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1. Introduction

Synchronous oscillations are a dominant phenomenon in the
brain.[1–4] The emergence and synchronization of these rhythms
are caused by populations of interacting spiking neurons in
which the firing of one neuron results in a perturbation of
the voltage of a neighbor neuron and displaces the neurons
towards synchrony into a coherent oscillation mode. These syn-
chronous oscillations are the origin of brain activity that exists in
the absence of external input. Coupled oscillators are also inves-
tigated as a biology-inspired practical way to perform

computation for artificial intelligence
(AI).[5,6] The synchronization of multiple
elements is the key feature of oscillator-
based computing approaches.[7]

The coupling of dynamical neuron mod-
els and the analysis of bifurcations of the
spiking network has been amply investi-
gated to understand the collective dynamics
of neural networks.[3,8–12] The simplest
model that displays the features of neural
interaction consists of two coupled neural
systems. The dynamical features resulting
from the interaction of the paradigmatic
FitzHugh–Nagumo (FHN)[13,14] neurons,
which is the topic of this paper, have been
extensively studied.[12,15–19] With the intro-
duction of the time delay interaction the
coupled FHN neurons display a transition
from the original disordered motions to
periodic ones, which is accompanied by
complex bifurcation properties.[20–25]

Impedance spectroscopy (IS) is a
multipurpose characterization technique
widely used in materials science and

electrochemistry.[26] In IS, the system is held at a steady state
by the application of constant voltage V . The current Ĩ in
response to a small periodic perturbation Ṽ of angular frequency
ω is measured. The resulting linear impedance data is described
in terms of an equivalent circuit (EC) model that provides
detailed information on the physical processes occurring at dif-
ferent time/frequency scales.

The paradigm of excitability developed by Hodgkin and
Huxley[27] (HH) emerged from a tradition of analysis of
neurons by electrical and electrochemical methods.[13,28–31] It is,
therefore, interesting to calculate the small perturbation AC
impedance properties of neuronal models. Recently, we showed
the properties of IS of neuron models like HH[32] and FHN.[33]

We have classified the properties of equivalent circuits and
Hopf bifurcations in 2D neuron models.[34,35] These insights
pave the way to create functional elements for the construction
of computational neuronal networks based on memristor
elements.[36,37] In this work, we show the new aspects of the
impedance when two FHN neurons are coupled with time delay.

The structure of the article is as follows. Section 2 revises the
impedance model for a single neuron, and Section 3 describes
the different schemes of delayed coupling in neuron networks.
Section 4 analyzes a specific model in which two FHN neurons
are restrained with interactive time delay. Section 5 describes the
spiking patterns of the coupled system, and Section 6 shows the
associated impedance patterns. We finish with some conclusions.
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The synchronization of populations of interacting spiking neurons is a topic of
interest for understanding the operation of the brain and for developing oscil-
latory-based biomimetic computation. The analysis of the operation of neurons
by models such as Hodgkin–Huxley (HH) and FitzHugh–Nagumo (FHN) is
based on the electrical and electrochemical concepts. The application of small-
signal AC impedance and equivalent circuit methods is a promising tool for the
fabrication of artificial neurons and synapses with memristor technologies for
neuromorphic computation and sensory-motor autonomous systems. The time
domain and impedance spectroscopy analysis of two FHN neurons coupled with
a time delay related to the propagation of the action potentials is developed.
Depending on the coupling strength and delay time constant, the two neurons
become synchronized, in phase opposition for a weak coupling, and in alternating
spike packets for the strong interaction. The delayed interaction introduces a new
element in the equivalent circuit. A new oscillatory impedance that causes curling of
the basic spectral patterns associated with the onset of a limit cycle in the presence
of Hopf bifurcations is found. The new pattern is appealing as an experimental tool
to determine experimentally the extent of coupling between neurons.
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2. Single Neuron Model

