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ABSTRACT: Understanding the operation of neurons and synapses is
essential to reproducing biological computation. Building artificial neuro-
morphic networks opens the door to a new generation of faster and low-
energy-consuming electronic circuits for computation. The main candidates to
imitate the natural biocomputation processes, such as the generation of action
potentials and spiking, are memristors. Generally, the study of the performance
of material neuromorphic elements is done by the analysis of time transient
signals. Here, we present an analysis of neural systems in the frequency domain
by small-amplitude ac impedance spectroscopy. We start from the constitutive
equations for the conductance and memory effect, and we derive and classify
the impedance spectroscopy spectra. We first provide a general analysis of a
memristor and demonstrate that this element can be expressed as a
combination of simple parts. In particular, we derive a basic equivalent circuit
where the memory effect is represented by an RL branch. We show that this ac
model is quite general and describes the inductive/negative capacitance response in many systems such as halide perovskites and
organic LEDs. Thereafter, we derive the impedance response of the integrate-and-fire exponential adaptative neuron model that
introduces a negative differential resistance and a richer set of spectra. On the basis of these insights, we provide an interpretation of
the varied spectra that appear in the more general Hodgkin−Huxley neuron model. Our work provides important criteria to
determine the properties that must be found in material realizations of neuronal elements. This approach has the great advantage
that the analysis of highly complex phenomena can be based purely on the shape of experimental impedance spectra, avoiding the
need for specific modeling of rather involved material processes that produce the required response.

1. INTRODUCTION

Biological intelligence colocalizes memory and computing,
enabling the brain to carry out robust and efficient parallel
computation with extremely low power consumption. Neuro-
morphic networks consist of large arrays of nanoscale inorganic
and hybrid material components. They can reach high levels of
integration density to provide compact low-power electronic
circuits for autonomous intelligence adapted to buildings,
vehicles, and equipment.1−6 These bioinspired artificial
computation networks open the opportunity to overcome
the Von-Neumann bottleneck related to the time and energy
spent transporting data between memory and processor.7

Neurons and synapses are the main elements of biological
computation. Neurons operate by gating mechanisms con-
trolled by voltage-gated ion channels that modify the
membrane potentials. Voltage-gated sodium channels are
proteins which transfer sodium ions across the membrane
depending on the electrochemical potential gradient controlled
by the transmembrane difference in ion concentration.

Opening of the sodium channel results in an increased
electrochemical potential inside the membrane and leads to
depolarization. When the potential exceeds a positive threshold
value, there is a positive feedback of Na+ influx that provokes a
large depolarization burst termed the action potential. At the
same time, voltage-gated potassium channels become activated
and produce an outward flux of K+ that leads to the
repolarization completing a negative feedback loop. Neurons
realize communication with these electrical signals by receiving
trains of voltage spikes at synapses, integrating these inputs,
and firing spikes consisting of repetitive action potentials in
turn. The synapses are able to change the strength of
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connectivity, which regulates biological learning, memory, and
analog computation. The synchronicity of spike trains
produces either a potentiation or depression of synaptic
weights, in the spike-timing-dependent plasticity which occurs
as a short-time plasticity or long-time plasticity mechanism,
according to the duration of the change. Additional
mechanisms of learning are the Hebbian correlational learning,
reinforcement, habituations, and others.
Understanding the mechanisms of the generation of action

potentials, spiking, and the adjustment of the weights of
connections in time-dependent plasticity and learning
mechanisms are the basic building blocks to realize the
neuromorphic computation. For the construction of spiking
neural networks that mimic the neuronal style of computation,
it is necessary to build basic material components and circuits
that emulate the underlying biophysical switching mechanisms
of neurons and synapses and reproduce their detailed real-time
dynamics.2,8−10 The temporal response of the electrical signal
in terms of the biological structure has been well described by
a variety of models, from the integrate-and-fire model to the
Hodgkin−Huxley model.11−13 These models provide a
fundamental target reference to reproduce the time dynamics
with material components. There have been intensive efforts to
build an electronic device with properties similar to the
Hodgkin−Huxley axon, denominated neuristor.14

To obtain a fundamental understanding of the dynamic
response of neurons and synapses, here we propose that
important insight can be gained by analyzing the candidate
material elements in the frequency domain, as outlined in
Figure 1.
In the next section, we explain important basic aspects of the

technique of impedance spectroscopy (IS) and lay out the
general tasks of the method proposed. Thereafter, we will
follow a ladder of increasing complexity, starting with the
analysis of elementary memristors and then addressing the IS
response of the models for neurons, first for the two variable
adaptative integrate-and-fire models and then for the four-
dimensional Hodgkin−Huxley model that describes the

operation of neuron spiking by the concerted actions of the
sodium and potassium ion channels.

2. IMPEDANCE SPECTROSCOPY
2.1. Introduction to Impedance Spectroscopy. The

technique of small-amplitude IS is widely used in electro-
chemistry and materials science to determine the electrical
response of a system.15,16 It is an important tool for the
characterization of emergent solar cells16,17 and perovskite
solar cells.18−20 It is also used for many applications in
biophysics21,22 such as research in cells,23 antimicrobials,24

medicine and healthcare,25,26 and biosensorics.27 The
impedance of the intrinsic neuronal response determines the
cooperation in a network.28

The impedance is measured by a small perturbation over a
steady state at angular frequency ω, and it can be presented in
terms of the real and imaginary parts

Z Z Z( ) ( ) i ( )ω ω ω= ′ + ″ (1)

The complex capacitance C(ω) is defined from the impedance
as

C
Z

( )
1

i ( )
ω

ω ω
=

(2)

It can be separated into real and imaginary parts as

C C C( ) ( ) i ( )ω ω ω= ′ − ″ (3)

