course the chemical capacitance of the whole layer. The low frequency resistance is 

3/tR . This is an important feature, since the electronic conductivity of the 

semiconductor layer can be directly extracted from tR . 

 

6.3. Diffusion-recombination transmission line 

The main TL model for DSC is the diffusion-recombination model of Fig. 24(c).47 In 

fact this model arises from that of Fig. 11, with ideal selective contacts, complemented 

with the diffusive transport, that introduces the resistances along the upper channel. This 

model has been applied in DSC,51,65 and to crystalline Si solar cells (with the addition of 
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surface recombination).94 

For the interpretation of the impedance of diffusion-recombination it is useful to first 

discuss the carrier distribution in steady state conditions. We have already introduced 

the diffusion length, nL , that is defined in Eq. (125), and indicates the average distance 

that generated or injected electrons travel before recombining. Influence of nL  in the 

carrier distribution is illustrated in Fig. 26, for a semiconductor forward biased at the left 

contact in dark conditions.47,136 For long diffusion length and reflecting boundary (1), 

the carrier profile is nearly homogeneous. For short diffusion length (2), a gradient of 

carriers of the size of the diffusion length is built from the injection point. Another 

crucial factor is the rate of recombination at the back surface. If the rate is large (3), 

excess carriers cannot be maintained at this boundary, and a gradient of the size of the 

semiconductor layer is built.  

 

 

Fig. 26. Concentration in diffusion-
recombination model for electrons injected by 
bias voltage at the left boundary with 
concentration sn  in excess of equilibrium 
concentration 0n . Curve (1) represents the 
case LLn >> , where nL  is the diffusion 
length and L  the thickness of the layer, for 
reflecting boundary condition at the back 
contact. Curve (2) is the case of a short 
diffusion length, LLn << , as indicated. 
Curve 3 corresponds to long diffusion length 
with strong recombination at the back contact, 
or symmetric contacts. 

 

 

The case of interest for DSC and solar cells in general is the diffusion-recombination 

impedance with a reflecting boundary condition at the end of the electron transport 

channel, i.e. Fig. 24(c). Recombination process introduces a recombination resistance in 

parallel with the chemical capacitance in the TL.47 The transverse ζ -impedance in Eq. 

(143) in this case is 

rec

r

s
r

ω
ζ

/+1
=  (150) 

The characteristic frequency of recombination is 
1

0
−= τωrec  (151) 
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where 0τ  is the free electron lifetime, and the distributed recombination resistance is 

given by  

µ

τ
C

pLARpLAr rr
0)1()1( −=−=  (152) 

Here rR  is the macroscopic recombination resistance of the layer, that was discussed 

in Sec. 5.3. The impedance adopts the form47 
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The impedance spectra of the model of Eq. (153) are shown in Fig. 27. In contrast 

with Fig. 25, the spectra of diffusion-recombination, are resistive at low frequencies. 

This is due to the fact that recombination introduces a dc conduction path. There are two 

competing processes now, the transport across the layer ( dω ) and the carrier loss by 

recombination ( recω ). The shape of the spectra is regulated by the factor relating the 

characteristic frequencies, that can be expressed in several alternative ways 47 
2
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The diffusion-recombination impedance provides two basic kinds of spectra, 

according to the conditions of Eq. (154). The spectrum for rt RR < , is shown in Fig. 27 

(b)-(c), and corresponds to the carrier profile (1) shown in Fig. 26. This is the desired 

case for an efficient DSC at moderate forward bias.65 The opposite case, for strong 

recombination, for rt RR > , is shown in Fig. 27(e). This relates to case (2) in Fig. 26. 

The intermediate spectrum for rt RR ≈  is shown in Fig. 27(d). 
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Fig. 27. Diffusion-recombination transmission 
line with reflecting boundary condition (a). 
Simulation of the impedance with parameters  

Ω=  103
rR , F 105 6−×=µC  and 

increasing transport resistance, (b,c) 
Ω=  102

tR , (d) Ω=  103
tR , (e) 

Ω=  104
tR .  Shown are the frequencies in 

Hz at selected points, the characteristic 
frequency of the low frequency arc (square 
point), related to the angular frequency 

µτω CRrnrec /11 == − , and the low 
frequency resistance. The frequency (Hz) of 
the turnover from Warburg behaviour to low 
frequency recombination arc (square point), 
related to the characteristic frequency 

µω CRtd /1=  is also shown. 

 

 

The spectrum of Fig. 27(b) has two features. At low frequency there is a 

recombination arc, which is the parallel connection of rR  and µC . The impedance at 

low frequency is given by the expression 

rec

r
t

RRZ
ωω /i+13

1
+=                      (155) 

The other feature is the diffusion Warburg, which is a small feature in the high 
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frequency part of Fig. 27(a), clearly visible in the enlarged plot of Fig. 27(b), where we 

can see the start of the curvature of the capacitive part of Fig. 25 due to recombination. 

As indicated in Eq. (155), in the spectrum of Fig. 27(b) we can determine the electronic 

conductivity from 3/tR , i.e., the resistance at the turnover, and this method has been 

effectively applied in experiments.52,65 

On the other hand, in the case of strong recombination ( drec ωω >>  or LLn << ) the 

injected carriers penetrate a restricted extent in the layer, and the boundary condition is 

irrelevant. The spectrum adopts the form of the Gerischer impedance, 
2/1

/i+1 









=

rec

rt RR
Z
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shown in Fig. 27(e). When the carrier distribution in strongly inhomogeneous, the 

chemical capacitance and recombination resistance depend on position. Furthermore, 

additional current generators are required to correctly describe the impedance function.  
130  

 

6.4. Parameters of diffusion-recombination model 

Equation (153) is one way to write the diffusion-recombination impedance, but of 

course one can use other sets of parameters: the chemical capacitance, the chemical 

diffusion coefficient, etc. This may eventually lead to some confussion64 and it is 

important to establish very clearly what is the primary information that can be obtained 

from the impedance spectra. We recall that recombination arc in Fig. 27(b), is a 

fundamental requirement of a solar cell impedance model, as discussed before in Fig. 

11. However the Warburg part in Fig. 27(b) may or not be observed. So there are two 

basic situations. 

First, the case that Warburg part is clearly observed at high frequency, in addition to 

the recombination arc. By “observing” we mean that there is strong evidence that the 

spectra display this feature, although it may be hidden by other elements.137 But if the 

diffusion part is indeed detected, the impedance model provides three basic parameters: 

the recombination resistance rR , the chemical capacitance µC , and the transport 

resistance tR . If the semiconductor shows a wide distribution of traps, then in quasi-

static approximation Eq. (153) is also valid but we measure the total chemical 

capacitance that is dominated by trapsCµ , as discussed in Sec. 5.2. In any case there are 

three independent impedance parameters that can be derived from the model.  



  70 

From these parameters we can additionally obtain:  

(a) the electron conductivity, as discussed in Eqs. (144) and (145);  

(b) the chemical diffusion coefficient, nD ,  

2
1

LCR
D d

t
n

ω

µ

==  (157) 

This last equation corresponds to the generalized Einstein relation traps
nn cD µσ =  that 

was given in Eq. (120). 

(c) the electron lifetime, given in Eq. (126), that is obtained as follows 
1−== recrn CR ωτ µ  (158) 

We should further mention that for “long” diffusion length, we can assume that 

transmission line elements are basically uniform, so that macroscopic resistances and 

capacitance are simply related to the respective distributed TL elements by the film 

dimensions. While in the case of strong recombination, simulation with spatially 

variable elements is generally required.130 

If, in addition, we have independent information about the position of the conduction 

band, we can also derive the free carrier diffusion coefficient and lifetime, using Eq. 

