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ABSTRACT

Many chemical and physical systems show self-sustained oscillations that can be described by a set of nonlinear differential equations. The
system enters oscillatory behavior by an intrinsic instability that leads to bifurcation. We analyze conducting systems that present oscillating
response under application of external voltage or current. Phenomena like electrochemical corrosion and the spiking response of a biological
neuron are well-known examples. These systems have applications in artificial neurons and synapses for neuromorphic computation. Their
dynamical properties can be characterized by normal mode analysis of small expansion of the constituent nonlinear equations. The linearized
model leads to the technique of ac frequency response impedance spectroscopy that can be obtained experimentally. We show a general
description of two-variable systems formed by a combination of a fast variable (the voltage) and a slowing down internal variable, which pro-
duce a chemical inductor. A classification of bifurcations and stability is obtained in terms of the parameters of the intrinsic equivalent circuit
including the case of a negative inductor. Thereafter, we describe a number of physical examples and establish the characterization of their
properties: The electrocatalytic reaction with adsorbed intermediate species, an oscillating metal oxide memristor, and finally we discuss the
signs of the equivalent circuit elements in the central model of neuroscience, the Hodgkin–Huxley model for an oscillating neuron.
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I. INTRODUCTION

Self-sustained oscillations is a general phenomenon associated
with a breakdown of stability in nonlinear systems. Bifurcation by a

change of external current or voltage provoking stationary oscillations
is found in many natural and materials systems, such as neurons,
memristors, and electrochemical devices.1–3 An important tool for the
analysis of these systems is the ac measurement of electrical character-
istics by impedance spectroscopy,4 and it has been well recognized the
connection of oscillations by a Hopf bifurcation to the differential neg-
ative resistance, e.g., in electrocatalytic systems,5–8 and in Mott mem-
ristors.9 The analysis by impedance spectroscopy also shows the
relevance across different disciplines10–13 of the equivalent circuit
model that contains a capacitor and a chemical inductor.14

The simplest approach to bifurcation in nonlinear systems con-
sists of a two-dimensional system. It is generally believed that the
occurrence of a Hopf bifurcation requires a separation of a fast desta-
bilizing variable (u) and a slow stabilizing variable (x).15 Here, “fast”
and “slow” qualities are determined by the respective characteristic
times s that define the dynamics in the system of differential equation.
When a nonlinear system of differential equations undergoes a Hopf
bifurcation, there arises a limit cycle, which is a closed and isolated tra-
jectory in the phase portrait u� x. Models formed with the two essen-
tial oscillating variables find a wide range of applications.1,16,17
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In a recent review, we classified the 2D dynamical systems show-
ing bifurcation and oscillations using the methods of impedance spec-
troscopy and a collection of characteristic frequencies.18 The work was
based on the mentioned ordinary assumption that the destabilizing
negative resistance occurs in the fast variable u. However, oscillatory
behavior is possible in which the negative resistance occurs in the slow
variable.19 Here, we establish a more general classification framework
that considers these different possibilities. We aim to find the sign of
the equivalent circuit elements, as resistances and inductors, associated
with instability and oscillations, since these elements can be obtained
directly from impedance spectroscopy data. We elaborate a classifica-
tion of systems in terms of the characteristic frequencies that can be
obtained as products of the equivalent circuit elements. An important
class of systems show a negative chemical inductor, and we examine
the dynamical implications of this feature. We discuss a range of phys-
ical examples from material and natural systems in detail to show the
properties of the framework of analysis and the presence of the nega-
tive inductor in physical systems. These methods have application in
the construction of neuromorphic systems for building artificial intelli-
gence closely coupled to perceptual systems.20–25

II. MODEL FOR 2D OSCILLATING SYSTEMS

We consider the general structure of a conduction–polarization
system. The voltage across the device is u, and the current Itot is
affected by an internal process that contains a memory effect, repre-
sented by a state variable x that undergoes a slowing down response to
the external perturbations. The system is described by the nonlinear
coupled dynamical equations,

Itot ¼ Cm
du
dt
þ 1
RI

f u; xð Þ; (1)

sk
dx
dt
¼ g x; uð Þ: (2)

The first equation is a conduction equation including the capaci-
tive charging with capacitance Cm and a conduction channel of con-
ductivity function f ðu; xÞ and resistance scale parameter RI . Both RI

and Cm are considered positive constants. The fast characteristic time
is henceforth

su ¼ RICm > 0: (3)

