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12.1 INTRODUCTION

Impedance Spectroscopy (IS) has become a major tool for investigating the properties 
and quality of dye-sensitized solar cell (DSC) devices. This chapter provides an intro-
duction of IS interpretation methods focusing on the analysis of DSC impedance data. 
It also presents a scope of the main results obtained so far. IS gives access to funda-
mental mechanisms of operation of solar cells, for which reason we discuss our views 
of basic photovoltaic principles required to realize the interpretation of the experi-
mental results. The chapter summarizes some 10 years of experience of the authors 
with regard to modeling, measurement and interpretation of IS applied in DSC.

A good way to start this subject is a brief recollection of how it evolved over 
the fi rst years. The original “standard” confi guration of a DSC [12.1] that emerged in 
the early 1990s is formed by a large internal area constituted of a nanostructured TiO2 
semiconductor, connected to a transparent conducting oxide (TCO) and coated with 
photoactive dye molecules. It is furthermore in contact with a redox I I−

3
−/  electrolyte 

that is in turn connected to a Pt-catalyzed counterelectrode (CE). The DSC was ini-
tially developed to be a photoelectrochemical solar cell. Electrochemical Impedance 
Spectroscopy (EIS) is a traditional method, central to electrochemical science and 
technology. Electrochemistry usually investigates interfacial charge transfer between 
a solid conductor (the working electrode, WE) and an electrolyte. This is done with a 
voltage applied between the WE and CE, with the assistance of a reference electrode 
(RE), rendering it possible to identify the voltage drop at the interface between the 
WE and the electrolyte. In addition, the electrolyte often contains a salt that provides 
a large conductivity in the liquid phase and removes limitations by drift transport in 
an electrical fi eld. Electrochemistry is thus mostly concerned with interfacial charge 
transfer events, possibly governed by diffusion of reactants or products. It is with EIS 
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possible to readily separate the interfacial capacitance and charge-transfer resistance, 
as well as to identify diffusion components in the electrolyte. A good introduction to 
such applications is given by Gabrielli [12.2].

In solid state solar cell science and technology, the most commonly applied 
frequency technique is Admittance Spectroscopy (AS). By tradition, AS denominates 
a special method that operates at reverse voltage and evaluates the energy levels of 
majority carrier traps (in general, all those that cross the Fermi level) as well as trap 
densities of states [12.3]. In work on DSCs and other solar cells, we may be interested 
to probe a wide variety of conditions. Consequently, we generally use the denomina-
tion Impedance Spectroscopy (IS) when referring to the technique applied in this 
context (rather than EIS or AS).

Before the advent of DSC, IS had been largely applied in photoelectrochem-
istry [12.4, 12.5]. This is a fi eld widely explored since the 1970s, using compact 
monocrystalline or polycrystalline semiconductor electrodes for sunlight energy con-
version [12.6-12.8]. In these systems, IS provides information on the electronic car-
rier concentration at the surface, via Mott-Schottky plots (i.e., the reciprocal square 
capacitance versus the bias voltage) as well as on the rates of interfacial charge trans-
fer [12.9-12.11]. Several important concepts, later to be applied in DSC, where estab-
lished at that time, such as the bandedge shift by charging of the Helmholtz layer and 
the crucial role of surface states in electron or hole transfer to acceptors in solution 
[12.9, 12.10, 12.12-12.14]. Nonetheless, it was clearly recognized that applying IS in 
these systems is far from trivial, for example due to the presence of frequency disper-
sion that complicates the determination of parameters [12.15]

It was natural to apply such well-established electrochemical methods to DSC 
and several groups have done so [12.16-12.19]. However, in the early studies, it was 
necessary to clarify a conceptual framework of interpretation which took several years. 
On the one hand, the early diffusion-recombination model [12.20] was generally 
adopted for steady-state techniques and produced very good results when extended to 
light-modulated frequency techniques [12.21]. In this approach, the only role of the 
applied voltage is to establish the concentration of electrons at the edge of the TiO2 in 
contact with TCO [12.20, 12.21]. On the other hand, classical photoelectrochemical 
methods heavily rest on the notion of charge collection at the surface space-charge 
layer, while diffusion is viewed as an auxiliary component, at best [12.22]. Thus, 
in photoelectrochemistry of compact semiconductor electrodes, the main method to 
describe the system behavior is an understanding of the electric potential distribution 
between the bulk semiconductor and the semiconductor/electrolyte interface [12.7].

Owing to these confl icting approaches, in the DSC area there were many discus-
sions concerning the distribution of the applied voltage as internal “potential drops”, 
the origin of photovoltage, screening, and the role of electron-hole separation at the 
space-charge region [12.23-12.27]. This is understandable since the DSC is a porous, 
heterogeneous system, and in models of systems with a complex morphology, it is 
generally diffi cult to match diffusion control with a precise statement regarding the 
electrical potential distribution. The key element for progress is to adopt a macro-
homogeneous approach and focus in the spatial distribution of the Fermi level. This 
method emerged in the DSC area [12.24, 12.28-12.30] and eventually led to gener-
alized photovoltaic principles based on the splitting of Fermi levels and the  crucial 
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role of selective contacts [12.31-12.34]. Another central concept that appeared in the 
DSC area was a “conduction band capacitance” [12.26, 12.28, 12.30], later to be 
generally defi ned as a chemical capacitance [12.35]. This capacitive element is nor-
mally absent in classical photoelectrochemistry but is key for the interpretation of 
frequency-resolved techniques in DSC. Also important was the recognition [12.26, 
12.36] that nanostructured TiO2 should be treated as a disordered material, much like 
the amorphous semiconductors [12.37-12.39], with electronic traps affecting not only 
the surface events, but any differential/kinetic measurements, including the chemical 
capacitance [12.35], recombination lifetime and transport coeffi cients [12.40].