(119) and (126). 

Suppose now that the diffusion, Warburg part of Fig. 27(b) is not observed. Then  we 

have are two independent impedance parameters: recombination resistance rR , and the 

trap-dominated chemical capacitance µC . There is no information at all on electron 

transport. In fact the main reason why the Warburg part is not detected is that the 

conductivity is very high and transport resistance becomes very low. So in this case, 

conductivity and chemical diffusion coefficient, simply cannot be derived from the data. 

 

6.5. Effect of boundaries on the transmission line 

So far we have treated the impedance of diffusion with coupled processes, and with 

the condition of the reflecting boundary at the end of the diffusion zone.  Case (3) in 

Fig. 26 shows a different situation. There is strong recombination at the final boundary, 

and the carriers must remain at the equilibrium level. The corresponding TL has a short-

circuit at the end of the transport channel, as indicated in Fig. 28. The impedance can be 

obtained from (140) with 0=BZ , and the result is 
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( ) ( )[ ]2/12/1 /itanh/i ddtRZ ωωωω −=  (159) 

The impedance spectrum is shown in Fig. 28. There is a diffusion Warburg part at 

high frequencies, but at low frequencies the impedance is obviously conductive through 

the transport channel. Eq. (159) also corresponds to diffusion between symmetric 

electrodes, and this allows to determine the diffusion coefficient of ions in viscous 

electrolytes for DSCs.66 

 

 

Fig. 28. Representation of diffusion  
impedance of a film of thickness L  with 
absorbing boundary. The characteristic 
frequency (Hz) of the turnover from Warburg 
behaviour to low frequency arc (square point), 
related to the characteristic frequency 

µω CRtd /1=  is shown. Parameters 
Ω=  103

tR , F 101 3−×=µC . 

 

 

In Fig. 11(c) we have commented in general the effect of recombination at one 

boundary of the solar cell. We can provide now a more quantitative picture of this effect 

using the TL model with a general boundary condition of Fig. 23(b), described in Eq. 

(140). As an example, Fig. 29 represents a DSC with a solid hole conductor, in which 

the more resistive transport channel is the organic conductor, so that the resistance of 

nanostructured TiO2 is set to 0. In the contact of the organic conductor with the 

substrate, there is a resistive/capacitive interface, describing the direct charge transfer 

through the substrate. This is a short circuit that must be avoided in DSCs, where the 

only transfer path must be the distributed interface of TiO2/organic conductor. In Fig. 

29(a) and (b) we present simulations of the spectra with a variation of the charge 

transfer resistance at the substrate. In fact the “shunt” resistance BLR  at the substrate can 

be highly variable, since the potential in the substrate changes and one can expect 

Butler-Volmer behaviour.51 When BLR  is large, the substrate plays no role at all, and we 
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obtain the spectrum of diffusion-reaction impedance shown in Fig. 27(b). But when BLR  

becomes less than the bulk recombination resistance, the current flows predominantly 

through the substrate, and the TL model becomes similar to that of Fig. 28. The 

observation of a transition from one type of spectrum to another one, may be useful in 

practice to determine the dominant resistance at each bias voltage. 

 

 

Fig. 29. The diffusion-recombination 
impedance with transport in the lower channel 
(representing the hole conductor in a DSC) 
and charge transfer and polarization at the 
substrate (a). Simulation with Parameters  

 , 9 , 1 ,0 Ω=Ω== rHTMt RRR
F 105 3−×=µQ , 1=µn  
F 101 2−×=BLQ , 7.0=BLn  and BLR

varying as indicated (b) and (c). 

 

 

 

 

7. Applications 
In this section we will apply the models and concepts explained above, to describe 
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the experimental results obtained for the IS measurements of several samples of DSC. 

Firstly the specific equivalent circuit models that have been found more useful to fit the 

impedance spectra of DSCs will be described. Subsequently, results obtained from these 

fits will be analyzed and contrasted with theory predictions. Finally, consequences of the 

IS data analysis on the performance of the DSCs will be commented.  

The main objective is to provide the main hints and ideas for the practical application 

of the IS technique on devices based on this technology and similar ones.  

Before starting, we want to remember the sign criteria for the bias potential that is 

used in this chapter. A nanostructured TiO2 film will be always the working electrode, 

therefore illumination of the sample will produce a positive current under short circuit 

and a negative photopotential. Consistent with the previous sections, the sign of the 

potential will be reversed and all the equations will be written taking into consideration 

this change of sign. 

 

7.1. Liquid electrolyte cells 

The impedance spectra obtained for DSCs with liquid electrolyte as hole conductor 

based on both liquid solvents and ionic liquids, may be adjusted to the general 

transmission line model of Fig. 30.51,52,65,66 

In this model, we have used the transmission line of Fig. 24(c) that describes 

diffusion electrons in the TiO2 together with the recombination with the holes in the 

liquid electrolyte. For DSC device application this TL is combined with a number of 

elements accounting for the different interfaces in the device. 

 

 

Fig. 30. The general 
transmission line equivalent 
circuit for liquid electrolyte 
DSC.  

 

 

In addition to the elements of the TL appearing in Fig. 24(c), the following elements 

occur in the general equivalent circuit of DSCs (Fig. 30):  

• The charge-transfer resistance RPt and interfacial capacitance CPt at the 

counter electrode/electrolyte interface. RPt is the resistance to regenerate the 
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−
3I  into −I  at the counter electrode while CPt is the Helmholtz capacitance at 

this interface.  

• The charge-transfer resistance RBL and the capacitance CBL for electron 

recombination and charge accumulation at the contact between the part of the 

substrate uncovered by the colloids of TiO2, also known as back-layer (BL), 

and the electrolyte. RBL represents the charge losses at the BL, while CBL is the 

capacitance of the BL/electrolyte interface, which generally takes values 

similar to CPt.  

• The resistance RCO and the capacitance CCO at TCO/TiO2 interface, i.e., at the 

nanoparticles connected to the substrate (not shown in Fig. 30).50 These 

equivalent circuit elements are significant only if the contact between the 

semiconductor and the substrate is not ohmic.  

• The resistance RS of the conducting glass (TCO), which is associated to the 

sheet resistance of the TCO and the geometry of the cell.  

• Finally the element Zd accounting for diffusion of the redox species in the 

electrolyte: e4ay3   

( )[ ]
( ) 2/1

2/1

/
/tanh

d

d
dd j

jRZ
ωω

ωω
=  (160) 

This is the same as Eq. (159) with td RR = , the diffusion resistance associated to this 

process and dω  the characteristic frequency of the diffusion, from which the diffusion 

coefficient of ions in the electrolyte may be calculated through dlD ω2= , with l the 

effective diffusion length ( 2/Ll = ).19  
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In practice, the general model of Fig. 30 may be simplified, and if possible this is 

very convenient, in order to reduce the number of parameters used in the fitting 

process.51,66 A first approach is to consider that the contact between the TCO and the 

TiO2 is ohmic. Thus RCO and CCO may be suppressed. The second and most significant 

simplification of the model is due to the changes produced by the applied potential. The 

position of the Fermi level at the contact between the TCO and the TiO2 is controlled by 

the external potential. Therefore we may modulate the conductivity of TiO2, yielding to 

the variety of behaviours found for the IS of DSCs shown in Fig. 31.  