Equation (2) describes the time evolution of the slowing variable
x that responds to the changes by a voltage-driven adaptation function
gðx; uÞ, with a characteristic time sk > 0. The x may take a wide vari-
ety of interpretations according to the particular system: a concentra-
tion in chemical systems, such as electrocatalytic reactions, corrosion,
and batteries; an ion channel current in neurons;26 and an electronic
current in semiconductors.14

There is a qualitative difference of Eqs. (1) and (2) in that only
(1) includes the external current. We introduce the parameter

e ¼ su
sk
: (4)

Normally, in the response to a perturbation, the charging of the
capacitor is fast and the lower branch associated with the variable x is
slower. Thus, the charging time constant su is much shorter than the
adaptation current time constant sk, hence e < 1.

The stationary solution of Eqs. (1) and (2) is obtained by the null-
clines _u ¼ 0; _x ¼ 0 that define the current–voltage curve ItotðuÞ. An
important resource for the better understanding of a nonlinear system
is to develop a system of linear equations at a particular stationary
point. This method is the foundation of the technique of impedance
spectroscopy.4,27,28 It is also a powerful tool to relate nonlinear models
to linear data in electrical engineering, by the correspondence, for
example, of transistor physics, nonlinear circuit theory, and a linear
small perturbation equivalent circuit.29,30 Therefore, to obtain insight
into the properties of the dynamical systems (1) and (2), we consider
the small signal expansion, where small perturbation quantities are
denoted ŷ . We obtain

Î tot ¼ Cm
dû
dt
þ 1
Rb

û þ fx
RI

x̂; (5)

sk
dx̂
dt
¼ guû þ gxx̂; (6)

where

Rb ¼
RI

fu
: (7)

We observe in Eq. (5) that the conduction equation of Eq. (1) is
divided in three parallel branches. We have described previously the
impedance model of Eqs. (5) and (6) with respect to the angular fre-
quency x.14,18 [Note that the f function in (1) and (5) has the opposite
sign in Ref. 18.] We take the Laplace transform of Eqs. (5) and (6),
d=dt ! s, where s ¼ ix, and we arrive at

Z sð Þ ¼ û

Î tot
¼ Cmsþ Rb

�1 þ 1
Ra þ Las

� ��1
: (8)

The circuit elements are defined as

Ra ¼ �
RIgx
fxgu

; (9)

La ¼
RIsk
fxgu

; (10)

and the equivalent circuit contains the capacitor, two resistances, and
inductor as shown in Fig. 1. This is the circuit associated with the
chemical inductor model characterized in recent publications.14,31 As
shown previously in general terms, the model of Eqs. (1) and (2)
always gives the ðRa; LaÞ branch that forms a chemical inductor.14 We
have the inductor time constant,

FIG. 1. Equivalent circuit model.
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sL ¼
La
Ra
¼ � sk

gx
: (11)

Alternatively, we use the characteristic frequency

xL ¼
Ra

La
¼ � gx

sk
: (12)

The total differential resistance of Eq. (8) is

R�1dc ¼
1
Rb
þ 1
Ra
: (13)

III. INTERPRETATION OF FAST–SLOW CONDUCTING
SYSTEMS

The model posed in Eqs. (1) and (2) is fairly broad, and it covers
a large variety of systems. Let us discuss the interpretation of the physi-
cal behavior that is represented by such class of models. In this section,
we consider the dynamic properties when the system operates in a sta-
ble domain, in order to clarify the meaning of the equivalent circuit
approach.

For clarity, we consider the particular systems of the type
f u; xð Þ ¼ /c uð Þ þ RIx, in which Eq. (1) becomes

Itot ¼ Cm
du
dt
þ 1
RI

/c uð Þ þ x: (14)

Clearly, x has the meaning of a current. The total current Itot in
Eq. (14) is thus split in three components. These components act dif-
ferently when a voltage pulse is applied. The capacitive current and the
conduction current /c=RI are set rapidly as shown in Fig. 2(a). (In
practice there is a charging time controlled by a series resistance but
we ignore such a feature for simplicity.25) In contrast, the current x of
the “slow mode” lags behind by the time sk, since it requires a relaxa-
tion process determined by Eq. (2). At longer time, the initial capaci-
tive current vanishes and the total current is /c=RI þ x, as shown in
Fig. 2(b). Such an increase in current is the central property of the
chemical inductor, which implies a decrease in the total resistance at
long time.31