We summarize here the main properties of IS of 2D neuron
models[33–35] before entering a coupled two-neuron system.
We consider the transmembrane voltage u, the total current
Itot and an additional internal state variable w. A general 2D
dynamical model is defined by the following equations35

τm
du
dt

¼ f ðu,w, ItotÞ (1)

τk
dw
dt

¼ gðu,wÞ (2)

Here, τm, τk are the characteristic times of the fast variable u
and the slow variable x, respectively, accordingly, it is expected
the property τk ≫ τm of the excitable neuron membrane.[38]

f and g are in general nonlinear functions that define the
properties of the model. A 2D electrical or electrochemical oscil-
lating system contains a negative resistance in the fast variable
part f.[39]

The FHN model displays rich bifurcation properties.[40–43]

It is defined by the following functions[33]

f ¼ �u3

3
þ u� RIw þ RIItot (3)

g ¼ 1
Rw

u� bw (4)

The slow variable w is an internal recovery current that repre-
sents the changes in ion-channel conductance as a function of
the voltage. The model introduces a set of specific parameters
that establish the possible bifurcations and qualitatively different
dynamical evolutions: a channel resistor RI , a recovery current
resistor Rw , and a modulation constant b. We introduce the ratio
of timescales and ratio of resistances[33]

ε ¼ τm
τk

(5)

r ¼ RI

Rw
(6)

According to the dominant channel, the DC resistance is
positive as in Figure 1a, or it is negative in a saddle feature in
Figure 1b.

From Equation (1) to (2), one generates the linearized
equations that provide impedance spectroscopy criteria for the
bifurcation properties. The impedance function is[35]

ZðsÞ ¼ ½RbðuÞ�1 þ Cmsþ ðRa þ LasÞ�1��1 (7)

The parameters in Equation (7) are

Cm ¼ τm
RI

(8)

Ra ¼ bRw (9)

Rb ¼
u
2

� �
2
� 1

� ��1
RI (10)

La ¼ τkRw (11)

The EC is shown in Figure 2a. Cm in Equation (8) is the mem-
brane capacitance. Rb in Equation (10) is the intrinsic resistance
of the membrane that contains the negative portion necessary for
bifurcations and oscillation.[33] The third circuit line in Figure 2a
is formed by a positive resistance Ra and the chemical inductor
element La.

[34]

Impedances are usually plotted in the complex plane
Z ¼ Z

0 � iZ00. The impedance shapes are separated by the
Hopf bifurcation voltage uH . In the range u > uH, the fixed point
is a sink and the impedance shows the pattern in Figure 2b. The
high-frequency arc makes an excursion to the fourth quadrant
due to the influence of the inductor. A different spectrum is
obtained when the fixed point becomes an unstable source at
u < uH, Figure 2c. The impedance starts with a positive resis-
tance at a low frequency in agreement with the positive slope
in Figure 1a for r=b > 1. But at a finite frequency the negative
resistance Rb dominates over Ra and Z intersects the negative
Z0 axis at a finite frequency. This impedance spectrum with hid-
den negative resistance,[44] Figure 2c, is the signature of a stable
limit cycle that produces stationary oscillations in the 2D system.
The caption of Figure 2 shows the characteristic frequencies

Figure 1. Current–voltage stationary curves for RI¼ 0.5 and different r=b as indicated.
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fωa,ωb,ωL,ωc,ωd,ωo, � ωL � ωbg corresponding to the classifi-
cation method.[35] The Hopf bifurcation occurs when ωL ¼ �ωb.