At low forward or reverse potentials, resistance of the TiO2 will tend to infinite, thus 

contribution from the TiO2 nanoparticles to the IS spectrum is expected to be negligible. 

In these conditions, as it is plotted in Fig. 31 (a), the main contribution to the IS 

spectrum will come from the charge transfer from the uncovered layer of the TCO 

(coated or not) at the bottom of the porous film. In most of the cases, at these potentials, 

         

 

 
 

 

 

Fig. 31.  Experimental IS spectra of a ionic liquid DSC (left) and simplified equivalent circuit models (right)  used to 
fit them at different potentials in the dark. (a) At low potentials, here 0.25 V, a large arc given by the charge 
recombination and capacitance of the back layer dominates the impedance. At high frequencies, the small 
deformation in the inset of the spectrum is due to the CE. Diffusion may not be observed. (b) At intermediate 
potentials, here 0.55 V, the characteristic spectrum of the transmission line is observed and the complete equivalent 
circuit is needed to fit the impedance. (c) At high potentials, here 0.7 V, transport resistance becomes negligible and 
three arcs may be observed: the high frequency one associated to the counter electrode, the central one to 
recombination at TiO2 surface and the last one at low frequencies to the diffusion process.   
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only a high resistance arc from the parallel combination of the RBL and the CBL may be 

appreciated while the counter electrode contribution is hidden or appears as a small 

deformation at the high frequency limit of this arc, inset in Fig. 31(a). The contribution 

of diffusion in electrolyte occurs at so low frequencies that it is not possible to be 

observed.   

It should be emphasized that in a reverse-biased DSC, the measured current is due to 

charge transfer from the exposed substrate or BL to electrolyte (see below, Fig. 36),138 

while the TiO2 is totally insulating and does not participate in the current. By these 

reasons, Eq. (14), that describes well the saturation current in semiconductor diodes, is 

not useful in DSCs. 

At intermediate potentials, Fig. 31(b), the TiO2 contributes with its full resistance and 

chemical capacitance. The whole transmission line equivalent circuit is needed to fit the 

IS data. In this case, with rt RR < , the diffusion of electrons in the TiO2 may be 

observed at high frequencies as the Warburg feature, with a slope close to 1, in the inset 

of Fig. 31(b). (Often, the observed slope is slightly less than 1, and CPE elements are 

used for the chemical capacitor in order to accurately fit the data.46) The low frequency 

semicircle is the result of the parallel association of the electron chemical capacitance 

µC  (or µQ ) with the charge-transfer resistance, rR , along the TiO2 phase. dZ  appears 

as a small deformation at the lowest frequencies and still is negligible. At the lower 

potentials of this intermediate region, tR  may be larger than rR . In this case,  the 

impedance of the semiconductor will behave as a Gerischer impedance element, like, 

Fig 27(e), Eq (156). 

At higher potentials, the Fermi level in the TiO2 may approach the conduction band 

enough to yield a very high concentration of electrons in the semiconductor. Then the 

resistance of TiO2 becomes negligible and the transmission line equivalent circuit is 

reduced to a single R-C circuit, Fig. 31(c). In this situation, that is typically observed at 

potentials near or higher than open circuit, the impedance plots show typically three arcs 

as in Fig. 31(c). The high frequency arc is due to the counter-electrode charge transfer 

resistance and Helmholtz capacitance (RPt and CPt) parallel combination, the second arc 

is due to the recombination resistance at the TiO2/electrolyte interface and the chemical 

capacitance of the TiO2, and the third arc, that appears at the lower frequencies, is due to 

the impedance of diffusion in the electrolyte. The width of each of these arcs 

corresponds to RPt, Rct and Rd respectively, while the initial displacement of the arcs 
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from the origin corresponds to the contribution from RS.  

We should remember that normally the transport resistance becomes quite small at 

high forward bias, though in some conditions it could be measured.139 In general a 

separate technique based on lateral transport between two parallel electrodes is needed 

to measure the electron conductivity in TiO2 at high bias.81 

It has to be noted that with good electrolytes (i.e. CH3CN based), in which diffusion 

coefficient is high, the third, low frequency arc may merge with the central one, yielding 

to a unique deformed arc. If Rd is small enough, the third arc becomes negligible. 

 
7.2. Experimental IS parameters of DSCs 

As mentioned previously, an important tool for interpretation is to monitor the 

variation of impedance parameters under varying bias voltage. Here we discuss the basic 

parameters of DSC, capacitances and resistances. We present an overview of the typical 

behaviour that is obtained for DSCs and we discuss the experimental results in 

connection with the concepts and  models described in previous sections. At the end of 

the section, the practical way to obtain fundamental physico-chemical parameters such 

as diffusion coefficient, lifetime and diffusion length is given.   

We should recall that the models for IS parameters on electrons in the metal oxide, 

are usually described with respect to the Fermi level as a parameter. Therefore, in the 

representation of these parameters it is important to identify the part of the voltage 

associated with the rise of Fermi level, by subtraction of other voltage drops such as 

series resistance, counter electrode, and electrolyte contributions. This practice will be 

followed in the magnitudes represented in this Section, for a better comparison with the 

theories. 

 

7.2.1 The chemical capacitance 

Typically DSC capacitance presents 3 regimes of behavior, as shown in Fig. 32. At 

low potentials the dominating capacitance is the combination of the capacitances from 

CE and BL (whether it is coated with a thin insulating layer or not). Additional 

contribution may be due to CCO if the contact is not ohmic.50 At intermediate potentials, 

the dominating capacitance is the chemical capacitance of TiO2, which shows a 

characteristic exponential variation with the potential. Eventually, at very high 

potentials, the capacitance of the DSC may tend to reach the surface Helmholtz 
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capacitance of the TiO2/electrolyte interface, HC , that becomes smaller than Cµ  at these 

high potentials,87 see Eq. (73). 

 

 

Fig. 32 : Capacitance of a DSC with an ionic 
liquid electrolyte as hole conductor in the 
dark. At low applied potentials, the 
capacitance of the cell is dominated by the 
back layer and counter electrode 
contribution. While at high applied 
potentials, the capacitance saturates to the 
Helmholtz capacitance of the complete area 
of the device. In the middle region the 
chemical capacitance of the TiO2 dominates 
the cell. In some cases surface states 
contribution may be observed as a small 
peak in the capacitance.  

 

In many cases, a small peak of capacitance is observed at the potentials where µC  
starts to dominate.140 This peak is assigned to sub-bandgap localized states due to 

defects in the surface (dangling bonds, dislocations, etc.).141-143  

According to Eq. (70), the chemical capacitance describes the exponential trap 

distribution below the conduction band edge. This )(Eg  is governed by the 

characteristic parameter of the distribution 0T . As explained in Fig. 15 the measured 

chemical capacitance is governed by the DOS at the Fermi level, and this should be 

independent of the temperature (provided that the position of the conduction band does 

not change with the temperature). Experimental data of the capacitance of a 10% 

efficient DSC taken at different temperatures,65 shown in Fig. 33, agree very well with 

the theory, providing   T0 = 830 ± 30 K.  
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Fig. 33 : The chemical capacitance of a 10 % 
efficient DSC measured at different 
temperatures. The slope of the capacitance, 

0/ Tkq B  is constant at all the temperatures.  