Figure 2 has provided a clear interpretation of those particular
systems indicated in Eq. (14) in which the system decouples the con-
duction current in two separate components, fast and slow. Still the

problem is highly nonlinear in the functions /cðuÞ and gðu; xÞ.
However, the general form of Eq. (1) provides a broad variety of cases
that are not decoupled, for example the slow variable can be a surface
voltage instead of current,32 or the function f ðu; xÞmay be highly con-
voluted, as in the memristor model described here in Sec. IX.

Even though the full nonlinear system may very rather involved,
we have noticed in (5) that the small perturbation procedure always
produces a separation of the currents into the components in û and x̂ .
This enables us to visualize the different components of the current as
in Fig. 2, as represented in the equivalent circuit in Fig. 1, which is gen-
erally valid for any class of coupling. Many examples and insights to
this equivalent circuit model have been presented recently.14,33

We now discuss the dynamical properties in the frequency
domain, determined by the impedance function (8). In Fig. 3(a), we
show the characteristic spectrum that is obtained in a stable regime,
further discussed in Sec. IV. We observe in Fig. 3 that the different
dynamic regimes of Fig. 2 provide distinct spectral features in the com-
plex plane representation of the impedance. At high frequency, the
ðRb;CmÞ elements produce a typical arc with associated resistance Rb,
Fig. 3(b). At lower frequencies, the inductor impedance is reduced and
the additional parallel resistance Ra becomes relevant, reducing the
total resistance to the value Rdc of Eq. (13) and producing the negative
arc in the fourth quadrant, Fig. 3(c), characteristic of the chemical
inductor.

IV. DIVERGENCE OF THE SLOW VARIABLE

We have discussed previously that 2D models for self-sustained
oscillating systems, such as neurons, require a negative differential
resistance (NDR) that destabilizes the system.18 In many cases, the
negative resistance occurs from the fast u-branch of the model, i.e., the
function fu gives a negative Rb in Eq. (7), while the total resistance Rdc

is positive. One example of this structure is the FitzHugh–Nagumo
(FHN) neuron equations that has been broadly studied by its rich
phase portraits.1,34–36 It is defined by the functions37

f ¼ u3

3
� uþ RIx; (15)

g ¼ r
RI

u� bx; (16)

with three positive parameters, e, r, and b. Applying Eqs. (7)–(10)
to this model, we obtain the equivalent circuit elements of row 5 of
Table I, and the dc resistance is

Rdc ¼ RI u2 � 1þ r
b

� ��1
: (17)

The properties and behavior of the model are illustrated in Fig. 4
and discussed in Sec. VI. The NDR that destabilizes the system occurs
in Rb for uj j < 1, as mentioned earlier.

In general, the sign of gx takes special general significance for
the dynamical properties. It determines the sign of the inductor
time constant xL ¼ 1=sL, which becomes negative if gx > 0 by Eqs.
(11) and (12). Numerous examples of 2D dynamical systems with
oscillating structure in which gx < 0 have been reviewed.18 This is
the case for FHN model in Eqs. (15) and (16), in which gx ¼ �b
< 0 so that the slow variable stabilizes the system. This mechanism

FIG. 2. Schematic view of current in a conducting fast–slow system where
f u; xð Þ ¼ fc uð Þ þ RIx: (a) short and (b) long time response.
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is rather common in the analysis of systems with self-sustained
oscillations.

For a broader analysis, consider a small perturbation of voltage
Du. Integrating Eq. (6), we have4,7

x ¼ gu
gx

Duj j 1� e�t=sLð Þ: (18)

For gx > 0 and xL ¼ 1=sL < 0, this equation indicates a possi-
ble instability in which x grows indefinitely. The negative time element

occurs now in the a-branch, and it can be caused by the resistance Ra

or by the inductor La. However, the negative time constant feature
competes with the stabilizing effect of the fast variable. A complete
normal mode analysis will be presented below.