3. Coupling of Neurons

Communication between neurons is not instantaneous due to
the finite propagating speed in the signal switching and trans-
mission between the neurons. Time delay in the interaction is
inevitable in the neural network and should be incorporated into
the mathematical model. The analysis of coupled delayed differ-
ential equations has been amply studied for the analysis of the
stability of neural networks.[45–47] An approach to a system of
mutually restrained neurons can be established by using a set
of elementary neuron dynamical equations as (1–2) and introduc-
ing a coupling function C, as follows[17,19,23,48–52]

τm
dui
dt

¼ f ðui,wi, ItotÞ þ
X
i, j

Cij (12)

τk
dwi

dt
¼ gðui,wiÞ (13)

where

CijðtÞ ¼ CijðuiðtÞ, ujðt� τcÞÞ (14)

is a coupling function with a delay time τc . This system of
equations allows us to study not only coupled neurons but
also the coupling of neuronal subensembles that operate
synchronically.[15] Different models have been considered for
CðtÞ, for example, a linear coupling of strength ρc

[15]

CijðtÞ ¼ ρc½ujðt� τcÞ � uiðtÞ� (15)

A frequently used model is the sigmoid coupling[20–22,24]

CjðtÞ ¼ c1 tanhðujðt� τcÞÞ (16)

The coupling function may include a time-distributed delay
via a memory function mðtÞ[50,51]

CjðtÞ ¼ c2

Z
t

�∞
mðt� xÞujðx � τcÞdx (17)

4. Coupled Neurons Model

The dynamical model is based on two FHN neurons coupled
by the linear function of Equation (15).[15,23] It consists of the
following equations[33]

Figure 2. a) Equivalent circuit model for the FitzHugh–Nagumo (FHN) model. b,c) Complex plane impedance representation of the spectral
patterns. Parameters fRa, Rb, La, Cmg, fωa,ωb,ωL,ωc,ωd ,ωo, � ωL � ωbg. b) {12 , 1, 2, 1g f2, 1, 1

4 , 0.657, Im, 0.866, � 5
4, c) f12 , � 1, 1, 1gf2, � 1, 1

2 ,
0.866, 0.5, 0.707, 1

2g.
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τm
du1
dt

¼ �u31
3
þ u1 þ RIð�w1 þ I1Þ þ ρc½u2ðt� τcÞ � u1ðtÞ�

(18)

τk
dw1

dt
¼ 1

Rw
u1 � bw1 (19)

τm
du2
dt

¼ �u32
3
þ u2 þ RIð�w2 þ I2Þ þ ρc½u1ðt� τcÞ � u2ðtÞ�

(20)

τk
dw2

dt
¼ 1

Rw
u2 � bw2 (21)

The physical variables for each neuron are the membrane
voltages ui and currents Ii and the internal recovery currents
wi. Time is reported in s, voltages in V, current in A, and impe-
dances are given in Ω. The independent parameters in the
model are the voltage response time τm, the recovery current
response time τk, channel resistor RI , recovery current resistor
Rw and modulation constant b, delay time τc, and coupling
strength ρc.

We consider that the neurons are connected in series, hence
the total voltage u and current I satisfy the relations

u ¼ u1 þ u2 (22)

I ¼ I1 ¼ I2 (23)

Let us assume that in a steady-state situation (indicated by an
overbar) the delay has no effect so that the voltages tend to a
unique stationary point.

lim
t!∞

½u2ðt� τcÞ � u1ðtÞ� ¼ 0 (24)

Then the model is symmetric, hence ut ¼ u1=2 ¼ u2=2. The
stationary current-voltage (I � u) is independent of the coupling
parameters, and it has the following expression

I ¼ 1
2RI

½ 1
12

u3 þ r
b
� 1

� �
u� (25)

The possible forms are shown in Figure 1. The DC resistance
is

R�1
dc ¼ dI

du
¼ 1

2RI

u2

4
þ r
b
� 1

� �
(26)

The coupling resistance is

Rρ ¼
RI

ρc
(27)

To derive the response to a small perturbation, we develop lin-
early Equation (18)–(21), with small quantities indicated by a
tilde. To obtain the AC impedance, we take the standard method
of Laplace transform, d=dt ! s, where s ¼ iω. Consider the delay
differential equation

dx
dt

¼ f ðxðtÞ, xðt� τÞÞ (28)

xðtÞ ¼ gðtÞ, tϵ½�τ, 0� (29)

xðtÞ ¼ x0, t ¼ 0 (30)

