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ABSTRACT: Perovskite solar cells and fluorescent collectors formed by a dispersion of
quantum dots in a transparent solid are paradigmatic devices for photon capture and utilization
that involve the coupling of photon displacement, absorption and regeneration. In order to
obtain information about the coupled photonic processes in systems involving photon recycling,
we analyze the transfer function for modulated outgoing to incoming photon flux. We show the
physical features of light-to-light impedance that reveals a trap-limited diffusion of photons
coupled with the nonradiative recombination. The spectral shapes allow one to distinguish
readily photonic recombination and diffusion kinetic phenomena and consequently to
determine the physical parameters that control the system’s quantum yield for photo-
luminescence.

Frequency domain methods are central tools for the
characterization of semiconductor materials and solar

cells. The most widely used technique is the electrical
impedance spectroscopy, where a modulated current output
is measured with respect to voltage input.1 This method has the
unique ability to separate conduction and polarization
processes that oscillate at separated characteristic frequencies
and provides a wealth of information about materials and
device operation. For optically active materials and devices,
especially in nanostructured solar cells, light-to-electrical
modulated techniques have been used for many years.2−4

Recently a generalization has been presented that unifies the
calculation of any modulated transfer function on the basis of
the three main experimental axes: voltage, electrical current,
and illumination flux incident on the device.5

In the previous report, however, we have not covered the
modulation of outgoing to incoming light, which appears an
excellent tool for the exploration of luminescent and
fluorescent materials. In fact, light-to-light modulated techni-
ques are important and straightforward methods for the
determination of decay lifetimes in molecules6 and recombina-
tion lifetimes in semiconductors.7 However, it has been widely
recognized that the unrivalled power of modulated techniques
appears in systems where several local and spatially distributed
phenomena become entangled, as in diffusion coupled with
trapping and recombination.8,9

Here we describe the application of light-modulated emission
spectroscopy (LIMES) to a new class of photonic systems with
strong internal coupling of matter and radiation. For example in
fluorescent collectors composed of organic dyes or inorganic
quantum dots embedded in a transparent framework, a large
photon density is created by absorption and reemission that is
finally expelled at one side of the slab.10,11 When the electronic
quality of solar cells becomes proficient, as in GaAs solar cells
and more recently in lead halide perovskite solar cells, the

optical properties of the device take a leading role for obtaining
high energy conversion efficiency. Internal photon absorption
and reemission are coupled with the mobile concentrations of
electrons and holes that form the recombination centers, in the
phenomena termed photon recycling that exerts a significant
impact on solar cell efficiency.12−14

Here we formulate an untrivial model of the frequency
modulated luminescence, considering fixed absorption-recom-
bination centers as in a fluorescent collector, although the
extension with the coupling to mobile carriers13 is straightfor-
ward. We analyze the response of an absorbing layer of
thickness d, intrinsic absorption coefficient α, and refractive
index nr to an external modulated monochromatic illumination.
Absorption of the photons in the absorbing layer mainly occurs
via the fluorescent centers, for example dye molecules or
quantum dots, that are homogeneously dispersed in the layer.
Therefore, we introduce another absorption coefficient α′ that
is related to the number density of the absorbing centers and
their absorption cross section, so that α′ ≫ α.
As schematically shown in Figure 1, a photon with a

frequency ν0, after being absorbed by an absorber, is either re-
emitted isotropically or lost nonradiatively, with the rates ϵ and
κ, respectively. Therefore, at any time t, we can distinguish
between two types of photons in the layer, the photons that
freely travel in the system, and those that are trapped by the
fluorescent centers. Note that the radiative processes may result
in another population of the photons, with frequency ν < ν0, in
the system, due to Stoke’s shift. But in the following we
consider only the population of the original photons, that is,
those that are injected into the system by an external source,
which can be absorbed and reemitted in internal recycling. In
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fact, κ is treated as a cumulative rate constant that accounts for
all mechanisms that lead to irreversible loss of the original
photon. We also define lifetime of the photon (the average time
between two successive absorption events) as the inverse of the
absorption rate constant β = cα′, where c is the speed of light in
the medium. Using these definitions, the continuity equations
for the trapped and free photons read
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where γf(t) is the number density of the free (trapped) photons
per energy interval, and j = −D∂γf/∂x is the photon flux in the
layer with D = c/α being the photon diffusion coefficient. The
term in the parentheses in eq 2 is in fact the net rate of the free
photon generation in a macroscopic volume element. To
establish a connection between the absorption and emission
rate constants, that is β and ϵ, let us neglect the nonradiative
loss term in eq 1 and consider the equilibrium conditions in the
absence of the incoming external illumination. In these
conditions, eq 1 implies that βγ0

f = ϵγ0
t , where the subscript

indicates the zero illumination. On the other hand, since the
equilibrium population of the photons at temperature T is
determined by the corresponding blackbody spectrum, one can
write γ0

f = γbb(T). Therefore, we get
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We note that γ0
t is itself proportional to the density of states of

the fluorescent material. eq 3 is an important relation because it
can be used to find an estimation for the typical values of the
emission rate constant in terms of the intrinsic properties of the
absorbing centers and the equilibrium radiation field.
To complete the continuity equations, we consider the

simple 1D model depicted in Figure 1 and adopt the following
boundary conditions
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The first boundary condition describes injection of photons by
an external illumination into the layer. The second equation
describes a partially reflecting boundary condition, where we
have introduced a velocity S that controls the strength of the
emissivity of the layer at x = d.
Under steady state external illumination, all quantities jin, jout,