 

At potentials near and higher than Voc (near 1 sun illumination) other contributions to 

the overall capacitance of the cell may be observed at the lowest frequencies. It is 

important to identify them as the contribution from diffusion in the electrolyte. A Bode 

plot of the real part of the capacitance shown in Fig. 34, may help us to determine these 

contributions. At low applied potentials, the low frequency limit of the capacitance is 

dominated by BL and CE contribution. When the bias potential is raised, the chemical 

capacitance contribution dominates. At the highest potentials appears the contribution 

from diffusion in the electrolyte. The apparent decrease of the capacitance at high 

frequencies (BL and CE) in the high potential plots is associated with the decrease of the 

charge transfer resistances in the cell as stated in Eq. (42).  
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Fig. 34 : Bode plots of the 
capacitance of a liquid electrolyte 
DSC at different applied 
potentials. The changes of the 
main contributions to the total 
capacitance are indicated with the 
arrows.   

In other cases, it may be observed that as the applied potential is increased, the 

overall capacitance drops and eventually becomes negative at the lower frequencies, as 

commented before in Fig. 9. An example of this is shown in Fig. 35.76 Normally, the 

consequence of this effect is a limitation in the efficiency of the solar cells due to low 

frequency inductive contributions.  

 

 

Fig. 35: Negative capacitance 
contribution in a low efficiency, 
spiro-OMeTAD based, solid state 
DSC. The minimum observed in the 
representation of the absolute 
capacitance indicates the transition 
frequency between positive (high 
frequency) and negative (low 
frequency) values of the capacitance. 

 

7.2.2 The recombination resistance 

The behavior of the overall recombination resistance rR  typically follows the trends 

shown in Fig. 36. At low potentials, charge transfer from the BL dominates. The BL 

may have different responses depending on the treatments received: precoating with 
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sputterd layers of dense TiO2, TiClO4 treatments, polymeric coatings after film 

formation, etc.96,144 The slope of BLR , generally small, is a function of both the presence 

of coatings and electrolyte composition. In these cases, it is easy to confuse BLR  with 

the constant shuntR  used in standard semiconductor based solar cells,71 as their effect on 

j-V curve is very similar. But we must emphasize the electrochemical origin of BLR   and 

the fact that its value is far from being constant.  

At higher potentials electrons injected in TiO2 activate the transport in this medium. 

The dominant mechanism of charge losses in the DSC is the recombination of the 

electrons from the TiO2 large surface to the HTM. From Buttler-Volmer relationship, 

the dependence of charge transfer resistance with the potential follows Eq. (79), yielding 

to a linear dependence of Rr from TiO2 in the semi-logarithmic plot of Fig. 36.   

 

 

In some cases, a valley (arrow in Fig. 36) in Rr, appears at the same potential than the 

peak in the capacitance of Fig. 32. This indicates recombination through the TiO2 

surface localized states described in the capacitance.92 In defective or aged cells, this 

valley may become a dominant element in the cell, and may affect in a very important 

manner the j-V curve.145 

In cells where the applied potentials are higher than certain level, that depends on the 

redox couple used, it is needed to use the more generalized Marcus model for charge 

transfer resistance described by Eq. (87). In terms of the potential, Eq. (87) may be 

written as  

 

Fig. 36: Recombination resistance of a DSC 
with ionic liquid as electrolyte. At low 
potentials the resistance form the back layer 
dominates. At high potentials charge transfer 
from TiO2 matrix is the dominating effect. 
Potential has been corrected from total series 
resistance drop.   
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Note that Eq. (161) provides the exponential dependence on bias indicated in Eq. (79) 

only if qV << λ, while for high enough potentials rR  deviates from the linear behavior, 

as shown in Fig. 20. An example of the bending of rR  is shown in Fig. 37. Using Eq. 

(161), a value of λ = 2.0 ± 1.2 eV was obtained.  

 

 

If we focus now the attention on the effects of temperature on Rr, it can be observed 

in Fig. 38 that as the temperature rises, both the overall value of the charge transfer and 

its slope drop.  

 

Fig. 37: Recombination resistance of TiO2 
for DSC in a 10% efficient, acetonitrile 
based electrolyte at high potentials after 
series resistance correction.  
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These results agree with theoretical predictions given by Eqs. (89), (161) and (162). 

In detail, the smaller value of Rr is the consequence of the temperature dependence of 
'
0R , stated in Eq. (162). Using the values of '

0R  obtained from data in  Fig. 38, from the 

Arrhenius plot of Fig. 39 it is possible to obtain a more accurate estimation of the value 

of λ = 2.5 ± 0.2 eV. This high value of λ helps to obtain a large value of '
0R  that, as we 

will see later, is very important to obtain a high Voc in a DSC. 

   

 

Fig. 39: Arrhenius plot of R’0 according to 
Eq. (162), obtained for a 10% efficient DSC 
measured in the dark. 

 

The change in the slope of Rr allows to analyse the linearity of the dependence of the 

transfer coefficient, β, with the distribution coefficient, α, predicted in Eq. (92). The fit 

 

Fig. 38: Recombination resistance of a DSC 
in a 10% efficient liquid electrolyte DSC at 
different temperatures and potentials. At the 
same potential, both  Rr and the slope 
decrease with temperature.  
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of data shown in Fig. 40 provides the experimental value     


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
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 += αβ

2
1

3
2        (163)  

This result is similar as that stated in Eq. (92), but with a prefactor 2/3. The error in 

the dots makes it difficult to establish the theory without a more detailed study. 

 

 

Fig. 40. Linear relationship between α and β 
in a temperature controlled experiment.  

 

 

As it will be shown later, the lowering of Rr has a tremendous impact in the j-V curve, 

through the diminution of the Voc. Also the slight change in the slope of Rr affects the 

efficiency of the cell. Most of this effect is in reducing the fill factor. 

Often, IS measurements are used to compare modifications in the electrolyte, dyes, 

TiO2 surface coating, etc., to evaluate the performance and properties of DSCs 

components and preparation routes. In general the main factor governing the 

performance of reasonably efficient DSCs is Rr . But it should be recognized that Rr is 

determined by two different aspects: the energetics and the kinetics. In Eqs. (161) and 

(162) these are respectively represented by the position of the TiO2 conduction band, 

CE , and the charge transfer constant 0k . For comparing different DSC51 it is essential to 

distinguish both effects, and the main tool for this is the capacitance, which immediately 

reveals a shift of the conduction band.87 Fortunately, the two parameters, capacitance 

and recombination resistance, can be routinely measured with IS, and they should be 

jointly analyzed when some DSC parameter is varied. If the transport resistance can 

also be measured, then a change of the conduction band readily produces changes of the 

conductivity at a given bias. This will be discussed shortly in more detail. Therefore in 
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this case we can check the displacement of the conduction band both by transport 

resistance and capacitance, and the results are then very reliable. 

 

7.2.3 The transport resistance  

In general both the electron and hole transport media present in the DSC may 

contribute with their transport resistance to the overall resistance of the cell. The 

different nature of the materials used for the transport of both the electrons and the 

holes, yields to different behaviours in their transport properties. Here the characteristic 

conducting properties of each of the main materials that are currently being used to build 

the DSCs are described.  

 

The electron conductor 

In DSC made from colloidal TiO2, IS allows to obtain the electron transport 

resistance in the window of potentials (usually 200 or 300 mV) where the full 

transmission line behavior is observed, i.e., Fig. 31(b).  

As stated in Eq. (110), the conductivity of electrons in the TiO2 may be calculated 

from electron transport resistance, as  

t
n RpA

L
)1( −

=σ  (164) 

Assuming that the mobility is constant and according to Eq. (84), the conductivity is 

exclusively dependent on the number of free electrons in the conduction band, yielding 

to  
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with 0σ  a constant. Then, the electron transport resistance, taking into account Eq. (18), 

may be written as  
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where 0tR  is a constant. 