When we study the impedance response of any system, we
aim to find the equivalent circuit (EC) that best describes the
impedance spectra generated by the system to extract all of the
information provided by the spectra. Therefore, determining
which is the EC of the system we are studying is key to having
a satisfactory analysis and a proper interpretation of the
measurements. IS gives insight about physical properties and
mechanisms: given the type of spectra and EC model, one can
learn about the system that generated it.
The impedance measured in a system is not constant, and

the spectra evolve as we change the applied voltage. This is not

Figure 1. Scheme for the IS analysis of artificial synaptic/neuronal devices (right) with respect to the response of the natural synapsis or neuron
(left).
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a problem since a single EC with variable elements is able to
reproduce a wide variety of spectra, as we will see in Section
2.2. These variable elements hold valuable information about
the operation of the systems; therefore, knowing which is the
dependence of the elements with voltage is key to uncovering
internal mechanisms.
To clarify this method, we show an example of measured

impedance spectra in a perovskite solar cell at different applied
voltages from previous work in Figure 2a.29 This set of spectra

are fitted with the EC shown in Figure 2c. It is observed that
the elements of the circuit are not constant; in fact, they vary
with the applied voltage. Figure 2b shows the exponential
variation of both resistances and the inductor with voltage,
which is a common behavior in solar cell devices.
When a satisfactory EC model has been found, one has to

take into account that there are several alternative arrange-
ments that describe the same model.30 The selection of the EC
needs to be done on the basis of the physical interpretation of
the elements and the experimentation of a variety of samples
with different morphologies and material combinations.
2.2. IS Model with Capacitor and Inductor. We show

the complete analysis of an EC containing a capacitor and an
inductor. It will be shown later that this model is representative
of a simple memristor and is of interest for the subsequent
analysis of neuron models. In this section, we will see the shape
of the spectra depending on the values of the elements of the
circuit. Later, we will carry out a further analysis considering
the parameters of the kinetic models that govern the elements
of the circuit.
The circuit that we are going to use is represented in Figure

3. The impedance generated by this circuit is

Z R C s R L s( ) ( )mb
1

a a
1 1ω = [ + + + ]− − −

(4)

Here s = iω. The circuit is able to generate a wide variety of
spectra, depending on the relation between the elements of the
circuit.
The dc resistance of the circuit, which is a key parameter in

the shape of the spectra, can be calculated as

i
k
jjjjj

y
{
zzzzzR

R R
1 1

dc
a b

1

= +
−

(5)

First, we consider the case where both resistances in the EC
are positive. Therefore, Rdc will be positive. In this case, we
have two possibilities depending on whether the spectra cross
the real axis. These spectra are shown in Figure 4, indicating
the relation between some of the elements and the time
constant τk, characteristic of the RL branch and defined as

L
Rk

a

a
τ =

(6)

When τk is greater than the product RaCm, we get a spectrum
of the type in Figure 4a, i.e., an arc in the first quadrant that
loops into the fourth quadrant. Otherwise, we obtain the
spectrum in Figure 4b, an arc in the first quadrant that can
loop or not but never goes into the fourth quadrant.
We now look at the conditions for having a positive dc

resistance but a spectrum that crosses the imaginary axis. This
means that there will be a region where the real part of the
impedance is negative, although the total resistance of the
circuit Rdc is positive. The condition for the impedance to cross
the imaginary axis is

R Ra b− > (7)

Figure 2. (a) Impedance complex plane plot of a perovskite solar cell
at different applied voltages fitted with the same EC. (b) Extracted
resistances from (c) the fitting showing an exponential dependence.
Adapted from ref 29.

Figure 3. Equivalent circuit with an inductor and a capacitor,
representative of a memristor.

Figure 4. Complex plane impedance spectra for EC in Figure 3. (a) Ra
= 2, Rb = 10, Cm = 10, and La = 200. (b) Ra = 10, Rb = 10, Cm = 10,
and La = 1000. The arrow indicates the direction of increasing
frequency.
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This means that one or both resistances must be negative.
However, to maintain the condition that the dc resistance is
positive, we need one of the resistances to be positive. This
kind of spectrum has a part of the real impedance on the real
negative side, although the impedance at zero frequency is
positive. This is defined by Koper as the “hidden negative
impedance”,31−33 and it is a condition for the generation of
spiking signals. Therefore, we show three examples of this kind
of spectrum in Figure 5 since the observation of a spectrum of
this kind is key to building artificial neuron devices.
Finally, we show two examples of spectra with negative Rdc,

which means that the impedance at zero frequency will be
negative. As we can see in Figure 6, this can be achieved with
only one of the resistances being negative. As in Figure 4, when
τk > RaCm (Figure 6a), the real axis is crossed; otherwise
(Figure 6b), it is not.

As we have seen in the different figures, the spectral features
generated by the circuit in Figure 3 are diverse. The model
takes into account different possible shapes according to the
impedance parameters. The classification of patterns depend-
ing on physical parameters will be made in Section 3, where we
attach specific meaning to the EC elements based on a physical
model. A full interpretation of the EC and model parameters is
presented in the Supporting Information.
2.3. Impedance Spectroscopy as a Tool to Emulate

Natural Neural Elements. The principal feature of the
technique of IS is that the frequency is scanned over many

decades and the consequent spectral response of the
impedance provides specific information about the dominant
resistive-capacitive processes in the sample. Traditionally, IS
gives insight about physical properties: given a type of spectra
and EC model, what can we learn from the system that
generated it?
In this article, we aim to establish the dominant IS

characteristics of biological neural elements for computation,
learning, and artificial intelligence. The identification of
impedance behavior provides a benchmark for the construction
of material devices with the dynamic properties akin to natural
neurons. In particular, here we find inspiration in the theory of
electrochemical oscillations based on impedance criteria that
have been developed by Koper using the methods of electrical
control engineering.31,34 It is remarkable that from the shape of
the experimental impedance spectra one may analyze
extremely complex phenomena without the need for the
specific modeling of highly involved material processes that
produce the physical response of interest.
On the basis of the operational understanding at the EC

level, we can ensure that an artificial system delivers the same
operation as the natural system to copy. Then, for the
construction of a device that can perform as an artificial neuron
we need a system that reproduces the frequency domain
behavior of the target application. We can measure the
impedance of the device and identify the possible similarities
with the impedance response of the natural system, finding
responses with similar ECs. We can adjust the different internal
kinetic elements until we obtain the specific desired outcome.
At the single-device level, we can obtain deep insight about

the required responses. At present, extensive data on the IS of
neurons is not available, but the desired frequency domain
response can be obtained by the analysis of the models that
reproduce the natural neuron response in the time domain,
such as the adaptative integrate-and-fire, the FitzHugh−
Nagumo model and the Hodgkin−Huxley model.
A scheme of the method that is to be followed for the

analysis of artificial synaptic devices is shown in Figure 1. Here,
on the left we have represented the natural presynaptic
neurons and a synapse with the spiking postsynaptic responses.
Below, we represent the catalogue of spectra produced by the
EC generated by the Hodgkin−Huxley model as well as the
values of the variable resistances of the model. Knowing the
possible shapes of the spectra, we need to measure impedances

Figure 5. Complex plane impedance spectra for EC in Figure 3, where the dc resistance is Rdc > 0 and the condition for hidden negative impedance
is satisfied. (a) Ra = 0.8, Rb = −9, Rdc = 7.2, Cm = 10, and La = 80. (b) Ra = 0.2, Rb = −5, Rdc = 0.2083, Cm = 10, and La = 20. (c) Ra = 0.5, Rb = −1.3,
Rdc = 0.81, Cm = 100, and La = 50. The arrow indicates the direction of increasing frequency.

