Journal of Catalysis 418 (2023) 51-63

ELSEVIER

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Facile fabrication of heterostructured BiPS₄-Bi₂S₃-BiVO₄ photoanode for enhanced stability and photoelectrochemical water splitting performance

JOURNAL OF CATALYSIS

Maged N. Shaddad^{a,1}, Prabhakarn Arunachalam^{a,1,*}, Mahmoud Hezam^{b,c}, Norah M BinSaeedan^a, Sixto Gimenez^d, Juan Bisquert^d, Abdullah M. Al-Mayouf^{a,e,*}

^a Electrochemical Sciences Research Chair, Department of Chemistry, Science College, King Saud University, Riyadh, Saudi Arabia

^b King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia

^c Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

^d Institute of Advanced Materials (INAM), Unversitat Jaume I, 12006 Castelló de la Plana, Spain

^e K.A. CARE Energy Research and Innovation Center at Riyadh, Saudi Arabia

ARTICLE INFO

Article history: Received 22 May 2022 Revised 14 December 2022 Accepted 27 December 2022 Available online 30 December 2022

Keywords:

Bismuth vanadate Photo-electro-transformation Bismuth Sulfide Metal Phosphorous Trichalcogenides Electrolyte tuning

ABSTRACT

Bismuth vanadate (BiVO₄) is the most favorable electrode candidate for photoelectrochemical (PEC) water-splitting reactions. The poor charge separation and sluggish water oxidation dynamics are, however, the major setbacks of BiVO₄ photoanodes. To address these issues, we demonstrate that bismuth thiophosphate (BiPS₄)-Bi₂S₃ hybrid nanostructure was photoelectrochemically transformed on BiVO₄ electrodes (BiPS₄-Bi₂S₃-Bi₂O₃) when treated in Na₂S/PBS electrolyte, and a notable photocurrent of 3.5 mA/cm² at 0.65 V_{RHE} was obtained showing promising stability. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) examination evidenced the effective makeover of BiVO₄ into the BiPS₄-Bi₂S₃/BiVO₄ nanostructured matrix. A negatively shifted onset potential and enriched durability are achieved for heterostructured BiPS₄-Bi₂S₃/BiVO₄ photoanodes due to decreased surface recombination. Interestingly, the Bode phase analysis evidenced the faster hole consumption in the water oxidation process in the BiPS₄-Bi₂S₃/BiVO₄ electrode compared to pristine BiVO₄. This methodology can be engaged to design different complex nanostructured materials with tunable optical and electrical features for photoelectrocatalysis, electrical energy storage, and solar cell uses.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Solar radiation is a virtually inexhaustible and clean energy resource. Solar H_2 generation is accepted as a highly favorable technology to exploit solar energy and produce sustainable chemical fuels, tackling climate change stemming from the combustion of fossil fuels [1]. However, the efficient future use of solar energy to satisfy global energy demand is still dependent on developing efficient devices for energy conversion, storage, and distribution. The transformation of solar energy into hydrogen fuel, a clean and storable fuel, is a promising and active technological research field. Solar-driven water photo electro-catalysis (PEC) using semi-

¹ These authors contributed equally to this work.

conductor materials to produce hydrogen fuel has been a leading approach [2]. It is compulsory to develop highly efficient electrode materials that absorb a major portion of the solar irradiance, with suitable conduction band (CB) edge levels, chemical inertness, and cost-effectiveness.

Up to now, various *n*-type semiconductor photoanodes have been advanced for solar hydrogen production, such as TiO₂ [3], Fe₂O₃ [4], WO₃ [5], and BiVO₄ [6]. In particular, *n*-type BiVO₄ is one of the most attractive photoanodes owing to its favorable optoelectronic and photoelectrochemical properties such as relatively narrow bandgap, natural inertness, and appropriate energy level positions for water oxidation, and cost-effective [7–8]. The maximum theoretical photocurrent for BiVO₄ electrodes, with its narrow bandgap of ~2.4 eV, is ~7.5 mA/cm² at 1.23 V_{RHE}. Also, BiVO₄ can obtain a theoretic Solar-To-Hydrogen efficiency of 9.2 % [9]. Though, the most severe issue associated with BiVO₄ catalysts is the recombination of charge carriers, limiting its photocat-

^{*} Corresponding authors.

E-mail addresses: parunachalam@ksu.edu.sa, amayouf@ksu.edu.sa (A.M. Al-Mayouf).

alytic efficiency as it results in a relatively short carrier diffusion length (ca. 70 nm) [10–11]. In literature, the identified photocurrent response for the bare BiVO₄ electrodes is thus generally < 1 mA/cm² at 1.23 V_{RHE} [12]. To overcome these concerns, different approaches such as facet modifications [13], morphology control [14], impurity doping [15–17], oxygen evolution catalyst deposition [18–19], and construction of p-n or *n-n* heterostructures [20] have been developed to upsurge the photon absorption and carrier transport of BiVO₄. More importantly, developing type II heterostructures is a favorable route to boost the charge transfer efficiency by creating an effective charge cascade and improving the visible-light absorption with other materi-For instance, Ying et al. fabricated BiVO₄/Bi₂O₃ als. heterostructured photoanodes by solvothermal synthesis and examined the photodegradation of methyl orange under illumination [21]. Further, Chae group reported WO₃/BiVO₄ photoanodes to boost the efficiency of solar-driven water splitting by improving the charge transfer and light absorption ability [22]. Regmi et al. demonstrated that hydrothermally fabricated BiOBr/BiVO₄ photoanodes improve malachite green degradation efficiency under visible-light excitation [23]. More recently, Ta et al. demonstrated the 3D-structured WO₃/Mo:BiVO₄ heterostructured photoanodes for PEC water oxidation reaction under acidic and neutral aqueous electrolytes. Moreover, we have developed BiVO₄/AgPi [24], BiVO₄/Ni-Fe Prussian blue [25], BiVO₄/Ag-Ni-OH-Pi [26], and SnO₂/BiVO₄/NiWO₄ [27] heterojunction-based photoanodes, showing enhanced performance compared to bare BiVO₄, owed to the well-separated and long-life photoinduced charge carriers for redox reaction offered by the developed heterojunctions. Since the oxygen Evolution Reaction (OER) is the most critical and so determining step toward the generation of solar Hydrogen from water splitting, the deposition of suitable co-catalytic materials in photocatalytic OER is mandatory. In this context, several research works combine OER catalysts over BiVO₄ photoanodes to improve charge transfer kinetics. For instance, CoPi, CoO_x, and NiFeO_x electrocatalysts are decorated onto BiVO₄ electrodes [28–31], decreasing the surface recombination at the interface and/or enhancing OER kinetics.

On the other hand, Bi_2S_3 with a low bandgap of 1.4 eV has an appropriate energy level position that matches well with BiVO₄ for efficient charge separation and can be coupled with BiVO₄ to develop heterostructured photoanodes [32]. Indeed, there are some seminal studies of BiVO₄/Bi₂S₃ heterostructured electrodes for PEC water splitting. Notably, Liu et al. demonstrated BiVO₄/ Bi₂S₃ nanowires heterostructured photoanode via a hydrothermal route and achieved a photocurrent response of 0.51 mA/cm² [33]. Zhuo et al. showed walnut-like BiVO₄/Bi₂S₃ heterostructured photoanodes with improved photocatalytic performance [34]. Particularly, Chen et al. designed BiVO₄/Bi₂S₃ heterostructured electrodes over conducting films and reached a remarkable photocurrent response of 1.43 mA/cm² under illumination [35]. On another hand, BiPS₄ is a solar absorber with suitable energy level positions that also match BiVO₄ for efficient electron-hole pairs separation [36]. These studies inspired us to explore BiVO₄/Bi₂S₃-BiPS₄ triple-layer heterostructured photoanodes as promising electrodes for PEC water splitting.

Herein, we describe a controlled electrochemical ion exchange strategy for producing a thin and homogenous Bi₂S₃/BiPS₄ film transformed over the surface of BiVO₄ electrodes, and its PEC features for water oxidation. The synthesized BiVO₄/Bi₂S₃-BiPS₄ heterostructured electrodes demonstrated a photocurrent response of ~ 3.7 mA cm⁻² at 1.23 V_{RHE} showing almost 5-fold enhancement related to bare BiVO₄ electrodes. The development of heterostructured electrodes based on BiVO₄ and Bi₂S₃-BiPS₄ has stronger light absorption, enhanced carrier separation, and remarkable transport and surface features.