The Laplace transform of the delayed function is

L½xðt� τÞ� ¼ e�sτ
Z

0

�τ
e�stgðtÞdtþ e�sτ

Z
∞

0
e�stxðtÞdt

¼ e�sτGðsÞ þ e�sτXðsÞ
(31)

In the oscillatory regime of ac impedance we neglect the term
of the initial function G(s) in the last line of (31).

From Equation (18)–(21) we arrive at the system

Cmsũ1 ¼ � 1
Rb

þ 1
Rρ

� �
ũ1 þ

1
Rρ

e�sτc ũ2 � w̃1 þ Ĩ (32)

sw̃1 ¼
1
La

ũ1 �
b
τk
w̃1 (33)

Cmsũ2 ¼ � 1
Rb

þ 1
Rρ

� �
ũ2 þ

1
R
e�sτc ũ1 � w̃2 þ Ĩ (34)

sw̃2 ¼
1
La

ũ2 �
b
τk
w̃2 (35)

The characteristic equation of the linearized system is

� u2
4 � 1þ ρc

� �
� λ �RI ρce�λτc 0

εr
RI

�bε� λ 0 0

ρce�λτc 0 � u2
4 � 1þ ρc

� �
� λ �RI

0 0 εr
RI

�bε� λ

0
BBBB@

1
CCCCA

¼ 0

(36)

That is

λ2 þ u2

4
� 1þ ρc þ bϵ

� �
λþ bϵ

u2

4
� 1þ ρc þ

r
b

� �� �
2

� ½ρce�λτc ðbεþ λÞ�2 ¼ 0

(37)

where λ is in units τ�1
m . Equation (37) is a transcendental equa-

tion that determines the bifurcation properties of the
system.[20–25]

We discuss the situation with no delay τc ¼ 0. Taking a square
root in Equation (37), we obtain

λ2 � Tλλþ Δ ¼ 0 (38)

Hence

λi ¼
1
2

Tλ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
λ � 4Δ

q� �
(39)

A parameter tb ¼ 1� 1 provides two types of conjugated roots,
where the first case tb ¼ 0 corresponds to a duplication of the
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interaction-free system that has been explained before[33] while
tb ¼ 2 is due to the instantaneous coupling. We have

Tλ ¼ 1� u2

4
� bε� tbρc (40)

Δ ¼ bε
u2

4
� 1þ r

b
þ tbρc

� �
¼ bεRI

2
Rdc

þ tb
Rρ

� �
(41)

T2
λ � 4Δ ¼ 1� u2

4
þ bε� tbρc

� �2
� 4rε (42)

We obtain the following characteristics. 1) Δ < 0 corresponds
to real eigenvalues λ1,2 with opposite sign. For tb ¼ 0, this is the
region of negative Rdc, resulting in three fixed points (a saddle
and two sinks) that occur when r=b < 1, Figure 1b. 2) In contrast,
Δ > 0 and tb ¼ 0 correspond to a single-valued I � u curve,
Figure 1a. Here, the stability of the fixed point IðuÞ is determined
by Tλ < 0. At Tλ ¼ 0 is a Hopf bifurcation. When Tλ > 0 and
T2
λ � 4Δ < 0, the fixed point becomes an unstable source with

a pair of complex conjugate values in Equation (33). Hence the
two-neuron system contains Hopf bifurcations without interac-
tions, which impedance spectra have been described before.44

3) When tb ¼ 2 a new bifurcation point is added due to ρc ,

according to Equations (40) and (41). 4) The previous results
are for τc ¼ 0. The delay τc is yet an additional bifurcation param-
eter that has been amply studied in the literature.[20–25]

5. Spiking Patterns

We analyze the following situation of the positive DC resistance
corresponding to r=b > 1, Figure 1a. In Figure 3, 4 and 5, we show
the dynamical patterns with progressive complexity. Here we dis-
cuss the time domain response and the impedance patterns will be
analyzed in Section 6. A Mathematica program for calculations of
the model is provided in Supporting Information.