Figure 6. Complex plane impedance spectra for EC in Figure 3, with
Rdc < 0. (a) Ra = 2, Rb = −1, Rdc = −2, Cm = 10, La = 200. (b) Ra = 2,
Rb = −1, Rdc = −2, Cm = 100, La = 20. The arrow indicates the
direction of increasing frequency.
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in our intended neural devices and just identify the shapes
found in the natural systems. Furthermore, we need to find an
EC similar to that of the natural system and get similar
dependences.
In the case of electrochemical oscillations and similar

systems, the impedance response is associated with negative
differential resistance (NDR) elements and also negative
capacitance and inductive features. The pioneering work of
Chua and co-workers35,36 showed that the spiking of neurons
operates in unstable regions according to the bifurcation
theory that can be visualized by the stability criteria of
impedance and admittance (“the edge of chaos”). A better
comprehension of the dynamic role of these unfamiliar
negative elements may form an important tool for the rapid
diagnosis and assessment of the properties of material systems
that are candidates for artificial neurons. Our method relies on
a classification of ECs associated with neuron models.
In artificial spiking neural networks, the analog signals

collected from the environment need to be converted to
spiking signals with dynamic oscillation frequencies.8 In
synapses, the input frequency of the signal modulates the
conductivity.37 In neurons, the spike frequency increases with
increased stimulus strength.9 The connection between the
output spiking frequency and the internal characteristic
frequencies in the EC of the neuron must hold a deep
connection. The dynamic spiking behavior under various input
signals, such as rectangular, triangular, and sinusoidal pulses,
needs to be investigated on the basis of EC properties. One
expects to find universality close to a critical point of the
dynamic system, but not close to a fixed point. This topic is left
for future investigations.

3. MEMRISTORS

3.1. Fundamental Properties of Memristors. At the
present time, the main resource for building neuromorphic
networks is memristors.38−40 A memristive device is a two-
terminal structure that undergoes a voltage-controlled
conductance change.41 When the memristor is adapted as a
neuron, it has to integrate a pulse train and generate a voltage
spike when a certain voltage is exceeded. On the other hand,
for the use of a memristor as a synapse, it has to be
programmed at distinct nonvolatile resistive states to support
spike-timing-dependent plasticity.42−45

There are a wide variety of types of memristors suitable for
bioinspired computational networks including silicon oxides,46

silicon nitrides,47 and metal oxides.48,49 The hybrid and
organic electronic materials provide mechanical flexibility and
biocompatibility, enabling the formation of neuromorphic
systems that can be smoothly interfaced to biological interfaces
for the reception of stimuli.4,50,51 The metal halide perov-
skites52−57 are an emergent class of photovoltaic materials that
have the advantage of easy fabrication and the properties of a
mixed ionic−electronic conductor, with strong hysteresis
effects induced by the slow ion motions. This ionic adaptation
to an external stimulus opens a significant opportunity to
replicate the switching responses occurring in ionic channels of
biological neural units. In practice, however, emulating the
neurons, synapses, and their networks using ionic−electronic
elements is extraordinarily challenging due to the involved
structure and multifunctionality of the biological elements,
with highly complex responses that are usually studied in the
time domain.

3.2. Basic Kinetic Equations of a General Memristor.
The memristor is a resistive element where the resistance
depends on the history of one or more of the state variables of
the system. The state variables are those variables necessary to
determine the future behavior of a system when the present
state of the system and the inputs are known.58 In the context
of memristors, a state variable is associated with the device
material internal elements and its operation. The state variables
must not be influenced independently by external variables
such as a voltage or current applied to a third terminal.59

In terms of voltage u, current I, and the internal variable w,
the current−voltage characteristic is therefore determined by
two constitutive equations of the type41

I G w u u( , )= (8)

w
t

g w u
d
d

( , )kτ =
(9)

Here, τk is a time constant for the relaxation of state variable
w to an equilibrium dictated by the value of u. In the standard
definition of a memristor, the characteristic current−voltage
shape when excited by a bipolar periodic stimulus (that goes
from positive to negative voltage) is a pinched hysteresis loop
that occurs in the first and the third quadrants of the I−u
plane, passing through the origin since I = 0 at u = 0. Often in
the literature the denomination of an ideal memristor (in
which the state variable is the voltage flux) is applied only to
systems that have the only equilibrium point ẇ = 0 at the
origin at u = 0,59 as in eq 22. To investigate the IS
characteristics, here we take the more general denomination
associated with memristors, in which g(w, u) = 0 allows other
operation points along the current−voltage curve. In the
neuron models eq 8 contains terms that do not depend on u,
see eq 26.
When the system is left to a steady state (a stable point), we

obtain a curve I ̅ = G (u̅)u̅ according to the applied voltage,
where the overbar denotes the value at steady state. An
example is shown later in eq 29. Now we investigate the
dynamics at a specific point.
To calculate the impedance response of the general model,

in eqs 8 and 9 we expand the terms for a small perturbation at
steady state, indicating the small perturbation value by a tilde.
We also take the Laplace transform of eq 9, d/dt → s. We get a
set of linear equations that contain the local information about
the system:

I G uw G G u u( )w ũ = ̅ ̃ + ̅ + ̅ ̃ (10)

sw g w g uk w uτ ̃ = ̃ + ̃ (11)

The subscript denotes the partial derivative. Equations 10
and 11 are also used in bifurcation theory to find the stability
properties of the fixed points, as we comment on later in eq 35.
To obtain an EC representation of the dynamics of the

system, let us define the following electrical elements, two
resistances

R G G u( )ub
1= ̅ + ̅

−
(12)

R
g

G g u
w

w u
a = −

̅ (13)

and an inductor

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c03905
J. Phys. Chem. B XXXX, XXX, XXX−XXX

E

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c03905?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


L
G g u

k

w u
a

τ
=

̅ (14)

From eqs 13 and 14, we can see that τk in a memristor
matches with τk in eq 6 when gw = −1. We obtain the
impedance

Z
u
I

R R L s( ) ( )b
1

a a
1 1ω = ̃

̃ = [ + + ]− − −
(15)

The EC formed by a resistive branch and an RL branch is
indicated in Figure 7A.