2. Materials and methods

2.1. Materials

Bismuth(III) nitrate [Bi(NO₃)₃·5H₂O, \geq 99.0 %], vanadyl acetylacetonate [VO(acac)₂, \geq 98.0 %], Sodium sulfide (Na₂S, \geq 99.0 %), sodium sulfite (Na₂SO₃, \geq 99.0 %), sodium sulfate (Na₂SO₄, \geq 99.0 %), Dimethylsulfoxide (DMSO, \geq 99.9 %) and ethylene glycol (EG, \geq 99 %) were received from Sigma Aldrich. A Millipore system was adapted to acquire high-quality water to prepare the electrolyte solutions.

2.2. Fabrication of BiVO₄ photoanodes

BiVO₄ photoelectrodes were obtained via dual deposition process described by Choi et al [37]. An EG solution comprising 20 mM of Bi(NO₃)₃·5H₂O was acquired as the plating solution. The electrodeposition was executed by applying 0.04C/cm² at E = -1.8 V vs Ag/AgCl, followed by a relaxing time of 2 s. Subsequently, this electrochemical cycle was continual 8 times to give an entire charge of 0.40C/cm². Then, 60 µL of a DMSO solution involving 0.2 M VO(acac)₂ was kept over the as-deposited Bi electrode to completely protect their surface and was then subjected to a muffle furnace at 500 °C for 2 h in the air (rate = 2 °C/min) to convert Bi to BiVO₄. Left-over VO⁺² ion was eliminated by drenching them in 1 M NaOH for 20 min and dried in air.

2.3. Fabrication of BiVO₄/Bi₂S₃ heterostructured photoanodes

The BiVO₄/Bi₂S₃ heterostructured photoanodes were fabricated by PEC transformation via an ion-exchange process in the aqueous medium comprising two sulfur species (Na₂S/Na₂SO₃) or (Na₂S/ Na₂SO₄). The PEC transformation process was carried out in a classical PEC cell, under visible-light excitation (100 mW/cm²) and cyclic voltammetry scans at 50 mV/s. BiVO₄ was electrodeposited over FTO glass (Hartford glass, 15 Ω /cm²) and was employed as the working electrode, while Pt and Ag/AgCl were the counter and reference electrodes. During this PEC treatment, the Bi₂S₃ particles decorated over the BiVO₄ electrode surface. Lastly, the PEC ion-exchange process transformed yellow-colored BiVO₄ into black-colored BiVO₄/Bi₂S₃ heterostructured photoanodes. The synthetic method employed for the PEC transformation of BiVO₄ into BiVO₄/Bi₂S₃ heterostructured photoanodes is presented in Scheme S1.

2.4. Synthesis of BiVO₄/Bi₂S₃/BiPS₄ hybrid nanostructures

BiPS₄ was decorated over the BiVO₄/Bi₂S₃ heterostructured photoanodes via a subsequent PEC deposition process under visiblelight excitation in a Na₂S/PBS electrolyte solution. After the ionexchange process in the aqueous solution, both BiPS₄ and Bi₂S₃ particles decorated the surface of BiVO₄. The proposed reaction mechanisms are detailed below:

(1. In solution)

$$4S_{(aq)}^{2-} + [PO_4]_{(aq)}^{3-} + 8H_{(aq)}^+ \rightleftharpoons [PS_4]_{(aq)}^{3-} + 4H_2O$$
(1)

(2. Solid-liquid interface)

$$[PS_4]^{3-}_{(aa)} + Bi^{3+} \rightleftharpoons BiPS_{4(s)}$$

$$\tag{2}$$

2.5. Characterization

X-ray Diffraction (XRD) spectra were executed with Rigaku Miniflex-600 equipment. Surface analysis was executed using XPS (Specs SAGE 150), Where a morphological examination of

Scheme 1. Synthesis of Triple-layer heterostructured nanostructures. Schematic illustration of BiVO₄/Bi₂S₃/BiPS₄ heterostructured film on an FTO deposited via a developed PEC ion-exchange process.

the electrodes was carried out by Field Emission SEM with a JEOL JSM-7000F system.

2.6. Photoelectrochemical measurements

PEC features of the obtained films were examined by assessing their photocurrent density through a water-splitting reaction. The photocurrent response was evaluated through a potentiostat (Autolab, PGSTAT30). PEC examination of the electrodes was carried out through CV and LSV under-stimulated light conditions (100 mW/cm²) in 0.1 M Na₂S/PBS (pH 10). Also, electrochemical impedance spectroscopy (EIS) (100 kHz-100 mHz) study was obtained through an electrochemical system in 0.1 M PBS solution at 0.65 V_{RHE} under illumination situvations.

3. Results and discussion

3.1. Materials characterization

Bismuth thiophosphate (BiPS₄) was decorated over BiVO₄ via ion-exchange reactions in an electrolyte comprising 0.1 M PBS/ Na₂S solution. Particularly, Scheme S1 shows the sequential steps of the synthetic method for fabricating the BiVO₄/Bi₂S₃/BiPS₄ photoanodes. Notably, the adsorbed water over the electrode surface generates OH⁻ ions during the CV scans. Also, BiVO₄/Bi₂S₃ and bare BiVO₄ photoanodes were obtained using an electrodeposition process on FTO, as described in the experimental Methods.

The morphological characterization during the various stages of the synthetic process of the BiVO₄/Bi₂S₃-BiPS₄ composite photoanodes was carried out through FE-SEM. The optimal BiVO₄ photoanodes were initially transformed with Bi₂S₃ catalysts by ionexchange reactions in 0.1 M Na₂SO₃. For comparison, Fig. 1a, b shows the FE-SEM photographs of BiVO₄ films; the anodes keep the smoother-edged dendrites with a large surface area. Fig. 1c displays the FE-SEM micrographs of the Bi₂S₃ nanoparticles through ion exchange reactions (10 cycles) on the BiVO₄ (BiVO₄/Bi₂S₃-1) photoanodes prepared in 0.1 M Na₂SO₄ + Na₂S electrolytes. The FE-SEM images of BiVO₄/Bi₂S₃ electrodes display direct evidence of Bi₂S₃ loading was homogenous and very thin on the BiVO₄ surface (Fig. 1d). Fabricated BiVO₄/Bi₂S₃ photoanodes were then transformed into BiVO₄/Bi₂S₃-BiPS₄ by PEC treatment (via 10 CV scans) in 0.1 M PBS (Fig. 1e). Finally, as seen in Fig. 1f, the FESEM photographs of $BiVO_4/Bi_2S_3$ -BiPS₄ obviously disclose that the $BiVO_4$ surface became homogenously smoother after incorporating phosphate.

Fig. 2a illustrates the X-ray diffraction patterns for the bare BiVO₄ before and after incorporating Bi₂S₃ and BiPS₄ (BiVO₄/ Bi₂S₃, BiVO₄/Bi₂S₃/BiPS₄) by the PEC ion-exchange process. There was substantial variation in the diffraction patterns of BiVO₄/ Bi₂S₃ electrodes, validating the development of new phases in the modified BiVO₄ electrodes. For the bare BiVO₄ (black), sharp peaks assigned to the BiVO₄ electrode agreed with the JCPDS # 00–014-0688 and were denoted by the symbol (\blacklozenge) [38–39]. After the introduction of Bi2S3, Fig. 2a (blue curve), the observed peaks agree with the Bi₂S₃ phase, corresponding to the JCPDS pattern (00-017-0320) of bare Bi₂S₃ [40-41], which were labeled as (Δ). Finally, the diffraction pattern of BiVO₄/Bi₂S₃-BiPS₄ hybrid nanostructures (red curve) validates the decoration of BiPS₄ over BiVO₄/ Bi₂S₃, corresponding to the JCPDS file No. (1-071-0364), which were labeled as $(\mathbf{\Psi})$ [42]. The diffraction patterns presented in Fig. 2a clearly display the presence of both Bi₂S₃ and BiPS₄ over the surface of BiVO₄. Further, Raman Spectroscopy was executed to assess the local structure of fabricated heterostructured photoanodes (Fig. 2b). The vibrational bands at \sim 210.9, 327, 369, and 830 cm⁻¹ characteristics for BiVO₄ were observed for all the fabricated photoanodes consistent with the earlier works [43-45]. Also, the characteristic vibrational bands situated at 830 cm⁻¹ correspond to the asymmetric and symmetric V–O stretching vibration mode, whereas the other Raman peaks at 210 cm⁻¹, 326 cm⁻¹, and 371 cm⁻¹ were allocated to the external vibration mode and asymmetric-symmetric bending vibrations of vanadates. However, in the decorated samples, the observed blue shifts in the major Raman bands were related to symmetric V-O stretching, reflecting asymmetry in the crystalline structure and evidently witnessed in BiVO₄/Bi₂S₃-BiPS₄ photoanodes. This electrode reveals the presence of the most intense Raman band owed to symmetric V–O stretching ca. 830 cm $^{-1}$, indicating a higher degree of disorder for average vanadate species [46]. On the other hand, the thin homogenous Bi₂S₃-BiPS₄ can explain the absence of Raman modes that are specific to the Bi₂S₃-BiPS₄ coating. Hence, we can conclude that the Bi₂S₃-BiPS₄ hybrid heterostructures were successfully prepared through the electrochemical ion exchange treatment process with intimate modification to the BiVO₄ surface.