According to these different possibilities, of having negative ele-
ments either in channel a or b, we present here a more general analysis
adapted to the signs of the partial derivates of the functions f ; g. More
concretely, the circuit elements are determined by the signs of gx , as
already mentioned, and by the sign of the product fxgu. The resulting
properties of the circuit elements are shown in Table I, rows 1–4. We
obtain that Ra and La can be either positive or negative, depending of
the combination of signs. There are two situations that avoid the expo-
nential explosion, corresponding to gx < 0, if both Ra and La are posi-
tive or if both are negative.

V. STABILITY AND BIFURCATION IN 2D SYSTEMS

For a general analysis of the stability properties, we obtain the
Jacobian of Eqs. (5) and (6) that can be written as follows:

� fu
su
� fx

su
gu
sk

gx
sk

0
BB@

1
CCA: (19)

The determinant has the expression

D ¼ fxgu � fugx
susx

: (20)

FIG. 3. (a) Characteristic impedance spectrum of the model of Fig. 1. (b) High-frequency part of the spectrum. (c) Low-frequency part of the spectrum, and the correspondent
active fragments of the equivalent circuit.

TABLE I. Signs and values of the circuit elements and time constant.

gx fxgu fu Rb Ra La sL ¼ La=Ra

RI

fu
�RIgx

fxgu

RIsk
fxgu

�sk=gx

1 � þ þ þ þ
2 � � � � þ
3 þ þ � þ �
4 þ � þ � �

5-FHN �b r u2 � 1
RI

u2 � 1
b
r
RI

sk
r
RI

sk
b

6 b r aþ u
RI

aþ u
�b
r
RI

sk
r
RI � sk

b

7-diffusive
memristor

F0
RI

Rd

1

cosh
x
d

� � RIcosh
x
d

� �
�RdF0 Rdsk � sk

F0
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By comparing Eq. (13), we obtain the equation that relates the
determinant to the dc resistance,

D ¼ � gx
skCm

1
Rdc

: (21)

The first stability condition is D > 0. Only if gx < 0, the sign of
the total differential resistance and the sign of the determinant coin-
cide. Therefore, when the system is destabilized by x (corresponding
to gx > 0), the total resistance can be negative in situations of stability,
and vice versa. We will see examples later on.

The trace of the matrix (18) is

Tk ¼ �
fu
su
þ gx

sk
: (22)

For D > 0 and Tk > 0, the fixed point becomes an unstable
source and generates a limit cycle trajectory. The Hopf bifurcation is
determined by the condition Tk ¼ 0. It can be written as follows:

fu ¼
su
sk

gx: (23)

Alternatively

RbCm ¼ �sL ¼ �
La
Ra
: (24)

There are two situations in which the oscillations occur. First, if
the destabilizing variable is the fast one, then gx < 0, as explained in
Table I, and the oscillations require a negative component in fu, i.e., a
negative Rb. This is a typical situation, and many examples have been
presented in a previous review.18

On the other hand, if gx > 0 the system can oscillate with the Rb

resistance remaining positive. This situation is associated with negative
inductor La or negative Ra and is the main topic of this paper. Several
examples will be discussed in Secs. VII–X.

VI. ANALYSIS OF STABILITY BY IMPEDANCE
SPECTROSCOPY

For the analysis of conducting/oscillating systems by impedance
spectroscopy, it is very useful to relate spectral shapes to the inherent
dynamical properties.15,38–40 We showed recently that the impedance
patterns can be classified by a series of characteristic frequencies that
are introduced in Table II.18

In this paper, we restrict the analysis to condition of constant cur-
rent. In galvanostatic operation, the Hopf bifurcations are given by the
poles of the impedance, i.e., the zeros of the admittance Y ¼ Z�1 at a

FIG. 4. Dynamical properties in a realization of FHN model: (a) current–voltage
curve. The green lines are the current obtained at selected voltages expanded in
(e) and (g). The red point is the Hopf bifurcation at positive voltage. (b) Stability var-
iables. The red points are Hopf bifurcations. (c) Circuit elements. (d) Characteristic
frequencies. [(e) and (g)] Nullclines and trajectory in phase space. The f-nullcline is
the yellow line, and g-nullcline is the green line. The orange point is the starting
condition. [(f) and (h)] Voltage evolution with time. [(i) and ( j)] Impedance spectra.
Parameters: RI ¼ 0:5; b ¼ 0:8; r ¼ 1:2; � ¼ 0:5; sm ¼ 0:01.