Therefore, the conductivity (or Rt, if geometrical factors do not change) provides a 

reasonable reference of the position of the Fermi Level of the electrons ( nFE ) with 

respect to the conduction band edge ( CE ) in different samples.  
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As mentioned before, the composition of the electrolyte, the dye used for the 

sensitivization of the cell or the preparation method of the TiO2 may affect the position 

of the conduction band. Thus the conductivity constitutes a useful index of the changes 

of the position of the conduction band of TiO2. In Fig. 41 the changes in the 

conductivity due to the different composition of the electrolytes may be observed. Thus, 

the addition of 0.5M MBI to an electrolyte containing 0.5M LiI, 0.05M I2 in 3-MPN 

produces a ≈∆ CE  0.2 V. If in this new electrolyte Li is substituted by Na, a further 

≈∆ CE  0.2 V is produced. 

 

 

Fig. 41: Conductivity of TiO2 in DSC for 
samples with different electrolytes: (●) 
0.5M LiI, 0.05M I2, 0.5M MBI in 3-MPN; 
(▼) 0.5M NaI, 0.05M I2, 0.5 MBI in 3-MPN 
and (■) 0.5M LiI, 0.05M I2 in 3-MPN. The 
position of the conduction band in TiO2 
changes with the composition of the 
electrolyte.  

 

An additional effect of MBI in the DSC used in Fig. 41 is the increase of efficiency 

of the cell which changed from 2% in the cell without MBI to a 5% in the cells with 

MBI. This increase was attributed to the additional TiO2 surface coating provided by the 

MBI that reduces the charge losses (increasing Rr).51 

A final remark to take into consideration is that the slope of the conductivity (and Rt), 

q/kBT, is dependent on the temperature and may change from a value near 40 V-1 to 25 

V-1 upon illumination.65 

 

The transport resistance in the hole conductor 

In liquid electrolytes, the contribution to the resistance of the hole conductor may be 

extracted from the diffusion resistance of the electrolyte observed in the impedance. 

Normally the resistance of electrolyte diffusion is decoupled from the general 



  87 

transmission line model. When the diffusion coefficient is high enough the third arc 

associated to this process may overlap with the second one associated to recombination. 

In many cases, i.e. when acetonitrile is used as electrolyte and the cell spacer between 

semiconductor film and CE is thin (< 40 µm), Rd is small and diffusion may be 

completely hidden by recombination.  

The increase of temperature decreases the viscosity of the electrolytes, causing an 

increase in the diffusion coefficient and a decrease in the diffusion resistance that favors 

the performance of the DSCs. As may be seen in Fig. 42, this effect also occurs when 

the illumination intensity is increased as illumination heats up the solar cells.  

   

 

Fig. 42. Changes in the diffusion resistance 
with the increase in the illumination intensity 
for a cell with ionic liquid electrolyte as hole 
conductor. As temperature increases with 
illumination, the diffusion resistance 
diminishes. 

 

 

The minimum of Rd in Fig. 42 for measurements under illumination occurs at Voc, 

where the current flowing through the cell is 0.66 

In solid state cells with spiro-OMeTAD as hole conductor, the resistance of the hole 

conductor is higher than in the case of liquid electrolytes. At the same time the 

capacitance of the spiro-OMeTAD is not so high. As a consequence, the characteristic 

frequencies of the transport of electrons and holes are comparable and it is not possible 

to simplify the transmission line model as it can be done for liquid electrolytes. Now, 

the resistance of the hole conductor needs to be added in the path of the holes as shown 

in  Fig. 43.  
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Fig. 43. The transmission line 
equivalent circuit for solid state 
DSCs. A transport resistance 
distributed over the porous structure 
of the solid state hole conductor 
phase substitutes the diffusion 
impedance in the circuit plot in Fig. 
30.  

 

To be able of comparing the transport resistances obtained for the different hole 

transport media, first it is needed to normalize all of them to the geometric area. Data in 

Fig. 44 shows that RHTM  in the widely used HTM spiro-OMeTAD is around one order 

of magnitude higher than in the the liquid electrolyte, and this provides significant losses 

that decrease performance, due to the contribution of this resistance to the Rseries and its 

strong effect over the FF. 

 

 

Fig. 44: Transport resistance in different hole 
conductor media under 100 W m-2 
illumination conditions. The transport 
resistance has been normalized to the 
geometrical area in order compare the 
different samples. 

 

Fig. 44 also shows that the diffusion resistance of the liquid electrolytes present a 

minimum value at Voc, as remarked before. The increase of current increases the 

resistance to higher values as the saturation current is approached. In the case of spiro-

OMeTAD, the conductivity increases as the population of holes increases due to a slight 

displacement of the EFp with the applied potential 

 

7.2.4 Time constants and diffusion length  
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As stated in Eqs. (157), (158) and (142), with the parameters obtained from 

impedance spectra, rt RR , and µC , we can calculate the basic electron transport and 

recombination parameters: nnD τ,  and nL . These last set of parameters are frequently 

used in the literature, due to several reasons. 

The chemical diffusion coefficient nD  can be related to fundamental models for 

transport in disordered materials.61,139,146 Further, the main time constants of the DSC,40 

i.e. the transit time nd DL /2=τ  and the electron lifetime, nτ , can be calculated by 

several independent methods (as explained in the chapter by Peter), such as IMPS,56 

IMVS,28,147  Voc decays,54,57 and this is useful to validate the results obtained by any of 

the methods. Finally, comparing dτ  and nτ , or nL  with respect to 𝐿, is a useful tool to 

evaluate the collection efficiency of the DSC.148-150 

Before we describe the characteristic behavior of these parameters, we remark, as in 

Eq. (47), that the use of constant phase elements (given by µQ  , 𝑛)  instead of µC  in the 

fits of IS data, requires a more general definition of the kinetic constants derived from 

the basic impedance parameters. The diffusion coefficient of Eq. (157) has to be 

calculated using 

( ) n
t

n QR
LD /1

2

µ

=
 

, (167) 

and Eq. (158) given for lifetime of electrons in TiO2 has to be re-written as  

( ) n
rn QR /1
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, (168) 

Equating this expression to Eq. (64) it is possible to calculate an equivalent 

capacitance as  

( )
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n
r

R
QR

C
/1

µ
µ =  (169) 

Finally, the diffusion length of Eq. (154), now is given by  

( ) n
trn RRLL 2/1/= . (170) 

Note that all these expressions take the form derived previously when n = 1. Similar 

corrections may be used to calculate the characteristic regeneration time or interfacial 

capacitance at the counter electrode.   

Diffusion coefficient data measured at different temperatures and calculated using 

Eq. (167) are shown in Fig. 45.65 Very good agreement with Eq. (124) is found, with the 

slope of the plot being [ ] TkB/1 α− .  Similar variation of the chemical diffusion 
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coefficient with the temperature have been reported in other works with high efficiency 

DSC.151 

 

 

Fig. 45: Temperature dependence of 
Diffusion coefficient of electrons in TiO2 in 
a 10% efficient solar cell.  

 

These result support the idea that the transport mechanism in the nanostructured TiO2 

is dominated by multiple trapping of electrons from the conduction band in the localized 

available states below this band.40,65,119 This theory has been confirmed by several 

methods124,152-154 and is currently the most accepted one. 