Fig. 1. FESEM micrographs of BiVO₄ photoanodes. FE-SEM photographs of the (a,b) BiVO₄ photoanodes obtained through electrochemical deposition process at different magnifications; (c,d) BiVO₄/Bi₂S₃ photoanodes obtained after 10 cycles in Na₂SO₃ electrolyte, and (e, f) BiVO₄/BiPS₄-Bi₂S₃ photoanodes obtained after 10 cycles under the treatment of Na₂S and PBS solution.

Fig. 3 illustrates UV-visible spectroscopy results of bare-BiVO₄ and BiVO₄/Bi₂S₃, and BiVO₄/Bi₂S₃-BiPS₄ samples acquired after 10 cycles under the treatment of Na2S and PBS solution. Fig. 3a displays the absorption spectra of the three electrodes, while Fig. 3b shows their Tauc plots, where the bandgap for BiVO₄ was assessed to be 2.4 eV. It has to be mentioned here that the absorption spectra of both Bi₂S₃ and Bi₂S₃-BiPS₄ decorated electrodes showed long Urbach tails at the absorption onsets rendering it difficult to accurately estimate the bandgap edge from their Tauc plots. Fig. 3c shows a magnified image for both samples at the absorption onset region where the bandgap edge was assessed to be about 1.6 eV and 1.64 eV respectively for the Bi₂S₃ and Bi₂S₃-BiPS₄ decorated electrodes. Fig. 3d shows the correlation between F(R) and wavelength for fabricated electrodes. As shown in Fig. 3a, the light absorption capability of BiVO₄ is considerably improved after Bi₂S₃ was transformed. The combined deposition of Bi₂S₃ and BiPS₄ nanoparticles provide an additional synergetic enhancement of the optical density of the bare BiVO₄ electrodes in the visible-light region. More importantly, it illustrates that

the decoration of the BiPS₄ and Bi₂S₃ particles over BiVO₄ can lead to the absorption of a higher fraction of the visible portion of the solar spectrum. In particular, when Bi₂S₃ was deposited, the extended absorption range is directly related to its narrow bandgap at \sim 1.6 eV, where the visible spectrum between the absorption edge of BiVO₄ at ~ 2.4 eV and that of Bi₂S₃ at ~ 1.6 eV could now be absorbed. The large absorption coefficient of Bi₂S₃ is another possible reason behind the improved light harvesting. Notably, recent reports have proved that the Bi₂S₃ nanostructured particles have strong absorption over BiVO₄ [47], as demonstrated by the improved optical absorbance at $\lambda > 500$ nm in Fig. 3a. When BiPS₄, with its bandgap of \sim 1.64 eV, was additionally introduced, the absorption onset in the absorption spectrum was clearly not affected due to the almost similar bandgap of Bi₂S₃ previously deposited. However, the optical density was remarkably enhanced (almost doubled over the whole absorption region). Therefore, the absorption spectrum of the BiVO₄/Bi₂S₃-BiPS₄ photoanodes was both stretched over a wider region and enhanced by a factor of \sim 2.

Fig. 2. Diffraction pattern of photoanodes. (a) Normalized X-ray diffraction pattern for BiVO₄, BiVO₄/Bi₂S₃ heterostructures, and BiVO₄/Bi₂S₃-BiPS₄ hybrid heterostructures prepared over FTO substrate through electrochemical ion exchange reactions. (b) Raman spectra of fabricated BiVO₄, BiVO₄/Bi₂S₃, and BiVO₄/Bi₂S₃-BiPS₄, obtained in the region of 150–1200 cm^{-1.}

Fig. 3. Optical features of photoanodes. (a) UV–vis absorption spectra of BiVO₄, BiVO₄/Bi₂S₃, and BiVO₄/Bi₂S₃-BiPS₄ hybrid heterostructures prepared by means of electrochemical ion-exchange reactions, (b) the corresponding correlation between $(\alpha h v)^{1/2}$ and E (eV) for bare BiVO₄ and BiVO₄/Bi₂S₃, and BiVO₄/Bi₂S₃-BiPS₄ and their enlarged view (c) of electrodes, (d) the corresponding Kubelka-Munk function F(R) for bare BiVO₄ and BiVO₄/Bi₂S₃, and BiVO₄/Bi₂S₃-BiPS₄ with bandgaps of 2.4, 1.6, and 1.64 eV, respectively.

Moreover, the XPS study provides further insights into the interface between $BiVO_4$ and $BiPS_4$ - Bi_2S_3 . The obtained spectra

are reported in Fig. 4. The full XPS survey spectra of Fig. 4a indicate that $BiVO_4/Bi_2S_3$ -BiPS₄ contains Bi, V, O, P, and S. Also, the XPS

Fig. 4. Surface characterization of photoanodes. Survey XPS spectra of BiVO₄/Bi₂S₃-BiPS₄and Bi₂S₃/BiVO₄ electrodes (a), core level XPS spectra of Bi 4f (b), V 2p (c), O 1 s (d), P 2p (e).

spectrum of BiVO₄/Bi₂S₃ photoanodes before the PEC ion-exchange process in 0.1 PBS is included for comparison. The peaks observed at 158.7 and 163.7 eV are splitting peaks of Bi4 $f_{7/2}$ and Bi4 $f_{5/2}$, individually, which are features of Bi³⁺ (Fig. 4b) [35]. However, the smaller signal at approximately 161.3 eV is attributed to the spin state of S 2p_{1/2}. Likewise, the obtained peaks positioned at 522.0 (V2p_{1/2}) and 516.8 eV (V2p_{3/2}) are the splitting peaks of V2p, corresponding to the surface V⁵⁺ species (Fig. 4c). Furthermore, the acquired peaks at 529.9 and 531.9 eV in the O1s spectrum (Fig. 4d) correspond to O bonded inside an oxide crystal (O²⁻) in

bare-BiVO₄ electrodes and to that of adsorbed OH– groups over the electrode surface, correspondingly [48]. More importantly, the high-resolution spectra of Bi (Fig. 4b), V (Fig. 4c), and O (Fig. 4d) of BiVO₄/Bi₂S₃-BiPS₄ are dissimilar compared to those for BiVO₄-Bi₂S₃, with a substantial shift to higher binding energy (BE) in Bi 4f, V2p, and O1s peaks in the heterostructured photoanodes. This evidences an effective efficient monolithic interface between BiVO₄ and BiPS₄-Bi₂S₃. The higher BE shift is owing to the introduction of sulfur (which has a higher electron affinity) over the VO₄³⁻ tetrahedral sites of BiVO₄ [49], consistent with the Raman analysis above (Fig. 2b) [50]. The HR-XPS spectrum in Fig. 4e displays a P 2p signal at 135.7 eV, assigned to P–O and Bi–P–S combinations. These results indicate that the Bi_2S_3 and $BiPS_4$ nanoparticles were effectively transformed during the PEC transformation process in 0.1 M PBS/Na₂S (pH 10).

3.2. Photoelectrochemical features of photoanodes

A classical 3-electrode assembly was employed for PEC measurements under AM 1.5G simulated sunlight. The highly active BiVO₄/Bi₂S₃ heterostructured electrodes from a PEC transformation of BiVO₄ in different electrolytes comprising 0.1 M Na₂SO₃/Na₂SO₄ and 0.1 M Na₂S solutions, carried out by varying the number of deposition cycles under light excitations at 100 mW/cm². Fig. 5a illustrates the linear sweep voltammogram (LSV) plots of the BiVO₄/Bi₂S₃-1 (prepared in 0.1 M Na₂SO₄ + 0.1 M Na₂S electrolytes) photoanodes obtained by different photo deposition cycles in 0.1 M Na₂S/Na₂SO₄ solutions; cycle-10 shows the highest photocurrent, which was selected for fabrication of heterostructured photoanodes. Similarly, the BiVO₄/Bi₂S₃-2 electrodes were obtained in the 0.1 Na₂S/Na₂SO₃ solutions, and the results are presented in Fig. 5b. The optimized number of electrochemical cycles for the maximal photocurrent density was 10 cycles. Under light excitation, the enhancement in photocurrent is believed to be due to the PEC transformation, the surface of BiVO₄ initiated the transformation into Bi2S3 by the diffusion of V-ions into the Na₂S/Na₂SO₃ solution, and the diffusion of Sulfur into the BiVO₄lattice [51]. Afterward, the observed photocurrent decrease in the optimal Bi₂S₃ films developed over the BiVO₄ surface, which contains the irregular block to the V-leaching process. Further, BiPS₄ was decorated over BiVO₄ via ion-exchange reactions in an electrolyte comprising 0.1 M PBS and 0.1 M Na₂S solution (Fig. 5c). The PEC conditions for obtaining the best Na₂S/PBS mixing of the nanoparticles were improved by changing electrochemical cycles. Likewise, the addition of BiPS₄ on the BiVO₄/Bi₂S₃ films was activated under ion-exchange reactions under light excitations, and the BiVO₄/Bi₂S₃-BiPS₄ (10 cycles) showed the highest PEC performance (Fig. 5c). In addition to the enhanced light absorption, we believe that the integration of BiVO₄ and Bi₂S₃-BiPS₄ created a triple heterostructured junction, resulting in more efficient photoinduced carrier separation and declined charge recombination[52-53].