TABLE II. Characteristic frequencies.

xa � 1
su

fxgu
gx

1
RaCm

� 1
RdCmF0

xb
fu
su

1
RbCm

1

sucosh
x
d

� �
�xb

xL � gx
sk

Ra

La
¼ 1

sL
� F0

sk
D

1
susk

fxgu � fugxð Þ xL xa þ xbð Þ

xo D1=2 xL xa þ xbð Þ½ �1=2

Tk � fu
su
þ gx

sk
�xb � xL
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finite frequency.2 The oscillations at fixed voltage require a series resis-
tance that introduces additional complexity.18

The poles of the impedance correspond to the condition of imag-
inary eigenvalues k ¼ ixo that determines the Hopf bifurcation.41,42

The condition can be written as follows:

xL ¼ �xb: (25)

This expression is complementary to those provided above in
Eqs. (23) and (24).

As a reference, we revise the properties of the FHNmodel, shown
in Fig. 4, that have been described before.18,37 Figure 4(b) shows that
the dc resistance is positive, as the I � u curve in Fig. 2(a) does not
have a negative characteristic. Figures 4(b) and 4(c) show that Ra and
La are positive, while the negative Rb in Fig. 4(c) produces a region of
Tk > 0 in which limit cycle oscillations occur, as shown in Figs. 4(g)
and 4(h). For higher voltage, the system arrives to a fixed point, Figs.
4(e) and 4(f). Figure 4(d) shows the condition for the Hopf bifurcation,
given by the intercept of xL and �xb by Eq. (25). Figure 4(i) shows
the impedance pattern associated with the chemical inductor struc-
ture14 in the stable region of voltage, same as Fig. 3(a). This impedance
is quite universal and it has been measured in a variety of conducting
systems as neurons,43 electrochemistry,10–13 and solar cells.44 The
impedance pattern associated with limit cycle oscillations shown in
Fig. 4(j) displays a negative resistance at intermediate frequencies.2,18

VII. NEGATIVE INDUCTOR

As mentioned before, it is interesting to discuss the sign of the
equivalent circuit elements and their implications for stability and
bifurcation. The effect of the sign of Rb is well known, as in the FHN
model described in Fig. 4. Let us focus on the elements of the inductor
line in the equivalent circuit of Fig. 1.

Consider the following model in that we introduce for the pur-
pose of illustration:

f ¼ auþ u2

2
þ RIx; (26)

g ¼ r
RI

uþ bx: (27)

The parameters of the model are r; b; �; a, and the equivalent
circuit elements are given in row 6 of Table I.

The model is similar to FHN but with a linear Rb. The parame-
ters a; r; andb can take both positive and negative sign. The resulting
sign of the equivalent circuit elements is indicated in Table III. The
first line in Table III coincides with the signs of FHN. Here, we focus
in the alternative stable structure given by the line 2 of Table III. The
dynamical properties of this situation are shown in detail in Fig. 5.

The model has a region of negative resistance Rdc that coincides with
the negative values of D, since gx < 0. Both Ra and La are negative,
but xL > 0 and the system is stable for D > 0, as shown in Figs. 5(e)
and 5(f).

VIII. ELECTROCHEMICAL REACTION WITH ADSORBED
INTERMEDIATE

In the field of electrochemical reactions, the chemical induc-
tor10–13,45 and the oscillatory reactions2,5,15,38–40,46–48 have been amply
studied by impedance spectroscopy in the last few decades. Here, we
summarize the properties of the reaction with an adsorbed intermedi-
ate as described by Sadkowsky.7 The model electrocatalytic reaction
consists of two elementary steps with two reagents A and C in solution
and an adsorbed intermediate Bads,

A$Bads þ n1e
�; (28)

Bads$Cþ n2e
�: (29)

Here, n1 and n2 are the charges transferred in each of the partial
equations. The fractional concentration of adsorbed species is the slow
variable, x ¼ h. The system is characterized by the equations

f ¼ n1v1 þ n2v2; (30)

g ¼ v1 � v2; (31)

where v1ðu; hÞ; and v2ðu; hÞ are the rates of the two partial electro-
chemical adsorption reactions. These rates can be given a specific
Butler–Volmer form.7,48,49

The following quantities are obtained:

Rb ¼
RI

n1v1u þ n2v2u
; (32)

Ra ¼ �
RI v1h � v2hð Þ

v1u � v2uð Þ n1v1h þ n2v2hð Þ
; (33)

La ¼
RIsk

v1u � v2uð Þ n1v1h þ n2v2hð Þ
: (34)

Hence, the characteristic frequency is

xL ¼ �
v1h � v2h

sk
: (35)

The trace of the Jacobian is

Tk ¼ �
n1v1 þ n2v2

su
þ v1h � v2h

sk
: (36)

Galvanostatic oscillations in electrochemical systems are typically
associated with a negative Rb;

6 however, Eqs. (32)–(34) show that this
type of systems also allow the instability in the inductor branch with a
negativexL.