Now we introduce another factor into the constitutive
equations. This is not included in the canonical definition of
the memristor; however, it is relevant to IS studies since in
many material systems the variation of voltage is influenced by
the charging of capacitors in addition to the conduction
currents.
We extend the previous model as follows

u
t

R I G w u u
d
d

( , )m Iτ = [ − ]
(16)

w
t

g w u
d
d

( , )kτ =
(17)

The charging capacitance is

C
Rm

m

I

τ
=

(18)

and the impedance becomes that of eq 4, that we repeat here
for convenience

Z R C s R L s( ) ( )mb
1

a a
1 1ω = [ + + + ]− − −

(19)

The charging feature adds the capacitive line to the EC, as
shown in Figure 7B.
We suggest the EC of Figure 7B to be the reference behavior

for memristor dynamics, which is of the same type as the one
in Figure 3. In the literature, we find that this circuit was first
described for a model of hydrogen oscillations on a platinum
electrode,31 which indicates that the model in eqs 16 and 17 is
quite general and has been expressed in electrochemistry. We
will see another version of this model corresponding perfectly
to an integrate-and-fire neuron in the next section. In fact, the
memristive model of eqs 16 and 17 belongs to the general class
of fast-slow systems, like the van der Pol oscillator or the
FitzHugh−Nagumo neuron model. One can guess that the EC
of Figure 3 is a general feature of these and other fast-slow
dynamical systems. If the charging is extremely fast (τm → 0),
then the model returns to eq 8 and the capacitor effect
vanishes.
Our analysis of the small ac perturbation shows that the

memristor can be represented by a combination of standard

circuit elements. In contrast to the original suggestion,38 the
memristor cannot be considered to be a fundamental circuit
element on equal footing with a resistor, capacitor, and
inductor, at least for the small ac impedance response. This
problem has been discussed before.60

It is important to emphasize the dynamic response
associated with the memory effect in this model, which can
be seen in Figure 4. In principle, the model indicates a single
regular relaxation with a resistance Rb. However, it is clear that
the dc resistance is smaller since the parallel branch Ra reduces
the final resistance. The memory effect associated with the w
equation in the memristor is indicated by the inductor. At high
frequency, the impedance of the inductor is very large and Ra
does not contribute to the response. However, when the
frequency is reduced, this branch becomes active and reduces
the overall resistance of the system by the loop in the fourth
quadrant. A full analysis of hysteresis in current−voltage curves
in this model has been presented recently.61

3.3. Lead Halide Perovskite Memristor and Other
Material Systems with Inductive Memristor Behavior.
An example of the characteristic action of a perovskite
memristor is shown in Figure 8. When the voltage is scanned

over a certain threshold, there is a transition to a lower
resistance state, while the initial high conductance resistance
can be recovered by a reverse scan.
The spectrum of Figure 4a traces an arc in the fourth

quadrant related to the action of the positive inductor element.
This feature is very characteristic of lead halide perovskite solar
cell impedance results and has been reported in many
publications.62,63 The impedance patterns for a metal halide
perovskite memristor around the transition state are shown in
Figure 8 (right).33 Before the onset of the high conduction
state, the impedance plot displays the two typical RC arcs of
the perovskite solar cells.64 Near the threshold voltage, the
memristive behavior dominates the impedance and the former
low frequency arc is transformed to the arc in the fourth
quadrant by the action of the inductive element, which is
associated with the effect of vacancies arriving on the electrode
surface.54

It is interesting that the inductor features shown in Figures 4
and 8 are not related to any magnetic properties. The behavior
of Figure 4a appears in a general type of internal relaxation
model, in which the externally measured variable is coupled to
a state variable, which relaxes to a pseudoequilibrium state

Figure 7. Equivalent circuits for general memristor models.

Figure 8. (Left) Current−voltage curve of a FTO/PEDOT:PSS/2D
Ruddlesden−Popper perovskite/Ag (15 nm)/Au (85 nm) memristor
device showing the transition from a high resistance state to a low
resistance state. (Right) IS spectral evolution of the memristor at
representative voltages. Reproduced from ref 33.
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determined by the external variable. The first analysis of the
relaxation impedance is due to Göhr and Schiller in a model
for electrochemical reaction in which the rate constant k obeys
a relaxation equation.67

A recent model was described in ref 68 to explain the
inductive behavior of lead halide perovskites.62,63,69,70 In that
model, the external voltage V applied to the solar cell reaches
equilibrium influenced by the relaxation of an internal surface
voltage that is slowed down by ionic motion. It generates an
EC including the RL branch of Figure 3. This model gives
important insights into the hysteresis of current−voltage
curves observed in perovskite solar cells.71,72 In this system
the inductor branch is associated with deleterious surface
recombination that becomes active at low frequency, reducing
the efficiency of the solar cell.63 Additional examples of the
general EC with inductor associated with interfacial electronic
phenomena are sown in Figure 9 for the measurements of an

OLED device65 and a CdS/CdTe solar cell.66 The inductive
loop is also observed in a variety of material platforms that
have the common property of a memory effect in current−
potential curves due to internal ion motion, associated with
polarization within the film, e.g., metal oxides73 and LiNbO2
memristors.74

The denomination of negative capacitance requires
clarification since it is a general feature that is widely observed
in emerging solar cells and other electronic devices.62,63,66,72

The responses of Figure 4 and the experimental observations
in Figures 8 and 9 contain a positive inductor, not a negative
capacitor. However, in the impedance analysis it is useful to
plot the capacitance (eq 2) vs the frequency, according to the
above definitions C′(ω) = Re[1/iωZ(ω)], as shown in Figure

9. In this plot, the positive inductor RL line certainly displays a
negative capacitance effect, Figure 9d, which is the reason for
the denomination of negative capacitance.
On the other hand, the memristors are often associated with

a negative resistance.60 The analysis of Figure 4 is restricted to
positive circuit elements, while the effect of an NDR will be
discussed below in relation to the neuron models.