The distinctive photocurrent-potential (I-V) schemes for the PEC water splitting reaction in Fig. 6a show that the optimal BiVO₄/ Bi₂S₃-BiPS₄ photoanodes presented superior photocurrents to BiVO₄/Bi₂S₃-1 and BiVO₄/Bi₂S₃-2. The high onset potential (0.85 V_{RHE}) and lower photocurrent response of the bare-BiVO₄ $(\approx 0.7 \text{ mA/cm}^2 \text{ at } 1.23 \text{ V}_{\text{RHE}})$ are apparently credited to the poor hole transfer kinetics at the interface between the bare BiVO₄ and water [54]. The photocurrent density upsurged from 1.97 to 3.7 mA/cm² after introducing the BiPS₄ layer owing to enriched light absorption and, successively, enhanced photoinduced carrier generation. Further, the photocurrent density considerably upsurged with Bi₂S₃-BiPS₄ decoration and attained ~3.7 mA/cm² at 1.23 V_{RHE} in 0.1 M PBS/Na₂S (pH 10), which is nearly a 5-fold enrichment compared to bare BiVO4. The photocurrent onset potentials (Von) for the fabricated heterostructured electrodes were estimated from the quasi-steady-state J-V schemes acquired at a photocurrent density of 1 mA/cm², and the estimated values were 0.25 V_{RHE} for BiVO₄/Bi₂S₃-BiPS₄ compared 0.85 V_{RHE} for BiVO₄ (Fig. 6a). Compared to the other samples, a superior photocurrent density was achieved in the lower potential area (0.6 V_{RHE}). Based on this fact, it is obvious that a transformation toward BiPS4 and Bi₂S₃ films is mandatory to justify the demand for higher efficiency as well as durability. For estimating the ABPE efficiencies of the heterostructured electrodes, the raw data were obtained from

Fig. 6a, and are presented in Fig. 6b. The maximal photoconversion efficiency of the fabricated BiVO₄/Bi₂S₃-BiPS₄ heterostructured photoanode is $(1.40 \% \text{ at } 0.60 \text{ V}_{RHE})$, which is substantially nearly 2-fold enhancement compared to the BiVO₄/Bi₂S₃-1 photoanode (0.79 % at 0.6 V_{RHE}) and BiVO₄/Bi₂S₃-1 photoanode (0.81 % at 0.6 V_{RHE}). Fig. 6c displays the chopped LSVs of the BiVO₄/Bi₂S₃-BiPS₄, BiVO₄/Bi₂S₃-1, BiVO₄/Bi₂S₃-2 at 5 mV/s under pulsed light irradiation in 0.1 M Na₂S/PBS solution (pH \sim 10). Fig. 6e showed the linear relationship between $\Delta J = (J_a - J_c)$ at + 1.23 V_{RHE} and the sweep rates; from the slope of the linear fit, the C_{dl} was estimated and shown in Table 1, which is openly related to the electrochemically active surface area of the materials [55]. The BiVO₄/Bi₂S₃-BiPS₄ electrodes (52.65 μ F/cm²) have a higher C_{dl}, which is a 3-fold enhancement than the bare BiVO₄ (19.6 μ F/cm²), which evidences that the integration of Bi₂S₃-BiPS₄ over the surface of the BiVO₄ advances the active surface area and develops more active sites for water oxidation. Comparatively, a superior photocurrent density was acquired BiVO₄/Bi₂S₃-BiPS₄ in the lower potential part $(0.6 V_{RHE})$ than the other electrodes (Fig. 6f), which is remarkable for developing tandem photoanode-photocathode arrangements.

The dynamics of charge transfer features of the heterostructured electrodes were explored by EIS under visible-light excitation. The Nyquist curve of the BiVO₄/Bi₂S₃-BiPS₄ electrodes evaluated under visible-light excitation at 0.65 V_{RHE} and the matching equivalent circuit are exhibited in Fig. 7a. Notably, these results validate that the diameter of the arc on the BiVO₄/Bi₂S₃-BiPS₄ heterostructured photoanodes was lower than that of BiVO₄/ Bi₂S₃ electrodes. The smaller arc radius of the BiVO₄/Bi₂S₃-BiPS₄ electrodes suggests faster interfacial charge transfer than bare BiVO₄. Notably, the fabricated BiVO₄/Bi₂S₃-BiPS₄ heterostructured electrode shows the smallest R_{ct} value (Table S1). The constant capacitance and reduction in the charge transfer resistance (R_{CT}) at similar voltages reveal that BiPS₄ functioned as an efficient film, boosting the charge transfer kinetics and reducing surface recombination. These results validate that the PEC surface transformation of BiVO₄ to Bi₂S₃-BiPS₄ can reduce the R_{CT} considerably, due to the development of a triple BiPS₄/ Bi₂S₃/ BiVO₄ heterostructured interface system.

Fig. 7b demonstrates the corresponding Bode phase curves of the BiVO₄, BiVO₄/Bi₂S₃, and BiVO₄/Bi₂S₃-BiPS₄, which explains the kinetics of the electrochemical reaction on the electrode surface [56]. The higher frequency of the BiVO₄/Bi₂S₃-BiPS₄ submits the quicker water oxidation kinetics via the rapid hole transfer process. Moreover, the hole relaxation lifetime (τ_p) was estimated from the Bode phase plot and provided in Table 1. The smallest τ_p of the BiVO₄/Bi₂S₃-BiPS₄ photoanode evidence the rapid hole-consumed water oxidation process. Likewise, from τ_p , the hole diffusion length of the BiVO₄ and BiVO₄/Bi₂S₃-BiPS₄ photoanodes is also derived and given in Table 1, supporting the greater hole consumed water oxidation kinetics in BiVO₄/Bi₂S₃-BiPS₄ than BiVO₄ [57]. All the acquired results noticeably show that the transformation of both Bi₂S₃ and BiPS₄ over BiVO₄ electrodes influences the PEC features deeply.

The long-term durability of the heterostructured electrode was inspected by chronoamperometric measurements. Fig. 8a displays the long-standing durability of BiVO₄/Bi₂S₃-BiPS₄ at 0.8 V_{RHE} built on the J–t plots obtained in 0.1 M PBS/Na₂S over 10 h, at a photocurrent response of ~3.4 mA/cm²; there was no apparent decay, demonstrating the remarkable durability with the integration of BiPS₄ under continuous illumination. Particularly, the obtained photocurrent parameters agreed with the results acquired from the equivalent LSV curves. The heterostructured BiVO₄/Bi₂S₃-BiPS₄ heterostructured photoanodes, which exhibit the synergetic effect of both Bi₂S₃ and BiPS₄, exhibited a faster decline of photocurrent at first and could withstand a substantial photocurrent density after 7 h of about 2.84 mA/cm², which is ~ 84 % of its initial

Fig. 5. Effect of electrolytes on the PEC activity of BiVO₄ electrodes. (a) CV characteristics of $BiVO_4/Bi_2S_3$ -1 photoanodes prepared in 0.1 M Na₂SO₄ + 0.1 M Na₂S electrolytes (pH 10) under visible light excitations conditions (100 mW/cm²) for continuous 10 cycles, (b) CV characteristics of $BiVO_4/Bi_2S_3$ -2 photoanodes prepared using 0.1 M Na₂S/Na₂SO₃ electrolyte (pH 10) under irradiation of and (c) CV characteristics of $BiVO_4/Bi_2S_3$ -BiPS₄ photoanodes prepared through 0.1 M Na₂S + 0.1 M PBS electrolyte (pH 10) under light excitations. Dark (dashed line), Light (dotted line), after continuous cycles (solid line).

value. However, the J-t profile of BiVO₄/Bi₂S₃-BiPS₄ ultimately revealed better durability compared to that of BiVO₄/Bi₂S₃ after 10 h of testing, as can be revealed from the enlarged I-t plot in Fig. 8b. Moreover, the BiVO₄/Bi₂S₃-BiPS₄ heterostructured photoanodes present less spikes on the photocurrent than the BiVO₄/ Bi₂S₃ photoanodes. These results validate the suppressed charge recombination sites for the photoanodes with the introduction of BiPS₄. In addition, the photoelectrochemically transformed BiPS₄ layer over the BiVO₄ surface will generate additional photoinduced charge carriers with an additional type II Bi₂S₃/BiPS₄ heterojunction for efficient charge separation. Our results, therefore, validate the function of the transformed electrodes in suppressing the charge recombination and boosting the PEC features at the same time [58]. Table 2 relates the photoanodes fabricated in the present work with those stated earlier in the literature. The results designate that our BiVO₄/Bi₂S₃-BiPS₄ heterostructured electrodes are durable and efficient for oxidizing water into O₂.