IX. OSCILLATIONS OF A MODEL MEMRISTOR

Memristor devices can produce artificial neurons and synapses
for computation algorithms based on neuron spiking.50–56 Equivalent
circuits using inductors and memristors have been used for the simu-
lation of repetitive neuron firing.37,57–59 Equations (1) and (2) consti-
tute a standard model for voltage-controlled memristors,60,61 and the
associated impedance response has been discussed,62,63 including the
chemical inductor impedance.14,64,65 Here, we derive the impedance

TABLE III. Sign of equivalent circuit elements.

r b Ra La xL

FHN þ � þ þ þ
2 � � � � þ
3 þ þ � þ �
4 � þ þ � �
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responses of the model of Ushakov et al. for a diffusive memristor in a
neuromorphic circuit that shows periodic oscillations.19

In the model, x is the position of a nanoparticle that determines
the conduction mechanism. Equations (1) and (2) adopt the following
forms:

f ¼ u

cosh
x
d

� � ; (37)

g ¼ F xð Þ � u
ur
: (38)

Here, d and ur are material constants. The function F is defined

F xð Þ¼ x�0:1ð Þ2�0:001þ8e�
x�0:01ð Þ2
0:052 � 8

1:3
x
1:3

� �7

e�
x
1:3ð Þ8 �100x99:

(39)

The nullclines _u ¼ 0; _x ¼ 0 have the expressions

u ¼ RIItotcosh
x
d

� �
; (40)

u ¼ urF xð Þ: (41)

These forms are shown in Fig. 6(a). The steady state current–-
voltage is given by the intersection of nullclines

Idc xð Þ ¼
ur
RI

F xð Þ

cosh
x
d

� � : (42)

It has two main branches, for x > 0 and x < 0, as shown in Fig.
6(b). We will focus on x > 0, which is shown separately in Fig. 6(c).
The current is single valued with respect to x as shown in Fig. 6(d).
Significant points are listed in Table IV. There is a saddle-node bifur-
cation when F0 xð Þ ¼ 0, which gives a change from one to three inter-
cepts. This happens at x01 ¼ 0:1599 and x02 ¼ 0:7645.

To calculate the response to a small perturbation, we obtain the
coefficients

FIG. 5. Representation of a dynamical
model: (a) current–voltage curve. The
green line indicates the stationary point of
[(e) and (f)]. (b) Stability variables. (c)
Characteristic frequencies. (d) Circuit ele-
ments. (e) Nullclines and trajectory in
phase space. The f-nullcline is the yellow
line, and g-nullcline is the green line. The
orange point is the starting condition. (d)
Voltage evolution with time. Parameters
RI ¼ 1; r ¼ �0:5; b ¼ �2; a ¼ 0:5; su
¼ 10�1; and � ¼ 0:1.
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fu ¼
RI

Rb
; (43)

fx ¼ �
RI

Rd
ur ; (44)

gu ¼ �
1
ur
; (45)

gx ¼ F0 xð Þ: (46)

Here, the resistances are defined as follows:

Rb ¼ RI cosh
x
d

� �
; (47)

Rd ¼ RI
urd
u

cosh2
x
d

� �

sinh
x
d

� � : (48)

The model leads to the equivalent circuit of Fig. 1 with the circuit
element values given in row 7 of Table I. The dc resistance
Rdc ¼ Zðx ¼ 0) is given by

R�1dc ¼
1
Rb
� 1
RdF0

: (49)

This result can be obtained also by the voltage derivative of Eq.
(32). The trace and determinant are

Tk ¼
1
sk

�F0 � RI

Rb

� �
; (50)

D ¼ e

cosh
x
d

� � F
urd

tanh
x
d

� �
� F0

� �
¼ eRI

1
Rd
� F0

Rb

� �
¼ � eRIF0

Rdc
:

(51)

FIG. 6. (a) Representation of the nullclines for RI ¼ 1; d ¼ 0:1; I ¼ 0:002. (b)
The two branches of the I � u curve. (c) Enlarged view of the positive x branch. (d)
Representation of IðxÞ at different values of u as indicated.