γf, and γt are time-independent. But let us consider the effect of
a small sinusoidal perturbation of the external illumination,
jîn(ω), superimposed to the steady state (note that ω is used for
the angular frequency of the modulation). As a consequence of
this small perturbation, a change in the photon population as
γ(̂ω) occurs in the layer that, in turn, results in a modulated
change in the outgoing flux, jôut(ω). For the small perturbation
variables, we use the Laplace transform of linearized eqs 1 and 2
that can be done by the substitution ∂/∂t → iω, where i =

−1 . The result is
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which now have to be solved with the transformed boundary
conditions
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By solving eq 6 for γ ̂t and substituting it in eq 7, we obtain the
following equation for the free photon population
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Now, in analogy with the concepts in the traditional impedance
spectroscopy, we define a light-to-light transfer function as
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which is, in fact, a modulated quantum yield. M(ω) can
straightforwardly be obtained by solving the small perturbation
equations with the corresponding boundary conditions. By
doing this, we get
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The transfer function can be written as M(ω) = M′(ω) −
iM″(ω), where M′ and M″ are the real and imaginary parts of
the transfer function, respectively.
As mentioned above, we neglect in this model the downshift

of frequencies, which is usually a good approximation for
fluorescent collectors. However, the detailed spectral properties
of the absorption and reemission could be evaluated by well-
known methods.10,15,16 The modulated response could be
established for arbitrary incoming and outgoing wavelength,

Figure 1. Schematic illustration showing a layer with thickness d
homogeneously doped with fluorescent absorbing centers (filled
circles in the layer). At x = 0, the layer is illuminated with an external
source, leading to a flux of photons into the layer at x = 0 and an
outgoing flux at x = d. jîn(ω) is a small sinusoidal perturbation of the
external illumination superimposed to the steady state (not shown)
and jôut(ω) is the corresponding outgoing photon flux. κ and ϵ are the
rate constant of nonradiative and radiative decay, respectively. Filled
circle in the bottom shows electron of an excited absorbing center
going back to its ground state.
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leading generalized light-impedance functions. Although this
topic is outside the scope of the present work, we have shown
in the SI that the downshift of frequencies does not change the
transfer function obtained in eq 13.
Let us before presenting our results for the transfer function

over a broad modulation frequency range, consider the static
regime, that is, ω → 0, where the transfer function is the
derivative of the external quantum efficiency for photo-
luminescence, M(0) = djout/djin.

5 To obtain some insights
into the interpretation of M(0), we examine two limiting cases
of ϵ ≫ κ and ϵ ≪ κ, equivalent to → ∞ and αα→ ′1/ ,
respectively. These are in fact high and low fluorescence
quantum yield regimes. It is found that
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By choosing α = α′, one can see that the first case is in fact the
well-known Beer−Lambert law (note that for the derivation, we
furthermore assumed a very good emissivity as S = c; see also
below). In this case, each absorbed photon is lost by a
nonradiative decay process. It is interesting that our model
which is based on a random walk picture of the photon
transport can show how and when the Beer−Lambert law is
satisfied. On the other hand, if ϵ ≫ κ, as we expect, the transfer
function is unity because there are no losses in the system and
every injected photon into the layer is finally extracted from it.
This response is different from the traditional Beer−Lambert
law and is closely related to the photon recycling concept.
In order to study the frequency dependence of the transfer

function M(ω), we introduce two characteristic frequencies as
below

ω β=β (15)

ω
αα

= ϵ
′′ dD 2 (16)

We note that ωD′ is the characteristic frequency of diffusion in a
finite layer of thickness d with an effective diffusion coefficient
of D′ = Dϵ/β. Although the diffusion coefficient of the free
photons is given by D = c/α, it is reduced by a factor of ϵ/β as a
result of the trapping events (absorption of photons by the
fluorescent centers). Therefore, for the diffusion time we can
write tD′ = d2/D′ which gives the characteristic frequency of eq
16. In the following we interpret our results based on the
characteristic frequencies ωβ and ωD′. We assume c ≈ 3 × 108

m/s, α/α′ = 0.05, α′ = 106 m−1, and S = c in all our calculations
(note that these choices result in ωβ = β = 3 × 1014 Hz). The
calculations are then discussed based on the three independent
variables in the problem, that is, d, ϵ/β, and κ/ϵ.
Figure 2 shows the real and imaginary parts of transfer