Photoelectrochemical production of OER via photoelectrocatalysis at BiVO₄/Bi₂S₃ and BiVO₄/Bi₂S₃-BiPS₄ films were observed through an Oxysense instrument. **Figure S1** shows the evidence of O₂ evolution concentration with respect to the time for triplelayered BiVO₄/Bi₂S₃-BiPS₄ electrodes at 0.6 V_{RHE} and with continuous illumination. As observed in the figures, after BiPS₄ addition, visible-light photons ($\lambda > 420$ nm) insisted dioxygen evolution over the electrode surface of BiVO₄/Bi₂S₃-BiPS₄, and their matching photocurrent analysis is shown in Fig. S1b. With the aid of potential (0.6 V_{RHE}), dioxygen generation was detected, and their acquired concentrations were expected to increase linearly with time intervals. On the other hand, the obtained BiVO₄/Bi₂S₃-BiPS₄ electrodes evidenced considerable durability towards continuous illumination conditions (Fig. S1b). All the acquired results evidence that the synergetic effect of BiPS₄ and Bi₂S₃ transformation considerably boosted the PEC performances and durability of BiVO₄ electrodes by improving the charge-carrier density and the surface oxidation kinetics.

Generally, the PEC features of prepared electrode materials rely mainly on their energy band structures [70]. The energy level positions of the conduction and valence band can be predicted by the following equations [71]

$$E_{CB} = X - E_e - 0.5E_g$$
 (1)

$$E_{VB} = E_{CB} + E_g \tag{2}$$

where X and E_g are the absolute electronegativity and the bandgap of the materials, correspondingly. E_e is the energy of a free electron on the hydrogen scale (4.5 eV). The X values for bare BiVO₄, Bi₂S₃, and BiPS₄ are 6.04 [72], 5.26 [73], and 5.31 eV, individually. The acquired bandgap parameters for BiVO₄, Bi₂S₃, and BiPS₄ have been assessed to be 2.4, 1.39, and 1.30 eV, correspondingly (**Figure S2**). Hence, the obtained ECB values of BiVO₄, Bi₂S₃, and BiPS₄ are assessed to be 0.34, 0.065, and 0.11 eV, individually. The E_{VB} values of BiVO₄, Bi₂S₃, and BiPS₄ can be assessed to be 2.74, 1.455, and 1.41 eV, respectively. These data determinations might assist to discuss the relative determinations of their energy bands (**Figure S3**). Notably, Fig. 9 illustrates the proposed mechanism of BiVO₄/Bi₂S₃-BiPS₄ heterostructured photoanode under

Fig. 6. (a) Polarization curves for BiVO₄, BiVO₄/Bi₂S₃-1 (0.1 M Na₂SO₄/0.1 M Na₂S), BiVO₄/Bi₂S₃-2 (0.1 M Na₂SO₃/0.1 M Na₂S) and BiVO₄/Bi₂S₃-BiPS₄ using a 0.1 M Na₂S and 0.1 M PBS, (b) estimated ABPE efficiency, (c) corresponding chopped polarization curves in 0.1 M PBS, and (d) polarization curves in the dark (black) and under irradiation (orange) for BiVO₄/BiPS₄ and (e) curves of Δ J at 1.23 V_{RHE} vs sweep rates; LSV curves of the obtained electrode (f) Variation in the photocurrent density for all fabricated materials in 0.1 M PBS and 0.1 M Na₂S (pH 10) at 0.6 and 1.23 V_{RHE}. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

illumination conditions. Particularly, the photoinduced holes in the valence band of bare-BiVO₄ electrodes interact with the SO_3^{2-}/S^{2-} radicals in the presence of Na_2S/Na_2SO_3 sacrificial reagents and oxidize to develop S_2^{2-} and $S_2O_3^{2-}$. Simultaneously, S^{2-} ion effectively interacts with bare-BiVO₄ and produces Bi_2S_3 at the surface of BiVO₄. Firstly, the BiVO₄ film facilitates direct electron transfer, whereas Bi_2S_3 assists as the front light absorber. As defined in the energy level band diagram of Fig. 9, the photogenerated electrons in the CB of Bi_2S_3 transfer to the CB of $BiVO_4$, and meanwhile the

photoinduced electrons are produced in the CB of $BiVO_4$ itself. Simultaneously, the photoinduced holes in the VB of $BiVO_4$ will effectively transport to the VB of Bi_2S_3 owed to the built-in electric field developed by the type II heterojunction [65,74]. In a nutshell, electrons and holes will be produced in both materials, and the type II structure of the interface will drive electrons toward $BiVO_4$ and holes toward the water interface. The same can be mentioned for the additional $BiPS_4$ later in the triple structure. The three materials $BiVO_4$, Bi_2S_3 , and $BiPS_4$ make perfect valence band energy

M.N. Shaddad, P. Arunachalam, M. Hezam et al.

Table 1

PEC values were acquired for the BiVO₄, BiVO₄/Bi₂S₃ and BiVO₄/Bi₂S₃-BiPS₄ electrodes.

Photoanode	J _{н20} (mA.cm ⁻²) @1.23 V _{RHE}	ABPE (%)	$R_{CT}(\Omega)$	C _{dl} (µF.cm ⁻²)	Relaxation frequency (Hz)	τ _p (ms)	L _D (μm)
BiVO ₄	0.85	-	1.1 E ¹²	19.6	4.624	34.43678	423.2
BiVO ₄ /Bi ₂ S ₃	1.97	0.89	6351	39.2	9.521	16.72468	294.9
BiVO ₄ /Bi ₂ S ₃ -BiPS ₄	3.85	1.41	456.1	52.6	15.346	10.37636	232.3

Footnote: J_{H2O} referring to the photocurrent density; ABPE - Applied bias photon-to-current efficiency; C_{dl} - Double-layer capacitance; τ_p -hole relaxation lifetime; L_D - hole diffusion length;

Fig. 7. Impedance spectra of photoanodes. Comparative Nyquist plots (a) and its corresponding Bode phase plots (b) for BiVO₄ (black), BiVO₄/Bi₂S₃ (blue) (tested in 0.1 M Na₂SO₃ + 0.1 M Na₂S), and BiVO₄/Bi₂S₃-BiPS₄ (red) (tested in 0.1 M PBS + 0.1 M Na₂S) (red) photoanodes at 1.23 V_{RHE} with a frequency ranging between 100,000 to 0.05 Hz under visible-light excitations. Inset displays fitted equivalent circuits for the photoanodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. (a) J-t curve for long-term photodurability of BiVO₄/Bi₂S₃-BiPS₄ (tested in 0.1 M PBS + M 0.1 Na₂S) (red) and BiVO₄/Bi₂S₃ (tested in 0.1 M Na₂SO₃ + Na₂S) (black) at 0.8 V_{RHE} for ~ 10 h under AM 1.5 G irradiation. (b) enlarged view of prepared electrodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

alignment for the efficient extraction of holes towards the water interface. Therefore, we have two types II heterojunctions and three absorbing materials. Hence, light absorption will be magnified and the charge transfer kinetics will be facilitated at the same time, explaining the large enhancement in the triple electrode. Hence, this triple-layer heterostructured BiVO₄/Bi₂S₃-BiPS₄ configuration can be an effective water oxidation process. These results provide basic knowledge and design of effective heterostructured photoanodes for solar fuel production.

4. Conclusions

In summary, a noble BiVO₄/Bi₂S₃-BiPS₄ electrode was fabricated on a conducting substrate via the PEC ion exchange process. Initially, homogeneous BiVO₄/Bi₂S₃ particles are synthesized by the PEC transformation process in an aqueous Na₂S/Na₂SO₃ electrolyte and then subjected to the PEC -ion exchange process to produce BiVO₄/Bi₂S₃-BiPS₄ electrode in Na₂S/PBS electrolyte. When the surface of BiVO₄ was transformed with the Bi₂S₃-BiPS₄ layer, the resulting BiVO₄/Bi₂S₃-BiPS₄ heterostructured electrodes demon-

Table 2

Various kinds of BiVO4-based electrode materials are loaded with different co-catalysts and their PEC properties for water-splitting reactions.