3.4. Capacitive Memristor. The EC in Figure 3 is quite
general based on a broad definition of kinetic equations in the
time domain, but it is not the only possible dynamic behavior
of a memristor in the frequency domain. In fact, there are a
variety of mechanisms under the denomination of memristive
devices that require different characterization techniques.40,75

We analyze the famous HP titanium dioxide memristor,39,40

where the memristive property is the variation of dopant
concentration in a semiconductor film. The model is defined
by the following equations including materials constants Ron,
Roff, D, and μ

u R w I( )0= (20)

R w R R
w
D

R( ) ( )0 on off off= − +
(21)

w
t

R
D

I
d
d

onμ=
(22)

Equation 21 defines the function G(w) = R0
−1 in eq 8. For

the small signal ac perturbation, we obtain eq 10 and

sw
R
D

Ionμ̃ = ̃
(23)

Therefore, the impedance is

Z R
C s

( )
1

0
1

ω = +
(24)

where the capacitor has the value

C
D

I G R1
w onμ

=
̅ (25)

The EC is shown in Figure 7C. The difference with respect
to initial model B is that the relaxation of the internal variable
in eq 22 depends on current rather than on voltage, which
causes a capacitive rather than an inductive response for the
internal variable. Therefore, there is a contrast between
voltage- and current-controlled memristors according to the
fundamental EC response. At the present time, the generality
of such a classification is not known, and it appears to be an
important topic for future investigations.

4. ADAPTATIVE EXPONENTIAL INTEGRATE AND FIRE
MODEL
4.1. Kinetic Model. In the integrate-and-fire models, the

membrane capacitor of the neuron is charged by an external
stimulus. When the voltage reaches a certain threshold, the
capacitor is discharged, producing an action potential and then
the voltage is reset to the rest value.
This type of model has the advantage that it can be solved

mathematically, and it has been used to analyze the emergent
states in networks of neurons. The simplest model is formed by
charging an RC circuit and the subsequent voltage reset. The
dynamics can be enriched by features approaching the more
complete multichannel Hodgkin−Huxley model, which will be
discussed in the next section. In particular, an action potential

Figure 9. (Left column) Results of the measurement of an ITO/
PEDOT/superyellow/Ba/Al organic LED device. (a) Impedance
plots for different bias voltages. (b and c) Magnification of the
observed inductive behavior at 2.9 and 2.7 V, respectively. (d)
Capacitance versus frequency for various bias voltages indicating a
region of negative capacitance. Reproduced from ref 65. (Right
column) Impedance spectra for a CdS/CdTe solar cell. (a−c)
Complex plane plot of the impedance at two different forward biases
in the dark. The frequency range employed in the measurement was 1
MHz to 0.1 Hz. (d) Absolute value of capacitance vs frequency at
forward bias. Reproduced from ref 66.
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produces a refractory period in which the neuron cannot be
stimulated. These delays influence the neuron firing patterns.
They can be described by an adaptation current that is fed
back to the voltage with time constant τk and a resistance Ra.

12

These models can successfully emulate the spatiotemporal
integration of input signals and the firing functions of
biological neurons.
Here we analyze the impedance response of the integrate-

and-fire adaptative exponential model (AdEx)76−82 that is able
to reproduce many electrophysiological features seen in real
neurons with a few parameters that have a physiological
interpretation. This model neuron has been realized using
perovskite memristors.37

The voltage in the membrane u changes with time by a
conductance function f(u), a resistor RI, and a response time
τm, with the charging capacitance in eq 18. The current I is
coupled to an internal adaptation current w that is driven by
the departure from the rest potential urest. The model equations
are

u
t

f u R w R I t
d
d

( ) ( )m I Iτ = − +
(26)

w
t R

u u w
d
d

1
( )k

a
restτ = − −

(27)

The model consists of a dynamic system formed by two
equations with the general structure of the memristor in eqs 16
and 17. It also belongs to the class of fast-slow dynamical
systems. The slow adaptation current is the state variable of the
memristor. On the other hand, eqs 26 and 27 have a direct
relation to a number of models for bursting oscillations in
electrochemical cells.83,84

The function f(u) can be found experimentally from the
measurement of neuron discharges.12 It is f(urest) = 0 and
increases rapidly after a threshold voltage θth that launches an
action potential. In particular, the AdEx integrate-and-fire
model uses the expression85 shown in Figure 10a

i
k
jjjjj

y
{
zzzzzf u u u

u
( ) ( ) expT

T
rest

thθ
= − − + Δ

−
Δ (28)

where ΔT is a sharpness parameter. The exponential term
approximates the operation of sodium channel, which launches
the action potential. The model is composed of two currents in
parallel, the passive current associated with the function f(u),
and the adaptation current w. Equations 26 and 28 establish
the subthreshold dynamics of the model. Once the vertical
voltage rise is achieved, the spike is obtained by a reset of the
voltage u→ urest and an increase of the adaptation current w→
w + b.
The fixed points are obtained by setting time derivatives u̇ =

0 and ẇ = 0 at an external current I0. The steady-state current−
voltage corresponds to the set of fixed points:

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzI

R R
u u

R
u1 1

( ) exp
I

T

I T
0

a
rest

thθ
= + − −

Δ −
Δ (29)

The result is shown in Figure 10b. The plot displays a clear
NDR feature at u > θth, corresponding to the initiation of the
neuron spike.
4.2. Impedance Response. We now calculate the ac

impedance response. The small perturbation of eqs 26 and 27
at a voltage point u̅ gives the equations

su f u R w R Im I Iτ ̃ = ′ ̃ − ̃ + ̃ (30)

sw
R

u w
1

k
a

τ ̃ = ̃ − ̃
(31)

where

i
k
jjjjj

y
{
zzzzzf u

u
( ) 1 exp

T

thθ
′ ̅ = − + ̅ −

Δ (32)

The solution to the impedance is given in eq 19. The EC
parameters have the values

( )
R u

R
f

R
( )

1 exp

I I
ub

T

th
̅ = −

′
=

− θ̅ −
Δ (33)

L R ka aτ= (34)