TABLE IV. Selected points in current–voltage curve.

x u Idc

0.150 0.004 648 I1 ¼ 0.001 976
0.1590 0.003 591 1 I2 ¼ 0.001 406
x01 ¼ 0.1599 0.003 591 0.001 406 F0 xð Þ ¼ 0.

Minimum uðxÞ.
0.1620 0.003 617 I3 ¼ 0.001 377 5
0.1623 0.003 620 0.001 377 23 Minimum I � u.

Pass to Rdc > 0
0.186 74 0.006 546 I1 ¼ 0.001 976
0.3043 0.040 50 0.003 854 Maximum I � u

pass to Rdc < 0
0.5058 0.1554 I1 ¼ 0.001 976
0:562 92 0.1957 I2 ¼ 0.001 406
0.564 43 0.1968 0.001 392 Hopf Tk ¼ 0
0.566 13 0.198 023 I3 ¼ 0.001 377 4
0.7499 0.2921 0.000 323 5 Hopf Tk ¼ 0
x02 ¼ 0.7645 0.2930 0.000 280 4 F0 xð Þ ¼ 0.

Pass to Rdc > 0
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The analysis of stability parameters is shown in Fig. 7. In contrast
to FHN, in this model Rb is positive for any x. Since gx ¼ F0, we
observe in the central region of Fig. 7(a) that F0 is positive and xL < 0
for x01 < x < x02 (Table IV). Here, the x variable becomes

destabilizing. The positive value of gx is due to a negative Ra, while the
inductor La is positive. Inside this domain, there are regions with D
either negative or positive, and in the latter, there is a region in which
Tk > 0. Note in Fig. 7(b) the condition (25) for the Hopf bifurcation,
by the intercept of xL and �xb, that determines the set of points in
which Tk > 0.

Figure 8 presents the dynamical evolution for selected values of
the fixed point x1. In the domain where Tk > 0 limit cycle oscillations
occur. This happens even though the dc resistance is negative, since
the determinant is positive. At x03 ¼ 0:935, both the inductor La and
Ra become negative, but this regime with xL > 0 does not introduce
instabilities as discussed in Sec. VII.

The different impedance spectra for the stationary x1
values are shown in Fig. 9. The most remarkable result is in Fig.
9(f) for the region of limit cycle oscillations. The impedance
contains a negative resistance at finite frequencies, but the dc
resistance is negative and the spectrum is different compared to
Fig. 4(j).

X. OSCILLATIONS IN HODGKIN–HUXLEY MODEL

The Hodgkin–Huxley (HH) dynamical model for the squid giant
axon membrane66 is a central piece of the description of neuronal
behavior. Impedance and bifurcation of the Hodgkin–Huxley model
have been analyzed by Chua and co-workers.67,68 Here, we use the
results of a previous calculation53 to show the role of different elements
in the small perturbation equivalent circuit, including negative
inductors.

The HH model is composed of four differential equations.
One has the form of Eq. (1) and three additional equations that
describe the slow variable dynamics of two ion channels.1 This
model lays outside the above classification for two-dimensional
systems. However, we find that the structure described in the pre-
vious 2D approach is nested in the higher order HH model so that
our discussion is useful for the interpretation of the neuron
spiking.

For example, the internal state variables for the sodium channel
obey the following equations:

dm
dt
¼ am Vð Þ 1�mð Þ � bm Vð Þm; (52)

dh
dt
¼ ah Vð Þ 1� hð Þ � bh Vð Þh: (53)

The parameters are defined in Ref. 53. These two equations have
the standard form of the chemical inductor structure, Eq. (2), and they
lead to the equivalent circuit elements,53

Rm VMð Þ ¼ RNa0

3m2h VM � VNa

� �
sm

@am

@VM
1�mð Þ � @bm

@VM
m

" # ; (54)

Lm VMð Þ ¼ Rmsm; (55)

Rh VMð Þ ¼ RNa0

m3 VM � VNa

� �
sh

@ah

@VM
1� hð Þ � @bh

@VM
h

" # ; (56)