function M(ω), for κ/ϵ = 0 (zero nonradiative loss), dα′ = 5,
and ϵ/β = 10−2, 10−4, and 10−6. These ratios have been
estimated based on eq 3, using the values for the density of
states of the typical semiconductors. The characteristic
frequencies introduced in eqs 15 and 16 are also indicated in
the figure. Three regions can be distinguished in each subfigure.
At the low frequency or static region, that is, ω ≪ ωD′, the
system can completely follow the perturbation, and as predicted
in eq 14, one hasM =M′ ≈ 1. In contrast, at the high frequency
region, ω ≫ ωβ, the system cannot follow the ac perturbation

and therefore the response vanishes. There is also an
intermediate region ωD′ < ω < ωβ, where the system can
partially respond to the perturbation. The most important
feature in Figure 2 is that the plot can resolve the two
characteristic frequencies of the problem. We return to this
issue in Figure 4, where we discuss complex plane plot of the
transfer function.
Figure 3 shows the transfer function for four different

thickness d, and ϵ/β = 10−4. Characteristic frequency ωD′ is also
indicated in each case. As can be seen, except for the case dα′ ∼
1 in which both ωD′ and ωβ are completely resolved (as in
Figure 2), in the other cases, the transfer function shows a
nonvanishing feature only near ωD′. This is because by
increasing the thickness the time scale of the diffusion also
increases and therefore very fast processes like absorption of
the photons cannot be seen. For the same reason, as expected,
by increasing the thickness, ωD′ shifts to the lower frequencies.
The result of Figure 3 clearly shows that this is D′ and not D
that describes the photon diffusion process.
Now, we consider the effect of the nonradiative loss on the

small perturbation response function. Figure 4 shows the
results for dα′ = 2 and ϵ/β = 10−4, but with different
nonradiative rates as κ/ϵ = 0, 10−1, 1, and 102 (≡∞). For each
case, we also show the complex plane plot of the transfer
function [M″(ω) vs M′(ω)]. In the case κ/ϵ = 0, Figure 4a,
since the thickness of the layer is not large (in comparison with
1/α′), both characteristic frequencies are resolved, and
correspondingly, we have two distinct arcs in the complex
plane plot. Note that in this case, M(0) = 1, see eq 14.
However, by increasing κ, as shown in the right panel, the low-
frequency part of the transfer function decays so finally in the

case κ ≫ ϵ it approaches to ∝ αα− ′M e(0) d . This is, in fact,
the Beer−Lambert limit, as shown in eq 14. Correspondingly,
the low-frequency arc in the complex plane disappears when κ
≫ ϵ. On the other hand, the high-frequency arc is independent

Figure 2. Real (M′) and imaginary part (M″) of the transfer function
M as a function of the normalized modulation frequency for κ/ϵ = 0
and dα′ = 5, and different emission rate constants as ϵ/β = 10−2 (a),
10−4 (b), and 10−6 (c). Two characteristic frequencies of ωβ (high
frequency feature) and ωD′ (low frequency feature), introduced in eqs
15 and 16, are shown for each case.
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of the strength of the nonradiative loss, because it is only
related to the absorption process. Another important feature in
Figure 4 is that in the intermediate frequency range ωD′ < ω <
ωβ, the system responds as obeying the Beer−Lambert law,
independent of the ratio κ/ϵ. In this regime, change in the

incoming flux is fast enough to blur the fluorescence properties
of the system.
In summary, we have introduced a new class of light-to-light

transfer function, for the technique of light-modulated emission
spectroscopy (LIMES) which can provide important informa-
tion about the absorption/emission properties of an absorbing
material. We showed how using the small perturbation
frequency domain technique resolves time constants of the
optical phenomena in an absorbing layer. Based on the trap-
limited diffusion concept, we have provided a simple and
intuitive picture for the photon transport in an absorbing layer.
The photon absorption, photon annihilation/emission, and
photon recycling have been explicitly included in our model.
Importantly, by considering the probability of fluorescence
emission, we found a general expression for the normalized
intensity of a photon flux passing through an absorbing layer,
which goes beyond the traditional Beer−Lambert law. This
finding has important consequences on the interpretation of
the experimental results usually used to find the absorption
properties of the absorbing materials.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpclett.7b01563.

Transfer function for the photons generated due to
Stoke’s shift (PDF).

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: ansari.rad@shahroodut.ac.ir.
*E-mail: bisquert@uji.es.
ORCID
Mehdi Ansari-Rad: 0000-0003-3971-2251
Juan Bisquert: 0000-0003-4987-4887
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge funding from MINECO of Spain under
Project MAT2016-76892-C3-1-R and Generalitat Valenciana
Project PROMETEOII/2014/020.

■ REFERENCES
(1) Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Sero,́ I.;
Bisquert, J. Characterization of nanostructured hybrid and organic
solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 2011,
13, 9083−9118.
(2) de Jongh, P. E.; Vanmaekelbergh, D. Trap-limited electronic
transport in assemblies of nanometer-size TiO2 Particles. Phys. Rev.
Lett. 1996, 77, 3427−3430.
(3) Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Graẗzel, M.; Frank, A.
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