Figure 3 shows the uncoupled system that has two types of
behaviors according to the Hopf bifurcation voltage uH.

[33]

For u > uH , the voltages of the two neurons tend to the fixed point
corresponding to the I � u characteristic, Figure 3a, and for u <
uH both neurons effect stable limit cycle oscillations, Figure 3b.

When we set the coupling parameter ρc (without delay, τc ¼ 0)
in Figure 4a, the neurons become fully synchronized.
Introducing a short value of delay time constant τc ¼ τk,
Figure 4b, the neurons oscillate in antiphase. For a longer τc ,
an alternating rhythm comprising a few oscillations alternated
with a rest period appears, Figure 4c, and for a very long

Figure 3. The neurons patterns for noninteraction case. a,b) The first column shows the trajectories in the phase plane, second is the voltage
dependence on time for the two neurons. c,d,e) Impedance spectra patterns. RI ¼ 0.5, b ¼ 1, r ¼ 1.2, τm ¼ 10�2, initial conditions
u10 ¼ uapp=2þ 1, u20 ¼ uapp=2� 1,w01 ¼ w02 ¼ 2, and the rest of the parameters as indicated. Hopf bifurcation voltage for no interaction case: uH ¼ 1.8974.
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Figure 4. Two coupled neuron neurons patterns. a,b,c,f ) The first column shows the trajectories in the phase plane, second is the voltage dependence
on time for the two neurons, and d,e,g,h) the impedance spectra patterns. RI ¼ 0.5, b ¼ 1, r ¼ 1.2, τm ¼ 10�2, initial conditions
u10 ¼ uapp=2þ 1, u20 ¼ uapp=2� 1,w01 ¼ w02 ¼ 2, and the rest of the parameters as indicated. Hopf bifurcation voltage for no interaction case:
uH ¼ 1.8974, 1.4142.
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τc ≫ τk one molecule falls to a steady voltage and the other one
oscillates, Figure 4f.

In Figure 5, we introduce a stronger coupling ρc. At high volt-
age in Figure 5a, the two neurons tend to two different coupled
fixed points that add up to the applied voltage, in long steps.
As we reduce the voltage in Figure 5b approaching the Hopf
bifurcation, the neurons alternate in attaining a fixed value with
a damped oscillation. For a small voltage in Figure 5c, the alter-
nation of limit cycles as in Figure 4c occurs.

6. Impedance Patterns

To obtain the impedance Z ¼ ũ=eI, we solve the system of
Equation (32)–(35). The result is

ðsÞ ¼ 2½RbðuÞ�1 þ Cmsþ ðRa þ LasÞ�1 þ Z�1
ρ ��1 (43)

ZρðsÞ ¼
Rρ

1� e�sτc
(44)

The EC corresponding to Equation (43) contains four parallel
branches as indicated in Figure 6a. The upper three branches
correspond to the single neuron impedance EC model as
described before in Figure 2a. In the interaction-free system,

we have the patterns discussed before in Figure 2, see
Figure 3c,e. Approaching the bifurcation, Figure 3d, the positive
arc takes a shape close to a circle and the impedance crosses to
the negative Z0 at high frequency but there is not yet a negative
real impedance, that occurs after the Hopf bifurcation in
Figure 3e.