The time constants are frequently used to compare the characteristics and quality of 

different solar cells.155 The next data shown in this section will use the values of nnD τ,  

and nL  data obtained from IS with this purpose.  But again we must remark that factors 

such as the method of preparation of the materials or the electrolyte composition change 

the position of the conduction band of the metal oxide with respect to the Fermi level or 

redox potential of the hole conductor. This fact implies that the potential is not always a 

good reference for comparing the response of the different cells. It is more convenient to 

represent the different data with respect to the relative position between the Fermi level 

and the conduction band, CFn EE − . The rationale for this is that the kinetic parameters 

should be compared in conditions of equivalent number of electrons in the various solar 

cells. One way to correct this change is to displace the applied potential by the amount 

CE∆  produced in each sample, however this quantity is not always available. As given 

by Eq. (165), it is reasonable to take the electron conductivity as a reference of the 
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energy difference between FnE  and CE . Thus the characteristics of the samples may be 

compared when the conduction band is filled with the same amount of electrons (i.e., 
constant=− CFn EE ).  

Using this procedure we present in Fig. 46 the diffusion coefficient, lifetime and 

diffusion length of several DSCs. Three of them that were made with different liquid 

electrolytes are named L5Li, L10 and L11 and yielded efficiencies of 5%, 10% and 

11%, respectively. The DSC denoted IL7 was a 7% efficient cell with an ionic liquid 

electrolyte and the solar cell Ometad4, was a solid state spiro-OMeTAD based DSC, 4% 

efficient.  

Note that the data have been taken from measurements in the dark in order to obtain a 

reasonably sufficient number values of the transport resistance. Under high illumination 

intensities it becomes very difficult to distinguish the contribution of Rt to the 

impedance spectra from other resistive elements.  

The diffusion coefficients of the different samples, Fig. 46(a) take very similar values 

in all the cases. Therefore, factors such as the hole conductor composition or charge 

screening ions have a small effect on electron transport. The situation may be different 

when strong forward current flows in a DSC.  

Remarkable differences between samples of high and low efficiency may be 

observed from the lifetime data shown in Fig. 46(b). As a consequence, also important 

changes are observed in the diffusion length plot in Fig. 46(c).  

The samples with lower efficiencies (Ometad4 and L5Li) presented the shorter 

lifetimes and diffusion lengths. It is clear in this case that the efficiency is to be limited 

by the greater losses they present with respect to the high efficiency samples. In 

particular, in the case of the spiro-OMeTAD based solid state DSC, maximum diffusion 

length is limited to 3 µm, what determines the portion of the film thickness that is 

actually able to collect charge efficiently.   

Samples with efficiencies between 7% and 11% (IL7, L10 and L11) presented very 

similar characteristics in the dark, and it is not straightforward to find the reason 

yielding to their difference in efficiency. In the case of the sample with 11% efficiency, 

it may be distinguished a slightly higher lifetime and diffusion length, that means a 

slightly better quality of the film. Assuming a similar behavior of these parameters 

under illumination, the differences in the efficiencies of the cells have their origin in the 

differences of the dye absorption (K19 in IL7 and N719 in L10 and L11) and electron 
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injection into the TiO2, that provides higher values of current and potential.68  

 

Fig. 46: Diffusion coefficient (a), lifetime (b) 
and diffusion length (c) of electrons in TiO2 
for several DSCs, compared at the same 
density of electrons in the TiO2 conduction 
band. Data are taken in the dark. Efficiencies 
of the different samples are 4% for Ometad4, 
5% for L5Li, 7% for IL7, 10% for L10 and 
11% for L11. The identification of the type of 
HTM are: L for liquid electrolyte, IL for ionic 
liquid electrolyte and Ometad for solid hole 
conductor.  

   

 

While it is customary to analyze the performance of DSC in terms of the time 
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constants mentioned before, and this is convenient in some respects (especially if the 

diffusion length is short), it should be emphasized that the differences in the 

characteristics of the DSCs shown in Fig. 46 have their origin in the values of the 

recombination resistance, as can be seen in Fig. 47. To compare the different cells, it is 

important to use the volumetric recombination resistance. Thus, the recombination 

resistance rises form Ometad4 sample to L5Li and then to the rest of the samples. 

Consistent with the highest energy conversion efficiency, L11 is the one that has the 

higher rr. 

Therefore, concerning DSC performance in general it should be concluded that once 

the dye provides the charge injection level in the cell (and assuming that dye 

regeneration is fast), it is the charge transfer from TiO2 to the hole conductor the main 

process that determines the potential of a particular cell to perform at a certain 

efficiency. This aspect will be treated in more detail in last section.  

In particular, in the case of the spiro-OMeTAD solid state solar cell, any 

enhancement of the cell has to deal with an increase of Rrec or the use of materials with 

higher conductivity that allow to increase the diffusion length of carriers in the metal-

oxide semiconductor.  

  

 

Fig. 47: Charge transfer resistance of different 
DSC’s in the dark compared at the same 
electron density in the conduction band.  

 

 

7.3 Nanotubes 

It is believed that an improvement in the structural order of the electron conducting 
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metal oxide networks may enhance their electronic transport characteristics, and provide 

better efficiency of DSCs. A number of structures have been prepared and used 

inlcuding nanorods, whiskers, and nanotubes, among which the last ones are the most 

promising.156-161 In this section we will describe results on carrier transport and charge 

accumulation in TiO2 and ZnO nanotubes.  

 

7.3.1 TiO2 nanotubes 

IS measurements have been performed to study the behavior of the electrical 

properties in a 10 µm long TiO2 nanotube of 100 nm external diameter and 22 nm wall 

thickness.67 Measurements were done in an aqueous solution at pH 11 in order to 

analyze the transport and accumulation of charge in the nanotubes.  

Experimental IS data were adjusted to model of Fig. 31(b), without counter electrode 

contribution, obtaining the values of capacitance and transport resistance shown in Fig. 

48. The data presented correspond to two consecutive measurements over the same 

nanotubes. As can be seen in the figure, the parameters obtained, provided very different 

behaviours. These results are explained by a different doping level of the nanotubes in 

the two sets of measurements. The fresh sample showed the typical exponential 

dependence of transport resistance and capacitance found and modeled in Eqs. (72) and 

(121) for nanocolloidal samples. However in the second measurement the “aged” 

sample retains the charge accumulated in the first one.67 Doping has been produced by 

protons in the electrolyte during the first cycle and as a consequence both the 

capacitance and the resistance tend to be constant for a wide range of potentials. 
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Fig. 48: The doping effect in a 10 µm long 
TiO2 nanotube of 22nm wall thickness. Fresh 
sample presents the exponential behaviour in 
both chemical capacitance (a) and transport 
resistance (b). Aging dopes the samples, that 
afterwards presents a high capacitance value. 
Transport resistance of the doped sample is 
lower that the undoped one and also relatively 
constant.  

These data reveal that the nanotubes present a great tendency to become doped. 

However, transport resistance remained with a relatively high value even after doping. 

This causes the diffusion length for DSCs made from these nanotubes to maintain values 

around 10 µm, which is a low value with respect the original expectations. 

 

7.3.3 ZnO nanotubes 

Zinc oxide is a wide bandgap semiconductor often proposed for the construction of 

DSC. Its facility in self organization, forming a variety of shapes such as nanotubes, 

nanorods, whiskers, etc, makes it very attractive for many applications. However in the 

DSC some problems of stability in the ZnO have been reported as it tends to dissolve. 