S.No	Electrode	Electrolyte (pH)	Co-catalyst (Method)	Light source	Current density (mA/cm ²)	Ref.
1	BiVO ₄ /FeVO ₄	0.2 M Na ₂ SO ₄ pH = 7	Electrospray technique	100 mW.cm ⁻²	0.4 @ 1.23 Vrhf	[59]
2	BiVO ₄ /CoFe-NiOOH	$0.5 \text{ M Na}_2 \text{SO}_4$ pH = 7	Lifting method/chemical process	100 mW/cm ²	1.54 @ 1.23 V _{вне}	[60]
3	BiVO ₄ /rGO/NiFe	0.5 M Na ₂ SO ₄ pH = \sim 6.9	Potentiostatic electrodeposition	100 mW.cm ⁻²	1.30 @ 1.23 VRHF	[61]
4	BiVO4/Ni0.5Fe0.5-LDH	0.5 M Na ₂ SO ₄	Electrodeposition process	100 mW.cm ⁻²	1.21 @ 1.23 V _{RHF}	[62]
5	CoPi/BiVO ₄	0.5 M Na ₂ SO ₄	Photodeposition	100 mW.cm ⁻²	1.1 @ 1.23 V _{вне}	[63]
6	CoFe-PB/BiVO ₄	0.1 M KPi	Wet processing method	100 mW.cm^{-2}	1.0 @ 1.23 Vpup	[64]
7	Ag/Ni-Zr:BiVO4	0.1 M PBS pH 7.5	Electrochemical deposition process	100 mW.cm^{-2}	3.14 @1.23 V _{вне}	[26]
8	NiFePB/Zr:BiVO ₄	0.1 M PBS pH 7.5	Electrodeposition process	100 mW.cm ⁻²	3.23 @1.23 V _{вне}	[25]
9	BiVO ₄ /Bi ₂ S ₃	0.5 M Na ₂ SO ₄	Photoassisted electrodeposition process	100 mW.cm^{-2}	1.43 @1.23 Vрис	[35]
10	BiVO ₄ /Bi ₂ S ₃	0.35 M Na2SO2/0.25 M Na2S	PEC transformation	100 mW.cm ⁻²	3.3 @1.23 VRHF	[65]
11	BiVO ₄ /Bi ₂ S ₃ /FeOOH	0.1 M Na₂SO₄	Hydrothermal process	100 mW.cm ⁻²	0.8 @0.4 V _{SCE}	[66]
12	Mo:BiVO ₄	0.1 M Na ₂ SO ₄	Pulsed laser deposition	100 mW.cm ⁻²	2.1@1.23 V _{RHE}	[67]
13	BiVO ₄ /V-NiOOH/FeOOH	1 M KBi	Hydrothermal method	100 mW.cm ⁻²	5.43 @ 1.23 V _{RHE}	[68]
14	Activated EL-BiVO ₄	1 M KBi	In-situ potentiostatic photopolarisation	100 mW.cm ⁻²	4.6 @1.23 V _{RHE}	[69]
13	BiVO ₄ /Bi ₂ S ₃	0.1 M PBS/Na ₂ S pH 10	Ion-exchange reactions	AM 1.5G/100 mW/cm ²	1.97 @1.23 V _{RHE}	This work
14	BiVO ₄ /Bi ₂ S ₃ /BiPS ₄	0.1 M PBS/Na ₂ S pH 10	Ion-exchange reactions	AM 1.5G/100 mW/cm ²	3.85 @1.23 V _{RHE}	This work

Fig. 9. Mechanistic illustration of BiVO₄/Bi₂S₃-BiPS₄ heterostructured electrode and its energy level diagrams under irradiation for the electrodes and electrolyte interface.

strated superior photocurrent features of ${\sim}3.7~mA/cm^2$ at 1.23 V_{RHE} . The impedances and absorption spectra show that the BiPS_4 layer assists as a surface protective film and boosts the PEC

features by upsurging the photon absorption and carrier separation of the $BiVO_4$ film. The exceptional PEC feature and durability and the rapid, convenient, and well-regulated commercial fabrication

of the BiPS₄ photoanodes make it a favorable substitute for conventional metal oxide-protected water-splitting photoanodes.

CRediT authorship contribution statement

Maged N. Shaddad: Conceptualization, Data curation, Formal analysis, Investigation. Prabhakarn Arunachalam: Conceptualization, Data curation, Formal analysis, Investigation, Supervision, Writing – original draft, Writing – review & editing. Mahmoud Hezam: Investigation, Conceptualization, Writing – review & editing. Norah M BinSaeedan: Formal analysis. Sixto Gimenez: Supervision. Juan Bisquert: Supervision. Abdullah M. Al-Mayouf: Supervision, Funding acquisition, Project administration.

Data availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation, King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (14-NAN2323-02).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2022.12.032.

References

- S. Dutta, Review on Solar Hydrogen: Its Prospects and Limitations, Energy Fuel 35 (2021) 11613–11639, https://doi.org/10.1021/acs.energyfuels.1c00823.
- [2] C. Acar, I. Dincer, G.F. Naterer, Review of Photocatalytic Water-splitting Methods for Sustainable Hydrogen Production, Int. J. Energy Res. 40 (2016) 1449–1473, https://doi.org/10.1002/er.3549.
- 1449–1473, https://doi.org/10.1002/er.3549.
 [3] F. Li, C.L. Wang, S. Ding, K. Yang, C.J. Liu, F. Tian, Photoelectrochemical performance of TiO2 nanotube arrays by in situ decoration with different initial states, Rare Met. 40 (2021) 720–727, https://doi.org/10.1007/s12598-019-01363-7.
- [4] J.H. Kim, J.W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. Van De Krol, J.S. Lee, Heterotype dual photoanodes for unbiased solar water splitting with extended light harvesting, Nat. Commun. 7 (2016) 1–9, https://doi.org/10.1038/ ncomms13380.
- [5] X. Liu, F. Wang, Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting, PCCP 14 (2012) 7894–7911, https:// doi.org/10.1039/C2CP40976C.
- [6] S.W. Hwang, D.H. Seo, J.U. Kim, D.K. Lee, K.S. Choi, C. Jeon, I.S. Cho, Bismuth vanadate photoanode synthesized by electron-beam evaporation of a single precursor source for enhanced solar water-splitting, Appl. Surf. Sci. 528 (2020), https://doi.org/10.1016/j.apsusc.2020.146906.
- [7] Y. Peng, H. Wu, M. Yuan, F. F., Li, X. Zou, Y. H. Ng, H. Y. Hsu, Chemical reduction-induced surface oxygen vacancies of BiVO 4 photoanodes with enhanced photoelectrochemical performance, Sustainable Energy & Fuels 5 (2021) 2284–2293, https://doi.org/10.1039/D0SE01901A.
- [8] M.N. Shaddad, M.A. Ghanem, A.M. Al-Mayouf, S. Gimenez, J. Bisquert, I. Herraiz-Cardona, Cooperative Catalytic Effect of ZrO2 and α-Fe2O3 Nanoparticles on BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting, ChemSusChem 9 (2016) 2779–2783, https://doi.org/10.1002/ cssc.201600890.
- J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting, Adv. Mater. 31 (2019) 1806938, https://doi.org/10.1002/ adma.201806938.
- [10] V. Nair, C.L. Perkins, Q. Lin, M. Law, Textured nanoporous Mo: BiVO 4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution, Energ. Environ. Sci. 9 (2016) 1412–1429, https://doi.org/10.1039/C6EE00129G.