Importantly, according to eq 33, the resistance Rb makes a
transition from positive to negative values close to u = θth,
which originates from the NDR in Figure 10c.
The fixed points of the system are given in eq 29. To study

their stability, we calculate the Jacobian matrix for a small
perturbation around the fixed point at u̅:

i

k
jjjjjj

y

{
zzzzzz

f R

R

/ /

1/( ) 1/

m I m

k ka

τ τ

τ τ

′ −

− (35)

Obtaining the eigenvectors, we find the two necessary and
sufficient conditions for stability

R C
R
L

1
0

mb

a

a
λ λ+ = − − <+ −

(36)

and

R
L C R

1
0

m

a

a dc
λ λ = >+ −

(37)

These can also be expressed, respectively, as

f u( )m

k

τ
τ

> ′ ̅
(38)

Figure 10. Voltage dependence of quantities in the AdEx model with
urest = 0. (a) Function f(u). (b) Stationary current−voltage curve. (c)
Resistance Rb; the inset shows the negative values at u > θth.
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R
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f u( )I

a
> ′ ̅

(39)

The low-frequency dc resistance is
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jjjjj
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R R
1 1
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a b

1
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(40)

The second condition of stability (eq 39) corresponds to

R 0dc > (41)

The impedance model corresponds to the EC in Figure 3.
Since f ′ = −1 for most of the subthreshold region, the stability
is warranted by eqs 38 and 39 and the impedance spectra
correspond to those in Figure 4.
Let us analyze in more detail the inductive feature in Figure

4a. The resistance at the intercept Z′′ = 0 has the value

R
R

R R C L
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1 / 1
Z
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I
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b
=

+
=

+ τ
τ

′′=

(42)

The spectrum in Figure 4a reflects the two-step relaxation in
the model. Normally, u is the fast variable and w shows a slow
relaxation associated with the memory effect. Then, assuming
τm ≪ τk, the impedance response of the system shows a fast
relaxation in the high-frequency arc and the real part of the
impedance reaches Rb. Then, the slow variable sets in and
reduces the dc resistance to the lower Rdc value, as commented
on previously. More rigorously, the condition in which RZ ′′ = 0
> Rdc is given by

R
R

I m

ka

τ
τ

>
(43)

which corresponds to the condition expressed in Figure 4 for
the AdExp model specifically. This expression indicates the
transition from Figure 4a to Figure 4b when the negative
capacitance feature in the fourth quadrant disappears. The
condition (eq 43) also indicates the appearance of a Hopf
bifurcation when the current is increased, whereas in the
opposite case the system undergoes a saddle-node bifurca-
tion.77 The impedance spectra in the transition zone are shown
in the experimental examples of Figure 9. The impedance
model parameters and stability conditions are summarized in
the Supporting Information.
4.3. Impedance Spectra for Negative Resistance

Values. The classification of characteristic impedance spectra
for negative Rb is shown in Figure 5. The condition in eq 43
also indicates which condition of stability (eqs 38 or 39) is
broken first. If eq 43 is satisfied, then there is a region where
the two parallel currents compete, with Rb being negative and
Rdc still being positive, in the potential range determined by the
condition

R
R

f u
R
R

( )I I m

ka b

τ
τ

> ′ ̅ = − >
(44)

This region produces the impedance pattern of Figure 5
defined before as a “hidden negative impedance”.31 Here the
complex Z(ω) encircles the origin, and the imaginary part of
the impedance has a zero value at a finite frequency of the
negative real part. This is a signal of the Hopf instability, as
mentioned earlier.
Figure 5 shows the impedance spectra in the presence of a

true NDR. These patterns are well documented in the

literature of electrochemical oscillations, in the case of
oscillations induced by a Hopf bifurcation under potentiostatic
control.86,87 Different examples of the spectra for formaldehyde
oxidation are shown in Figure 11. These impedance patterns
are also very typical for electrochemical passivation and
corrosion.88,89

Figure 12 indicates the impedance spectrum when the RL
elements are both negative. This is not a case that emanates
from the AdEx model, but it is also interesting since it occurs
naturally in the sodium channel of the Hodgkin−Huxley
model discussed below.

Figure 11. (a) Voltammogram of 0.1 M HCHO in 0.1 M NaOH for
0, 1000, and 1500 Ω external resistance (internal cell resistance ca. 95
Ω). Scan rate 10 mV s−1, 3000 rpm. Amperogram taken at 0.01 mA
s−1. (b) Impedance diagrams taken at −0.50 V (■), −0.45 V (○), and
−0.35 V (Δ). Indicated frequencies are in Hz. Reproduced from ref
87.

Figure 12. Complex plane impedance spectra of the AdEx model, Ra
< 0 and La < 0. (a) RI = 1, Ra = −5, Rb = 3, Rdc = 7.5, τm = 10, τk =
100, and La = −500. (b) RI = 10, Ra = −2, Rb = 10, Rdc = −2.5, τm =
10, τk = 100, and La = −200. The arrow indicates the direction of
increasing frequency.
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The transient response to a current step in the time domain
is represented in Figure 13. Figure 13a shows a damped
oscillation, while Figure 13b corresponding to the hidden
negative resistance shows a periodic amplification correspond-
ing to negative damping.

A complete study of the oscillations, spiking dynamics, and
bifurcations of the AdEx model depending on the external
current I is presented by Touboul et al.77

5. HODGKIN−HUXLEY SQUID GIANT AXON MODEL
5.1. Kinetic Model. Finally, we aim to calculate the

impedance response from the Hodgkin−Huxley dynamic
model for the squid giant axon membrane.11 This is a
landmark model that is extremely accurate for describing
neuron dynamics. A development of the small perturbation ac
model was presented by Chua and co-workers in order to
investigate the stability conditions.35,36 Here, we aim to
understand the main impedance responses and provide an
interpretation based on the simpler models that have been
analyzed earlier in this article, namely, the memristor and the
adaptative integrate-and-fire neuron.
The original H−H model follows different current and

voltage references from those usually adopted in the
literature.90,91 Therefore, we rewrite the H−H equations
such that they comply with this convention, i.e., current
direction from inside to outside the membrane and voltage
polarity positive inside and negative outside, as shown in
Figure 14a. Moreover, we consider the membrane potential as
it is, and we do not use the original transformation, where the
origin is taken at the resting potential of the membrane (VM =
Vr).
The electrical circuit of the membrane, shown in Figure 14a,

has four different branches that correspond to the membrane
capacitance, the potassium ion channel, the sodium ion
channel, and the leakage current, respectively. As noted in
Figure 14a, the resistances across the potassium (RK) and
sodium (RNa) channels are not constant, but they depend both
on time and voltage, reflecting the complex dynamics in
response to external inputs. The model provides complete
kinetic equations for the different channels; therefore, we will

be able to develop the small ac EC elements at a fixed point,
using the same method applied in the previous examples. Our
goal is to derive a small perturbation EC in which the elements
depend on voltage but are time-independent, and the result is
shown in Figure 14b.
The current through the membrane can be written as the

addition of the four contributions in Figure 14a

I I I I IM C K Na l= + + + (45)