Still, it is a very good candidate to be used in solid state DSCs.162 

In Fig. 49 the conductivity of 63 µm long nanotubes of ZnO (nt-ZnO) with 16 nm of 

wall thickness is compared with that of TiO2. The first result observed is that when 

comparing the conductivity of the nt-ZnO in an inert electrolyte and in a DSC 

configuration, the conduction band in the nt-ZnO is displaced towards higher potentials. 

The second observation is that the conductivity in nt-ZnO is much  larger than in the 

case of TiO2 either in nanotube or nanocolloidal configuration. ZnO is belived to have 

the conduction band at a similar level than TiO2 163 and therefore the increase of the 

conductivity should be attributed to a higher mobility of electrons in the nt-ZnO rather 
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than a shift in the conduction band.    

  

 

Fig. 49: Conductivity in nanotubes (nt) and 
nanocolloids (nc) of TiO2 and ZnO. 
Compared to a TiO2, the polycrystalline nt-
ZnO array shows more than 100 times greater 
conductivity at equal applied potential, with 
respect to I-/I3

-.  

 

As a consequence of this improved conductivity, the calculated diffusion length of 

electrons in the nt-ZnO shown in Fig. 50, is several orders of magnitude greater than in 

the TiO2. This is an important result with respect to photovoltaic performance as it 

renders the cell tolerant to much faster electron recombination kinetics and thus an ideal 

candidate for solid state DSC’s. 162  
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Fig. 50:  Diffusion length in ZnO nanotube 
and nanocolloidal TiO2 DSC’s. LD is 10 to 
100 times bigger in the case of nt-ZnO than 
for  a high efficiency (10%)  nc-TiO2 based 
DSC.  

 

 

7.4. Effects of the impedance parameters on the j-V curves 

An important practical application of the parameters obtained from impedance is the 

interpretation of the j-V curves of the solar cells. Since solar cells operate at steady state 

it is very important to determine the causes of the current density-potential response, 

which describes the solar cell performance. We have anticipated in Sec. 3 that IS is able 

to discern the separate factors determining stationary operation of the solar cell. Having 

described in detail the different resistances that are typically found in DSC as well as 

their interpretation, in this final section we describe the effects that these resistances 

have on the performance of the solar cells. 67,71 In previous sections we have amply used 

ac equivalent circuits, formed by combinations of linear elements, that allow us to 

interpret the spectral shape of impedance data.  

It is also useful to design a single circuit valid for dc conditions, and we will show 

here the extension of the circuit in Fig. 5, for DSC. To this end we have to take into 

consideration several electrochemical interfaces that exist in a DSC. As a consequence 

the diode in the model of Fig. 5 is substituted by as many recombining resistances as 

different interfaces are present in the device. There are two interfaces that may loss the 

photogenerated charge, the TiO2/electrolyte, described by dc
rr , and the back layer at the 

bottom of the nanoporous matrix, given by dc
BLr , as shown in Fig. 51. To simplify this 

last model, all the charge transfer losses may be grouped in a single recombination 
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resistor representing the parallel association of the two contributions, dc
r

dc
BL

dc
rec rrr = .  

 
 

Zload V  j 

jsc 

rr 

rseries 

rBL dc dc 

dc 

 

Fig. 51: Model adapted to DSCs for the 
representation of the dc j-V curve. dc

BLr  
and dc

rr  describe the charge losses from 
the back-layer and the TiO2 matrix 
respectively. dc

seriesr  includes all the 
contributions from transport in electron 
and hole conducting media, charge transfer 
at the counter electrode and TCO and 
contact resistances.   

 

Note that the resistances included in Fig. 51 should be applied in dc conditions. In 

contrast to this, resistances derived from IS are valid only for a small perturbation of the 

voltage. As stated by Eq. (25), it is necessary to integrate the low frequency resistance, 

dcR  obtained from impedance spectra at different potentials to regenerate the j-V 

curve.66  

In the case of DSC, dcR is the sum of two contributions: recR  and seriesR .  

recR  accounts for the overall recombination resistance associated to the cell losses 

with two main contributions, the charge transfer resistance from the colloid uncovered 

substrate and from the TiO2 surface. 

rBLrec RRR = . (171) 

The series resistance is related to the sum of all the dissipative resistances 

contributions, thus  

cotdPtSseries RRRRRR ++++= 3/ . (172) 

In solid state DSCs, dR  may be substituted by 3/HTMR   

It has to be kept in mind, as amply discussed in previous sections, that rR , BLR  and 

seriesR  are not constant values. To obtain their equivalent dc values of Fig. 51 we need to 

integrate these ac contributions. Therefore for a certain current j passing through the cell 

we have 

∫−
=

j

j series
sc

dc
series

sc
diR

jj
r 1  (173) 

∫−
=

j

j rec
sc

dc
rec

sc
diR

jj
r 1  (174) 

Alternatively, to determine the dc contribution of the resistances at a certain applied 
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potential we can write 

∫=
V

series

dc
series R

dV
V

r
0

1  (175) 

∫=
V

rec

dc
rec R

dV
V

r
0

1  (176) 

It is convenient to discuss here the existence of a shunt resistance in DSCs. In 

crystalline silicon solar cells, rshunt is a constant resistance that accounts for leakage 

currents crossing the cell.71 Recent studies have revealed that rshunt may change with the 

measuring conditions, though these variations are not fully understood.95  In DSC the 

closer element to rshunt is rBL, however it has to be taken into consideration that rBL is a 

variable resistor which depends on the potential. It may be obtained from  

∫=
V

BL

dc
BL R

dV
V

r
0

1  (177) 

with RBL following a Tafel response as the current losses occurring at the back 

layer/electrolyte interface. Therefore to apply the dc models used in crystalline silicon 

solar cells in DSCs, we have to substitute rshunt in Fig. 5 by another diode governed by 

an ideality factor given by the transfer coefficient characteristic of the back layer. This is 

the two diode model approach used in other types of solar cells.164,165  

Once the contributions of the different parameters are identified it is possible to 

clarify how they influence the j-V curves. 

 

Effect of series resistance 

In Fig. 52, the effect of series resistance on the j-V curve is shown. The rise in dc
seriesr  

decreases the FF and, consequently, the efficiency of the solar cell. If dc
seriesr  is too large, 

also scj  becomes affected. The same effect occurs with large photogenerated currents: 

the higher the current crosses the cell, the greater the potential drop due to the series 

resistance corrections is produced and thus the FF and efficiency drop.  
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Fig: 52: Effect of a constant series resistance 
on the j-V curve. Increasing the series 
resistance, the Fill Factor decreases, while jsc 
and Voc remain constant. If rseries becomes 
too large, then jsc is also affected.  

The series resistance is a very important limiting factor in solar cells, specially if the 

objective is to scale up to large area cells or the use of dyes with enhanced injection 

properties. In these cases, a correct choice of the geometric design and the materials 

used to collect the charge and regenerate the dyes is needed to minimize this resistance.  

From another point of view, once the cell is made, we may use the integrated series 

resistance, to evaluate the improvements that could be obtained eliminating partial or 

completely dc
seriesr . To do this we just need to subtract the ohmic drop at series resistance 

from the applied potential from to obtain the corrected potential: 

∫−=−=
i

series
dc

seriesc diRVriVV
0

 (178) 

 

Fig. 53: j-V curve in an ionic liquid DSC at 
1000 W m-2 and simulations (dashed lines) for 
the cases without diffusion resistance and 
after subtracting completely the series 
resistance. Dots represent the j-V curve 
generated from impedance data. 
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In Fig. 53 the improvements that could be obtained by eliminating different series 

resistance contributions in a real solar cell are presented. We find that if we could 

eliminate the diffusion resistance (grey long dashed line), the FF, and thus the efficiency 

would increase in a 9%. If we could completely eliminate the the total series resistance 

(light grey short dashed line), then the improvement would be a 28%. The main 

contribution to the reduction in FF (15%) has to be attributed to the TCO resistance. 