- [11] H.L. Tan, X. Wen, R. Amal, Y.H. Ng, BiVO4 010 and 110 relative exposure extent: governing factor of surface charge population and photocatalytic activity, The Journal of Physical Chemistry Letters 7 (2016) 1400–1405, https://doi.org/10.1021/acs.jpclett.6b00428.
- [12] D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4, J. Am. Chem. Soc. 133 (2011) 18370–18377, https://doi.org/ 10.1021/ja207348x.
- [13] T. Liu, X. Zhou, M. Dupuis, C. Li, The nature of photogenerated charge separation among different crystal facets of BiVO4 studied by density functional theory, PCCP 17 (2015) 23503–23510, https://doi.org/10.1039/ C5CP04299B.
- [14] R. Guo, A. Yan, J. Xu, B. Xu, T. Li, X. Liu, S. Luo, Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism, J. Alloy. Compd. 817 (2020), https://doi.org/10.1016/j.jallcom.2019.153246.
- [15] M.N. Shaddad, P. Arunachalam, M. Hezam, N.M. AL-Saeedan, S. Gimenez, J. Bisquert, A.M. Al-Mayouf, Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping, Int. J. Hydrogen Energy 46 (2021) 23702–23714, https://doi.org/10.1016/j.ijhydene.2021.04.184.
- [16] H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang, A.J. Bard, Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation, J. Phys. Chem. C 115 (2011) 17870–17879, https://doi.org/ 10.1021/jp204492r.
- [17] S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobaltphosphate (Co-Pi) catalyst modified Mo-doped BiVO 4 photoelectrodes for solar water oxidation, Energ. Environ. Sci. 4 (2011) 5028–5034, https://doi.org/ 10.1039/C1EE02444B.
- [18] H. Xu, W. Fan, Y. Zhao, B. Chen, Y. Gao, X. Chen, D. Xu, W. Shi, Amorphous iron (III)-borate decorated electrochemically treated-BiVO4 photoanode for efficient photoelectrochemical water splitting, Chem. Eng. J. 411 (2021), https://doi.org/10.1016/j.cej.2021.128480.
- [19] T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343 (2014) 990–994, https://doi.org/10.1126/science.1246913.
- [20] Z. Sun, Z. Yu, Y. Liu, C. Shi, M. Zhu, A. Wang, Construction of 2D/2D BiVO4/g-C3N4 nanosheet heterostructures with improved photocatalytic activity, J. Colloid Interface Sci. 533 (2019) 251–258, https://doi.org/10.1016/j. jcis.2018.08.071.
- [21] Y. Wu, J. Wang, Y. Huang, Y. Wei, Z. Sun, X. Zheng, J. Wu, Solvothermal synthesis of Bi2O3/BiVO4 heterojunction with enhanced visible-light photocatalytic performances, J. Semicond. 37 (2016), https://doi.org/10.1088/ 1674-4926/37/8/083004.
- [22] S.Y. Chae, C.S. Lee, H. Jung, O.S. Joo, B.K. Min, J.H. Kim, Y.J. Hwang, Insight into charge separation in WO3/BiVO4 heterojunction for solar water splitting, ACS Appl. Mater. Interfaces 9 (2017) 19780–19790, https://doi.org/10.1021/ acsami.7b02486.
- [23] C. Regmi, D. Dhakal, T.H. Kim, T. Yamaguchi, S.W. Lee, Fabrication of Agdecorated BiOBr-mBiVO4 dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green, Nanotechnology 29 (2018), https://doi.org/10.1088/1361-6528/aaac60.
- [24] M.N. Shaddad, D. Cardenas-Morcoso, P. Arunachalam, M. García-Tecedor, M.A. Ghanem, J. Bisquert, S. Gimenez, Enhancing the optical absorption and interfacial properties of BiVO4 with Ag3PO4 nanoparticles for efficient water splitting, J. Phys. Chem. C 122 (2018) 11608–11615, https://doi.org/10.1021/ acs.jpcc.8b00738.
- [25] M.N. Shaddad, P. Arunachalam, J. Labis, M. Hezam, A.M. Al-Mayouf, Fabrication of robust nanostructured (Zr) BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting, Appl Catal B 244 (2019) 863–870, https://doi.org/10.1016/j.apcatb.2018.11.079.
- [26] M.N. Shaddad, P. Arunachalam, A.A. Alothman, A.M. Beagan, M.N. Alshalwi, A. M. Al-Mayouf, Synergetic catalytic behavior of AgNi-OH-Pi nanostructures on Zr: BiVO4 photoanode for improved stability and photoelectrochemical water splitting performance, Journal of Catalysis 371 (2019) 10–19, https://doi.org/10.1016/j.jcat.2019.01.024.
- [27] M.N. Shaddad, P. Arunachalam, M. Hezam, A.M. Al-Mayouf, Cooperative catalytic behavior of SnO2 and NiWO4 over BiVO4 photoanodes for enhanced photoelectrochemical water splitting performance, Catalysts 9 (2019) 879, https://doi.org/10.3390/catal9110879.
- [28] M. Sun, C. Yuan, R.T. Gao, R. Zhang, X. Liu, T. Nakajima, L. Wang, A bridging coordination of urea tailoring metal hydroxides oxygen evolution catalysts promotes stable solar water splitting, Chem. Eng. J. 426 (2021), https://doi.org/ 10.1016/j.cej.2021.131062.
- [29] Z. Najaf, D.L.T. Nguyen, S.Y. Chae, O.S. Joo, A.U.H.A. Shah, D.V.N. Vo, G. Rahman, Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting, Int. J. Hydrogen Energy 46 (2021) 23334–23357, https://doi.org/10.1016/j.ijhydene.2020.07.111.
- [30] Y. Ma, A. Kafizas, S.R. Pendlebury, F. Le Formal, J.R. Durrant, Photoinduced absorption spectroscopy of CoPi on BiVO4: the function of CoPi during water oxidation, Adv. Funct. Mater. 26 (2016) 4951–4960, https://doi.org/10.1002/ adfm.201600711.
- [31] Y. Ma, F. Le Formal, A. Kafizas, S.R. Pendlebury, J.R. Durrant, Efficient suppression of back electron/hole recombination in cobalt phosphate

surface-modified undoped bismuth vanadate photoanodes, J. Mater. Chem. A 3 (2015) 20649–20657, https://doi.org/10.1039/C5TA05826K.

- [32] Y. Wan, M. Han, L. Yu, G. Yi, J. Jia, 3D Bi 2 S 3 salix leaf-like nanosheet/TiO2 nanorod branched heterostructure arrays for improving photoelectrochemical properties, CrstEngComm 18 (2016) 1577–1584, https://doi.org/10.1039/ C5CE02252E.
- [33] C. Liu, J. Li, Y. Li, W. Li, Y. Yang, Q. Chen, Epitaxial growth of Bi 2 S 3 nanowires on BiVO4 nanostructures for enhancing photoelectrochemical performance, RSC Adv. 5 (2015) 71692–71698, https://doi.org/10.1039/C5RA13171E.
- [34] Z. Zhou, Y. Li, K. Lv, X. Wu, Q. Li, J. Luo, Fabrication of walnut-like BiVO4@ Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr (VI), Mater. Sci. Semicond. Process. 75 (2018) 334–341, https://doi.org/10.1016/j. mssp.2017.11.011.
- [35] H.Q. Chen, L.Y. Lin, S.L. Chen, Direct growth of BiVO4/Bi2S3 nanorod array on conductive glass as photocatalyst for enhancing the photoelectrochemical performance, ACS Applied Energy Materials 1 (2018) 6089–6100, https://doi. org/10.1021/acsaem.8b01146.
- [36] D. Tiwari, D. Alibhai, D. Cherns, D.J. Fermin, Crystal and electronic structure of bismuth thiophosphate, BiPS4: An earth-abundant solar absorber, Chem. Mater. 32 (2020) 1235–1242, https://doi.org/10.1021/acs. chemmater.9b04626.
- [37] D. Kang, Y. Park, J.C. Hill, K.S. Choi, Preparation of Bi-based ternary oxide photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 using dendritic Bi metal electrodes, The Journal of Physical Chemistry Letters 5 (2014) 2994–2999, https://doi.org/10.1021/jz501544k.
- [38] K.H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability: pn junction to expand solar adsorption range and facilitate charge carrier dynamics, Nano Energy 18 (2015) 222-231, https://doi.org/10.1016/ j.nanoen.2015.10.018.
- [39] X. Lin, D. Xu, J. Zheng, M. Song, G. Che, Y. Wang, L. Chang, Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity, J. Alloy. Compd. 688 (2016) 891–898, https://doi.org/10.1016/j.jallcom.2016.07.275.
- [40] M. Salavati-Niasari, D. Ghanbari, F. Davar, Synthesis of different morphologies of bismuth sulfide nanostructures via hydrothermal process in the presence of thioglycolic acid, J. Alloy. Compd. 488 (2009) 442–447, https://doi.org/ 10.1016/j.jallcom.2009.08.152.
- [41] V. Stavila, K.H. Whitmire, I. Rusakova, Synthesis of Bi2S3 nanostructures from bismuth (III) thiourea and thiosemicarbazide complexes, Chem. Mater. 21 (2009) 5456–5465, https://doi.org/10.1021/cm902229x.
- [42] H. Zimmermann, C.D. Carpentier, R. Nitsche, The crystal structure of bismuth thiophosphate BiPS4, Acta Crystallographica Section B: Structural Crystallography and Crystal, Chemistry 31 (1975) 2003–2006, https://doi. org/10.1107/S0567740875006723.
- [43] H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Hierarchically Z-scheme photocatalyst of Ag@ AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance, Appl Catal B 170 (2015) 206–214, https://doi.org/10.1016/j.apcatb.2015.01.043.
- [44] W. Yao, H. Iwai, J. Ye, Effects of molybdenum substitution on the photocatalytic behavior of BiVO4, Dalton Trans. (2008) 1426–1430, https:// doi.org/10.1039/B713338C.
- [45] L. Zhang, C.Y. Lin, V.K. Valev, E. Reisner, U. Steiner, J.J. Baumberg, Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting, Small 10 (2014) 3970–3978, https://doi.org/10.1002/smll.201400970.
 [46] F.D. Hardcastle, I.E. Wachs, H. Eckert, D.A. Jefferson, Vanadium (V)
- [46] F.D. Hardcastle, I.E. Wachs, H. Eckert, D.A. Jefferson, Vanadium (V) environments in bismuth vanadates: a structural investigation using Raman spectroscopy and solid state 51V NMR, J. Solid State Chem. 90 (1991) 194–210, https://doi.org/10.1016/0022-4596(91)90135-5.
- [47] D.K. Ma, M.L. Guan, S.S. Liu, Y.Q. Zhang, C.W. Zhang, Y.X. He, S.M. Huang, Controlled synthesis of olive-shaped Bi 2 S 3/BiVO 4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity, Dalton Trans. 41 (2012) 5581–5586, https://doi.org/ 10.1039/C2DT30099K.
- [48] M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation, J. Phys. Chem. B 110 (2006) 20211–20216, https://doi.org/ 10.1021/jp063441z.
- [49] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energ. Environ. Sci. 4 (2011) 4046–4051, https://doi.org/10.1039/C1EE01812D.
- [50] J. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater. 16 (2006) 2163– 2169, https://doi.org/10.1002/adfm.200500799.
- [51] X. Gao, G. Huang, H. Gao, C. Pan, H. Wang, J. Yan, J. Gao, Facile fabrication of Bi2S3/SnS2 heterojunction photocatalysts with efficient photocatalytic activity under visible light, J. Alloy. Compd. 674 (2016) 98–108, https://doi. org/10.1016/j.jallcom.2016.03.031.
- [52] W. Wang, X. Wang, C. Zhou, B. Du, J. Cai, G. Feng, R. Zhang, Bi2S3-nanowiresensitized BiVO4 sheets for enhanced visible-light photoelectrochemical activities, J. Phys. Chem. C 121 (2017) 19104–19111, https://doi.org/ 10.1021/acs.jpcc.7b06838.