The currents obey the expressions

I C
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d

dC M
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(46)
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V V
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( )K
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M K= −
(47)

I
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V V
1

( )Na
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M Na= −
(48)

I
R

V V
1

( )l
l

M l= −
(49)

Here, the membrane voltage VM is defined as

V V VM in out= − (50)

and the other voltages follow the polarity indicated in Figure
14a and have values of VK = −77 mV, VNa = 50 mV, and Vl =
−54.387 mV. Each of these voltages relate to the membrane
voltages that cancel the current in each channel. We consider a
resting potential of Vr = −65 mV, which corresponds to the
resting potential at a temperature of T = 6.3 °C.11 The resting
potential is the voltage at which there is no current through the
membrane. The membrane capacitance CM has a value of 1 μF
cm−2, and the leakage resistance is 3.33 kΩ cm2.
The potassium resistance is described by the following

expression

Figure 13. Transient voltage in the AdEx model after a small
perturbation constant current onset at t = 0. (a) RI = 5, Ra = 1, Rb =
10, τm = 10, andn τk = 100. (b) RI = 1, Ra = 0.2, Rb = −5, Rdc = 0.2083,
τm = 10, and τk = 100.

Figure 14. (a) Hodgkin−Huxley electrical model for the squid giant
axon membrane consisting of variable resistances in the ion channels
as defined in the original publication. (b) Equivalent circuit for the
Hodgkin−Huxley model for small ac voltage perturbations. The
potassium channel components are indicated in blue, and the sodium
elements, in red.
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R R
n

1 1

K K0

4=
(51)

where RK0 = 27.78 Ω cm2 is the minimum value of the
resistance and n is a dimensionless potassium gate-activation
variable that takes values from 0 to 1 and satisfies the following
equation:

n
t

n n
d
d

(1 )n nα β= − −
(52)

Here, the transfer rate coefficients αn and βn are time-
independent and voltage-dependent by

V0.01(10 )
e 1n V10 /10α = − ′

′ −− (53)

0.125
en V /80β =

′ (54)

where αn and βn are in ms −1 and V′ = VM − Vr is in mV.
The sodium resistance is described by a similar expression:

R R
m h

1 1

Na Na0

3=
(55)

In the same way as before, RNa0 = 8.33 Ω cm2 is the
minimum value of the sodium resistance. However, the sodium
channel has two gate-activation variables m and h. They are
both dimensionless and take values from 0 to 1, and similar to
the variable n, they are described by the equations

m
t

m m
d
d

(1 )m mα β= − −
(56)

h
t

h h
d
d

(1 )h hα β= − −
(57)

Again, αm and βm are time-independent and voltage-
dependent. Their voltage dependence is given by

V0.1(25 )
e 1m V25 /10α = − ′

′ −− (58)

4
em V /18β =

′ (59)

αh and βh are also voltage-dependent, according to the
equations

0.07
eh V /20α =

′ (60)

1
e 1h V30 /10β =

′ +− (61)

All of the transfer rate coefficients are in ms −1, and V′ = VM
− Vr is in mV.
We can rewrite eqs 47 and 48 of the currents across the two

ion channels as

I
R

n V V
1

( )K
K0

4
M K= −

(62)

I
R

m h V V
1

( )Na
Na0

3
M Na= −

(63)

5.2. Impedance Response. From these equations, we can
calculate the ac impedance response of the H−H model across

each branch. The small perturbation and Laplace transform of
eqs 46, 62, 63, and 49 give the equations

I sC VC M M̃ = ̃ (64)
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(65)
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+ ̅ ̅ ̃
(66)

I
R

V
1

l
l

M̃ = ̃
(67)

Here, in eqs 65 and 66, perturbed variables ñ, m̃, and h̃
appear. We can calculate them from the small perturbation and
Laplace transform from eqs 52, 56, and 57:
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From the combination of eqs 64−70, we derive the
impedance given by

Z
V
I

V
I I I I

M

M

M

C K Na l
=

̃
̃ =

̃
̃ + ̃ + ̃ + ̃ (71)

Rearranging all of the terms obtained, we can get an
expression for impedance with the following elements:
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(72)

The EC generated by this impedance is shown in Figure
14b, and the values of the voltage-dependent elements are
detailed as follows:

R V
R
n

( )K,1 M
K0
4̅ =
̅ (73)
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L V R( )n n nM τ̅ = (75)

R V
R
m h

( )Na,1 M
Na0
3̅ =
̅ ̅ (76)
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L V R( )m m mM τ̅ = (78)
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L V R( )h h hM τ̅ = (80)

The different relaxation time constants τi of each activation-
gate variable are defined as

1
i

i i

τ
α β

=
+ (81)

These results correspond to those obtained by Chua et al.35

with a different voltage reference.
5.3. Interpretation of the Impedance Spectra. We aim

to analyze impedance spectra in the region where the real part
of the impedance takes negative values, since this is the
requirement for inducing oscillations and spiking. This occurs
between VM = −42.99 mV and VM = −60.25 mV. In Figure 15,

we show a set of impedance complex plots of the full model of
Figure 14b for representative voltage values above this range
(Figure 15a,b), in this range (Figure 15b,c,d) and below it
(Figure 15d).
The negative value of the real part of the impedance is

clearly observed at frequencies different from zero, it is
therefore a “hidden negative impedance”. The values close to
the voltage range limit have only a small region in the negative
area, while the intermediate values have most of the spectrum
at the negative part, Figure 15c.