 

Effects related to recombination resistance. 

In a DSC, the charge injection is determined by the dye and its interaction with the 

hole and electron conducting media, providing the maximum current density attainable 

by the solar cell. As the recombination resistance is the element that determines how the 

generated charge may be lost, this is the parameter that will limit the maximum 

performance attainable for the solar cell. This maximum efficiency will be then 

modulated by the series resistance effect as just mentioned above.  

Assuming that BLR  is large, recombination is dominated by rR . According to Eqs. 

(25), (87) and (162) there are a number of factors that affect the j-V curve through the 

recombination resistance:  

i) A decrease in the absolute value of '
0R  diminishes de photopotential, as 

shown in Fig. 54. 

 

 

Fig. 54. Effect of '
0R  on the j-V curve. The 

onset of the recombination occurs at lower 
potentials reducing the photopotential.  

 

ii) A low transfer factor β  diminishes the FF of the DSC an thus the maximum 
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efficiency that may be obtained from it, as indicated in Fig. 55(a) 

iii) However, partially compensating this loss of FF, lower values of β, increase 

the photopotential as shown in Fig. 55(b). This increase in Voc is due to a 

lower slope in the dependence of rR  with the potential, Eq. (79), that yields a 

lower recombination at higher values of the potential.  

 

 

Fig: 55: (a) Effect of the transfer factor on 
the j-V curve on the FF. As β decreases, the 
FF decreases. Note that to adjust Voc at the 
same point, (an thus observe the change in 
FF, '

0R  has been varied conveniently. (b) If 
'
0R  is kept constant, the decrease of β  yields 

to an increase in the Voc.  

 

Effect of increasing temperature. 

Increasing the temperature reduces both the charge transfer at the counter electrode 

and diffusion resistance in the electrolyte, thus reducing the series resistance of the cell. 
66 In solid state solar cells a similar effect occurs, as increasing the temperature reduces 

hole transport resistance in spiro-OMeTAD.68 These reductions contribute to increase 

the FF of the solar cell.   
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However, according to Eq. (162) and as shown in Fig. 38, a temperature rise 

diminishes '
0R  what produces a decrease of photopotential, Fig. 54.  

The sum of all these contributions produces an increase of the solar cell efficiency 

when rising the temperature, with a smooth decrease above 30ºC. This has been shown 

in data by Sony Corp. As the slope of Rr with potential is smaller than in the case of 

semiconductor solar cells, the loss in efficiency with temperature is also smaller.  

In summary, the advantage of using IS is that it is possible to distinguish which are 

the individual electrical contributions influencing the performance of the working cells 

without destroying them. It is thus possible to identify which are the limiting processes 

in the cells and to focus the research efforts to enhance the solar cell efficiency in the 

specific physico-chemical and material properties that need to be improved. 

 

Acknowledgments 

This work has benefited from collaborations with many colleagues and friends and 

we are very grateful to all of them for the discussions and joint work that allowed us to 

progress in the understanding of the properties of DSCs. Our special gratitude pertains 

to Professors Michael Grätzel, Craig Grimes, Anders Hagfeldt, Joseph T. Hupp, Arie 

Zaban, Shaik M. Zakeeruddin and Doctors Gerrit Boschloo, Germà Garcia-Belmonte, 

Ivan Mora-Seró and Emilio Palomares.   

 

  



  104 

 

Appendix : properties of measured DSCs 

The measurements shown in this work have been performed with a potentiostat 

PGSTAT-30 equipped with an impedance module FRA from Autolab. Illumination was 

provided by a 150 W Xe lamp and a commercial 25W halogen lamp for the impedance 

measurements. j-V characteristics of the samples were taken under 1000 W cm-2 1 sun 

conditions provided by a 150 W Xe lamp with light filters to adjust the illumination to 

air mass 1.5 conditions and using a 0.16 cm2 mask. In the case of solid state cell the 

mask had 0.13 cm2. Low light intensity illumination conditions for impedance 

measurements was provided by a commercial 50 W halogen lamp for liquid electrolyte 

cells and by a high intensity white led for solid state cells. High light intensity 

illumination conditions were provided by the 150 W Xe lamp without air mass filters.  

 

Table 3: Measurements where done over samples with the following characteristics: 
 

         Sample L2noMBI L5Li L5Na IL7 L10 L11 OMeTAD 

n-TiO2 layer (µm)  7.5 8.1 7.0 6.8 12 12 1.8 

Scatter layer (µm) 0 0 0 4 2 4 0 

Dye  N3 N3 N3 K19 N719 N719 Z907 

Electrolyte H10a H10b H10c Z380 Z300 Z300 Solid 

Area (cm2) 0.48 0.48 0.48 0.28 0.28 0.28 0.128 

Porosity 70% 70% 72% 68% 68% 68% 68% 

        

Voc (V) 0.31 0.58 0.70 0.71 0.80 0.86 0.86 

Jsc (mA cm-2) 12.6 12.3 9.6 14.0 17.5 17.0 9.1 

FF 0.52 0.66 0.67 0.71 0.73 0.76 0.51 

Efficiency (%) 2 5 5 7 10 11 4 
 

The different dyes and hole conductor media indicated in Table I have the following 

specifications:  

The dyes: 

• N3, cis-bis(isothiocyanato) bis (2,2'-bipyridyl-4, 4'-dicarboxylato)-
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ruthenium(II). 

• K-19, Ru-(4,4′-dicarboxylic acid-2,2′-bipyridine)(4,4′-bis(p-hexyloxystyryl)- 

2,2′-bipyridine)(NCS)2, coadsorved with phenylproprionic acid (PPA). 

• N719, cis-di(thiocyanato)-N,N'-bis(2,2'-bipyridyl-4-carboxylic acid-4'-

tetrabutylammonium carboxylate) ruthenium (II). 

• Z907, cis-di(thiocyanato)-(2,2'-bipyridyl-4,4'-dicarboxylic acid)(4,4'-dinonyl-

2,2'-bipyridyl)-ruthenium(II), coadsorbed with GBA.  

The hole or ion conducting media:  

• H10a for 0.5M lithium iodide (LiI), 0.05M I2 in 3-methoxypropionitrile (3-

MPN), H10b the same as H10a plus 0.5M 1-methylbenzimidazole (MBI) and 

H10c for 0.5M Sodium iodide (NaI), 0.05M I2, and 0.5M MBI in 3-MPN. 

• Z380 for N-metylbenzimidazole 0.5 M, guanidinium thiocyanate 0.12 M and 

iodine (I2) 0.2 M in a mixture of 1-methyl-3-propylimidazolium iodide & 1-

methyl-3-ethylimidazolium thiocyanate, 65%:35% volume ratio.  

• Z300 for 0.6 M butylmethylimidazolium iodide, 0.03 M I2, 0.10 M 

guanidinium thiocyanate and 0.50 M 4-tert- butylpyridine in the mixture of 

acetonitrile and valeronitrile, 85%:15% volume ratio. 

• Solid for (2,2’7,7’-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9’-spiro-

bifluorene (spiro-OMeTAD) hole conductor solved in chlorobenzene at a 

concentration 170mM together with 13 mM Li[(CF3SO4)2N], 110mM 4-tert-

butyl-piridine and spin casted 30 s at 2000 rpm. 
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