Lh VMð Þ ¼ Rhsh; (57)

FIG. 7. (a) Stability variables. Values D ¼ 0 are at x ¼ 0:1623; 0:3043; Tk ¼ 0
at x ¼ 0:5644; 0:7499. (b) Characteristic frequencies. (c) Circuit elements.
Parameters RI ¼ 1; d ¼ 0:1; su ¼ 10�2; � ¼ 0:01. Rdc < 0 at 0:1599 < x
< 0:1623 and at 0:3043 < x < 0:7645:
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where the relaxation time constants si of the activation-gate variables
are defined as follows:

si ¼
1

ai þ bi
: (58)

The HH membrane model was originally depicted using variable
resistances as indicated in Fig. 10(a).66 The small perturbation equiva-
lent circuit of the HH model is shown in Fig. 10(b).53 It is obviously a
multiple combination of the essential structure of Fig. 1. Figure 10(b)
contains one chemical inductor for the potassium channel (blue), and
a double chemical inductor subcircuit for the sodium channel (red).
The presence of the inductor in the axon membrane impedance was

well recognized by Cole and Baker much earlier than the development
of the HHmodel.14,69,70

Following the modern convention,71,72 we consider a resting
potential of the neuron of Vr ¼ �65mV at a temperature of
T ¼ 6:3 �C.66 The neuron oscillation occurs in a narrow voltage range
between VM ¼ �42:99mV and VM ¼ �60:25mV. In Fig. 11, we
show the full impedance spectra in a set of selected voltages. Clearly,
the oscillating region of voltages is characterized by the impedance
pattern with a negative finite resistance, shown in Fig. 11(c). This is
associated with a Hopf bifurcation as explained in Fig. 4(j).

In Fig. 12, we show the impedances of the sodium channel com-
ponents. We observe that there are both a positive inductor, h, and a

FIG. 8. Trajectories in phase plane and
voltage evolution with time of a model
memristor for different values of the fixed
point x1 indicted by a red point. The
orange point is the starting condition.
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negative inductor, m. However, the resistance Rm accompanying the
negative inductor is also negative, hence sL > 0 and the inductor line
is stable.

On the other hand, the total resistance of the sodium channel
between �40 and �60mV is negative as observed in the impedance
spectra of Fig. 13(a). We conclude that the oscillations in the HH axon
model are not due to a negative inductor component but to the cou-
pling of the negative resistance of the sodium channel with the induc-
tor elements in the sodium and potassium channels.

XI. CONCLUSION

A general analysis of 2D nonlinear oscillating systems shows that
the signs of the derivatives of the constituent functions translate into a
classification of signs of the equivalent circuit elements. In turn, these
elements determine the stability or oscillating conditions according to
a set of characteristic frequencies formed by the products of the circuit
elements. When viewed by a small perturbation in the frequency
domain, the essential structure of the models is composed of a con-
ducting line, an inductor line, and a parallel capacitance. The system
can be destabilized by a negative resistance in either the conducting
line or the inductor branch. When the system contains negative ele-
ments in the inductor branch, the sign of the dc resistance and the

FIG. 9. Evolution of impedance spectra at
different values of the fixed point x1.

FIG. 10. (a) Hodgkin–Huxley electrical model for the squid giant axon membrane
consisting of variable resistances in the ion channels as defined in the original pub-
lication. (b) Equivalent circuit for the Hodgkin–Huxley model for small ac voltage
perturbations. The potassium channel components are indicated in blue, and the
sodium elements in red.53
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FIG. 11. Impedance complex plane plots for voltages (a) above the upper limit of the negative impedance region, (b) around the upper limit VM ¼ �42:99 mV, (c) in the nega-
tive impedance region and (d) around the lower limit VM ¼ �60:25mV.

FIG. 12. Impedance details of the Na channel. (a) EC used of the Na channel. (b)
and (c) Values of the resistances and inductors for the range of membrane vol-
tages, respectively. (d) Inductor characteristic time.

FIG. 13. Impedance complex plane plots for the sodium channel EC. (a) is for spectra
with smaller impedance values and (b) is for spectra with bigger impedance values.
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sign of the determinant can be reversed. The presence of a negative
inductor has been found in many systems, including the classical
Hodgkin–Huxley neuron model. However, the negative inductor per
se does not indicate instability.
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