- [53] D. Zhao, W. Wang, W. Zong, S. Xiong, Q. Zhang, F. Ji, X. Xu, Synthesis of Bi2S3/ BiVO4 heterojunction with a one-step hydrothermal method based on pH control and the evaluation of visible-light photocatalytic performance, Materials 10 (2017) 891, https://doi.org/10.3390/ma10080891.
- [54] Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev. 42 (2013) 2321–2337, https:// doi.org/10.1039/C2CS35260E.
- [55] K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, L. Sun, Nickelvanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7 (2016) 1–9, https://doi.org/10.1038/ncomms11981.
- [56] C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, C. Cheng, 3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance, Adv. Mater. Interfaces 2 (2015) 1500428, https://doi.org/ 10.1002/admi.201500428.
- [57] S. Kumar, S. Ahirwar, A.K. Satpati, Insight into the PEC and interfacial charge transfer kinetics at the Mo doped BiVO4 photoanodes, RSC Adv. 9 (2019) 41368–41382, https://doi.org/10.1039/C9RA08743E.
- [58] X. Xiong, L. Fan, G. Chen, Y. Wang, C. Wu, D. Chen, S. Ren, Boosting water oxidation performance of CuWO4 photoanode by surface modification of nickel phosphate, Electrochim. Acta 328 (2019), https://doi.org/10.1016/ j.electacta.2019.135125.
- [59] N. Li, X. Wu, M. Wang, K. Huang, J. He, W. Ma, S. Feng, Facile preparation of BiVO4/FeVO4 heterostructure for efficient water-splitting applications, Int. J. Hydrogen Energy 44 (2019) 23046–23053, https://doi.org/10.1016/j. ijhydene.2019.07.063.
- [60] G. Fang, G., Liu, Z., Han, C., Wang, P., Ma, X., Lv, H., & Tong, Z., Promising CoFe-NiOOH Ternary Polymetallic Cocatalyst for BiVO4-Based Photoanodes in Photoelectrochemical Water Splitting, ACS Applied Energy Materials 4 (2021) 3842–3850, https://doi.org/10.1021/acsaem.1c00247.
- [61] X. Han, Y. Wei, J. Su, Y. Zhao, Low-cost oriented hierarchical growth of BiVO4/ rGO/NiFe nanoarrays photoanode for photoelectrochemical water splitting, ACS Sustain. Chem. Eng. 6 (2018) 14695–14703, https://doi.org/10.1021/ acssuschemeng.8b03259.
- [62] Y. Zhu, J. Ren, X. Yang, G. Chang, Y. Bu, G. Wei, D. Yang, Interface engineering of 3D BiVO 4/Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation, J. Mater. Chem. A 5 (2017) 9952–9959, https://doi.org/10.1039/C7TA02179H.
- [63] Y. Wei, J. Su, X. Wan, L. Guo, L. Vayssieres, Spontaneous photoelectric fieldenhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting, Nano Res. 9 (2016) 1561–1569, https://doi.org/10.1007/s12274-016-1050-9.
- [64] F.S. Hegner, I. Herraiz-Cardona, D. Cardenas-Morcoso, N. López, J.R. Galán-Mascarós, S. Gimenez, Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting, ACS Appl. Mater. Interfaces 9 (2017) 37671–37681, https://doi.org/10.1021/acsami.7b09449.
- [65] M.A. Mahadik, H.S. Chung, S.Y. Lee, M. Cho, J.S. Jang, In-situ noble fabrication of Bi2S3/BiVO4 hybrid nanostructure through a photoelectrochemical transformation process for solar hydrogen production, ACS Sustain. Chem. Eng. 6 (2018) 12489–12501, https://doi.org/10.1021/acssuschemeng.8b03140.
- [66] M. Wang, Q. Wang, P. Guo, Z. & Jiao, In situ fabrication of nanoporous BiVO4/ Bi2S3 nanosheets for enhanced photoelectrochemical water splitting, J. Colloid Interface Sci. 534 (2019) 338–342, https://doi.org/10.1016/j.jcjis.2018.09.056.1.
- [67] M. Huang, J. Bian, W. Xiong, C. Huang, R. Zhang, Low-dimensional Mo: BiVO 4 photoanodes for enhanced photoelectrochemical activity, J. Mater. Chem. A 6 (2018) 3602–3609, https://doi.org/10.1039/C7TA11132K.
- [68] R.T. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Towards Long-Term Photostability of Nickel Hydroxide/BiVO4 Photoanodes for Oxygen Evolution Catalysts via In Situ Catalyst Tuning, Angew. Chem. 132 (2020) 6272–6277, https://doi.org/10.1002/ange.201915671.
- [69] R.T. Gao, L. Wang, Stable Cocatalyst-Free BiVO4 Photoanodes with Passivated Surface States for Photocorrosion Inhibition, Angew. Chem. Int. Ed. 59 (2020) 23094–23099, https://doi.org/10.1002/anie.202010908.
- [70] L. Chen, D. Meng, X. Wu, A. Wang, J. Wang, Y. Wang, M. Yu, In situ synthesis of V4+and Ce3+self-doped BiVO4/CeO2 heterostructured nanocomposites with high surface areas and enhanced visible-light photocatalytic activity, J. Phys. Chem. C 120 (2016) 18548–18559, https://doi.org/10.1021/acs.jpcc.6b04131.
- [71] L. Chen, S.F. Yin, S.L. Luo, R. Huang, Q. Zhang, T. Hong, P.C.T. Au, Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dyecontaining wastewater, Ind. Eng. Chem. Res. 51 (2012) 6760–6768, https://doi.org/10.1021/ie300567y.
- [72] L. Zou, H. Wang, X. Wang, High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-scheme process, ACS. Sustain, Chem. Eng. 5 (2017) 303–309, https://doi.org/10.1021/ acssuschemeng.6b01628.
- [73] J. Wang, J. Jin, X. Wang, S. Yang, Y. Zhao, Y. Wu, J. Sun, Facile fabrication of novel BiVO4/Bi2S3/MoS2 np heterojunction with enhanced photocatalytic activities towards pollutant degradation under natural sunlight, J. Colloid Interface Sci. 505 (2017) 805–815, https://doi.org/10.1016/j.jcis.2017.06.085.
- [74] X. Gao, Z. Wang, F. Fu, X. Li, W. Li, 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities, Phys. B 474 (2015) 81–89, https://doi.org/10.1016/j.physb.2015.06.002.