The last branch of Figure 6a is the contribution produced by
the delayed coupling, which consists of the impedance Zρ in
Equation (44). To the best of our knowledge, this impedance
function is not previously reported. We can write it as

ZρðωÞ ¼
Rρ

2
1� i

sinðωτcÞ
1� cosðωτcÞ

� �
(45)

The real part is a constant and the imaginary part is highly
oscillatory, with poles at the frequencies

ωn ¼
2nπ
τc

(46)

The function is shown in Figure 6b,c. We can write the admit-
tance as

1
Zρ

¼ 1
Rρ

½1� cosðωτcÞ � i sinðωτcÞ� (47)

Figure 5. Oscillatory patterns in the coupling of two neurons. The first column shows the trajectories in the phase plane, second is the voltage depen-
dence on time for the two neurons. RI ¼ 0.5, b ¼ 1, r ¼ 1.2, τm ¼ 10�2, initial conditions u10 ¼ uapp=2þ 1, u20 ¼ uapp=2� 1,w01 ¼ w02 ¼ 2, and the rest
of the parameters as indicated. Hopf bifurcation voltage for no interaction case: uH ¼ 1.6733.
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If we add a parallel resistor R1 then the impedance traces a
circle centered in the point of the real axis

Zc ¼
Rρ þ R1

2þ Rρ

R1

(48)

The minimum and maximum values in the Z0 axis are
given by

Za ¼
Rρ

2þ Rρ

R1

(49)

Zb ¼ R1 (50)

Figure 6d–f shows the impedance ZρðωÞ with a parallel
resistance for different ranges of frequency. Initially, it is a neat
circumference but when ω ≫ τc the oscillatory function fills the
space and forms a circle.

Figure 6. a) Equivalent circuit of the coupled neuron system. b,c) Representation of the imaginary part of the impedance Zρ as a function of frequency.
d,e,f ) Complex plane representation of the impedance ZρðωÞ with a parallel resistance Rp ¼ 2 for Rρ ¼ 1, τc ¼ 1 and the frequency interval
ω ¼ ð0.1, f 1Þ � 2π, for: d) f 1 ¼ 1, d) f 1 ¼ 10, d) f 1 ¼ 100. Points indicate the circle parameters: Red Za, cyan Zc, green Zb. g,h) Representation of
the total impedance for RI ¼ 0.5, b ¼ 1, r ¼ 1.2, τm ¼ 10�2, ϵ ¼ 0.1, ρc ¼ 0, τc ¼ 0 (red line) and ρc ¼ 0.2, τc ¼ 10τk (blue line).
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We can now turn to the analysis of impedance patterns
of the full model of Equation (43) and Figure 6a. In Figure 4d,
e, the delayed coupling of the neurons is active. By
Equation (43), the original hook impedance of Figure 2b is com-
bined in parallel with the oscillatory Zρ. The resulting impedance
in Figure 4d is coiled around the basic pattern, tracing the shape of
an ammonite. The same occurs for the impedance shape for a
voltage below the Hopf bifurcation in Figure 4e. For a longer cou-
pling time, the coiled regions become denser, Figure 4g,h.
Figure 6g,h shows the curling of the impedance when the
interaction is added to the coupling-free system. It occurs inwards
for u > uH, and outwards for u < uH.

7. Conclusion

We have discussed the dynamical regimes of two identical
neurons coupled with time delay, from the point of view of elec-
trical models. Based on previous work that describes the imped-
ance spectroscopy of a single 2D model neuron, here we obtain
the spiking patterns and impedance response of the interacting
system. For a weak interaction, the spikes become simply
dephased, but for stronger interactions trains of spikes appear,
and the excitation is alternated between the two neurons. In the
coupled system, the basic impedance patterns of the single neu-
ron obtain a curling form depending on the relation of the delay
time to the intrinsic time of the neurons. In principle, the new
types of spectra appear suitable for a direct experimental identi-
fication of coupled neuron spiking by impedance spectroscopy.
The analysis of larger networks which is an important objective
of the work appears challenging. It will be necessary to
separate the effects of delay and internal excitation in the impedance
spectra to detect new bifurcations and ensemble synchronization.
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