To better understand the EC and the wide diversity of
characteristic impedance spectra obtained for the Hodgkin−
Huxley model and compare it with other systems with similar
ECs, we now analyze the impedance response of the individual
K and Na channels that compose the model.
We first look at the spectra generated by the potassium

channel with the constant elements CM and Rl. The partial EC
is represented in Figure 16a, and it is equivalent to the general

memristor EC previously presented in Figure 3. Figure 16b,c
shows the values of the circuit elements generated by the
potassium channel for the voltage range spanning VK to VNa.
The graphs show that the resistances have relatively low values
compared to the leakage resistance (3.33 kΩ) for voltages
above the resting potential Vr. Below this value, both
resistances start to increase until they take huge values. The
same happens in the case of the inductor in Figure 16c.
In Figure 16d, we can see the impedance complex plane

plots for a variety of membrane voltages. The spectra generated
by this circuit and the evolution of these elements generally
show an arc at the first quadrant at high frequency and another
arc in the fourth quadrant at low frequency. This behavior has
been described above in Figure 4. The arcs are relatively small
at voltages above VM = −20 mV, where the values of all of the
potassium channel resistances and inductor are small. Below
these values, the arcs start to increase until the fourth quadrant
arc disappears, and the spectrum is dominated by the constant
elements. This means that the potassium channel closes as we
get closer to voltage VK.
If we calculate the Jacobian and apply the stability

conditions in the same way that we did before but for this
EC, we get the following conditions:

i

k
jjjjj

y

{
zzzzzR R

C1 1

k n,1 l

M

τ
− + <

(82)

Figure 15. Impedance complex plane plots for voltages (a) above the
upper limit of the negative impedance region, (b) around the upper
limit VM = −42.99 mV, (c) in the negative impedance region, and (d)
around the lower limit VM = −60.25 mV.

Figure 16. Impedance details of the K channel. (a) EC used for (d).
(b and c) Values of the elements for the range of membrane voltages.
(d) Impedance complex plane plot for different values.
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Moreover, if we apply the condition RZ ′′ = 0 > Rdc for the
appearance of inductive loops, then we get
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(84)

Since the values of all of these elements and parameters are
fixed for any given membrane voltage, we can predict the
appearance of the inductive loops as well as the stable voltage
values. For this aim, we plot the three factors in Figure 17 to
find those voltages. In this figure, we have defined the
resistance Rc

−1 = Rk,1
−1 + Rl

−1.

From Figure 17, we can conclude that the potassium
channel circuit is stable in the whole range of voltages.
Moreover, we see a wide range of voltages in which the
inductive loop will appear, and we can estimate the voltage
where it disappears. This is below a voltage around VM = −70
mV, which agrees with the spectra plotted in Figure 16d.
Looking at the sodium channel, we build in Figure 18a a

partial EC including the elements of the membrane; therefore,
we can again see when the channel closes and these elements
dominate. As we can see, this channel is richer in the number
of elements. From Figure 18b,c, we find elements that take
negative values. These are the elements Rm and Lm, and they
make the spectra generated from this channel even richer, with
spectra appearing in any of the four quadrants of the complex
plane representation, as previously demonstrated in section
2.3.
As in the case of the potassium channel, the elements have

low values in a certain range of voltages, while they take huge
values outside this range. This is clearly seen in Figure 18b,c,
and it relates to the fact that at voltages 20 mV < VM < −65
mV the sodium channel is mainly closed, and we again see a
single arc corresponding to the constant membrane elements
in Figure 19. However, inside this range we again see the
memristive inductive loop into the fourth quadrant at VM =
−20 mV. More interestingly, we see the hidden negative
resistance at VM = −30 mV and a clear negative resistance from
approximately VM = −40 to −65 mV. Therefore, it is evident
that the channel causing the negative impedance in the whole

membrane is the sodium channel. However, the full membrane
will not show a negative impedance at zero frequency.

6. CONCLUSIONS
The method we have developed in this article consists of the
determination of the small perturbation ac IS response of
highly nonlinear systems, related to memristors and the
neuromorphic response, starting from the time domain
constitutive equations of each model. We showed the
connection of the impedance response and the shape of the
spectra to the physical interpretation of memory effects and
stability, following previous insights in fast-slow dynamical
systems, stability theory, and electrochemical oscillations.
First, we presented a frequency domain analysis of

memristors. We showed that the memristor can be
decomposed into a simple equivalent circuit and that it cannot
be regarded as an additional fundamental element for a small

Figure 17. Factors for the conditions of stability and appearance of
inductive loops.

Figure 18. Impedance details of the Na channel. (a) EC used for the
Na channel. (b and c) Values of the resistances and inductors for the
range of membrane voltages, respectively.

Figure 19. Impedance complex plane plots for the sodium channel
EC. Spectra with (a) smaller and (b) larger impedance values.
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signal response. This is because the mechanism of memory is
well represented by a resistor-inductor line. The basic structure
of the impedance model is obtained across different material
platforms and independent fields of study. There is possibly a
universal behavior related to the suggested kinetic memory
effect that needs further investigation. Nevertheless, the model
is not unique to describing memristor systems. There is indeed
a very broad type of responses under the label of memristive
systems based on different mechanisms and physical effects.
The impedance response of the adaptative exponential

integrate-and-fire model for the neuron membrane is similar to
that of the memristor, thus confirming them as good
candidates for neuromorphic computations. We have made a
classification of the spectra generated by this model, and we
have established the required conditions for the stability of the
impedance response. A variety of criteria consisting of relations
among the model parameters have been given in order to
clarify which conditions generate each kind of spectra.
The same has been made for the Hodgkin−Huxley model

for the squid giant axon. We made an extended calculation of
the full impedance model, showing the full equivalent circuit
with time-independent elements that governs the operation of
these ion-channeled membranes. We have presented the
spectra generated by this model for a wide range of voltages,
finding a wide variety of shapes, including the hidden negative
resistance. With respect to the previously described simple
models, this model has the additional complexity of consisting
of different channels that cause positive and negative feedback
loops. To obtain better insight into the concerted action that
produces the diverse impedance spectra responses, we
investigated separately the individual ion channel responses.
Interestingly, we found that the potassium channel fulfills the
stability conditions over the entire voltage range and that the
condition for inductive loops is satisfied. However, the sodium
channel is more complex, and its equivalent circuit includes a
branch with negative elements (a resistance and an inductor)
that produce all kind of spectra going through the four
quadrants. This feature is responsible for the positive feedback
that causes depolarization, including the hidden negative
resistance in the full model.
In summary, we have suggested a method to analyze the

response of a required complex fast-slow dynamical system in
the frequency domain as a tool for constructing material
systems with similar functionality.
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