The passage from established ideas of photoelectrochemistry to those best 
suited to the DSC have inevitably rendered it necessary to treat the porous-mixed 
phase structure of the DSC. Electrochemistry was already evolving in this direction for 
some decades, fi rst with the description of porous electrodes [12.41], and then, with 
the introduction of truly active electrodes that become modifi ed under bias voltage, 
such as intercalation metal-oxides [12.42], conducting polymers [12.43] and redox 
polymers [12.44]. Especially important is the work of Chidsey and Murray [12.44], 
which shows the modifi cation of the diffusion coeffi cient in the solid phase, as well as 
the capacitance of the solid material as a whole, in opposition to the standard interfa-
cial capacitance. In the analysis of these systems, either porous or not, the importance 
of coupling transport elements with interfacial and/or recombination components for 
a proper description of IS data was well recognized. Transmission line models pro-
vide a natural representation of the IS models and are widely used [12.43, 12.45].

As demonstrated in Figure 12.1, transmission line models incorporating fre-
quency dispersion, which is ubiquitous in disordered materials, have been developed 
and applied to nanostructured TiO2 used in DSC. A very good realization of the model 
was soon found in the experiment, as shown in Figure 12.2 [12.46]. Later, diffusion-
reaction models were solved for IS characterization, and the models where put in rela-
tion to both nanostructured semiconductors and bulk semiconductors for solar cells 
[12.47]. Disorder was included also in generalized transmission lines for anomalous 
diffusion [12.48]. In addition, the role of macroscopic contacts was analyzed in gen-
eralized transmission line models, as shown in Figure 12.1(b) [12.49], and this effect 
would take relevance as a result of the TCO contribution to the measured impedance 
[12.50, 12.51].

The calculation of the diffusion-recombination impedance [12.47] opened the 
way for a direct measurement of conductivity of electrons in TiO2 by IS [12.52], 
which provided a good validation of the method. Further, the diffusion- recombination 
impedance also naturally reveals [12.47] the chemical capacitance of electrons in 
nanostructured TiO2 (associated to the rise of the Fermi level), which also appears in 
measurements of cyclic voltammetry (at slow scan rates) [12.53] and electron lifetime 
[12.54].

Application of these IS methods and models to DSC [12.51] demonstrated that 
IS provides a picture of the energetics of TiO2, which is a crucial tool for compar-
ing DSC confi gurations [12.55]. It also showed that it was possible to simultane-
ously obtain the parameters for transport and recombination at various steady-state 
conditions of a DSC, which is an unsurpassed power of the technique. The trends 
of the electron diffusion coeffi cient [12.51] where similar to those found previously 
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by L. M. Peter and coworkers by light-modulated approaches [12.56]. The electron 
lifetime derived from IS measurements was also consistent [12.55] with that obtained 
from open-circuit voltage decays [12.54, 12.57]. The variation of parameters with 
the bias voltage (correspondent to the electron Fermi level) observed by IS and other 
methods was related to multiple trapping characteristics in an exponential distribution 
of states [12.33, 12.58]. This subject has been recently summarized in several review 
articles [12.59-12.61].

The consistency of the various experimental methods has provided great con-
fi dence in the signifi cance of modeling and experimental tools. The usefulness of IS 
for DSC characterization has become apparent, since IS renders it possible to obtain 
a complete picture of the different device aspects [12.18, 12.19]. Several groups have 
presented detailed and systematic IS characterizations of DSCs [12.62-12.64]. The 
literature concerning the application of IS in DSC is very large and we do not aim to 
cite all the contributions. Rather, we highlight a paper on high effi ciency DSC [12.65] 
which provides excellent examples of diffusion-recombination impedances, a full 
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Fig. 12.1 (a) A general two-channel transmission line equivalent circuit for a porous electrode 
or diffusion coupled with recombination, with blocking boundary conditions at both chan-
nel ends [12.46]. (b) The two-channel transmission line with generalized boundary conditions 
[12.49]. Notice that the ZA box corresponds to the electrical properties of the electrolyte/ 
substrate interface, although it is not drawn precisely at that point for the sake of convenience 
of representation.
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analysis of electron transport data, as well as the reconstruction of the current density-
potential ( j-V )curve from the resistance obtained by IS. Subsequently, IS has been 
applied in a variety of important confi gurations of DSC, such as those using ionic 
liquids [12.66], ordered TiO2 nanotubes [12.67], and solid hole conductor [12.68].

12.2 A BASIC SOLAR CELL MODEL

12.2.1 The ideal diode model

Many general aspects of solar cell operation can be understood starting with an ideal 
model that represents optimal performance. Figure 12.3(a) shows the steady-state char-
acteristic j-V curve of a solar cell. This curve was drawn using the ideal diode model:

 j j j mk T= − −sc d
B( )/eqv 1  (12.1)
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Fig. 12.2 An impedance spectroscopy of a 8-mm thick fi lm of nanostructured TiO2 (10-nm  
anatase nanoparticles) in aqueous solution at pH 2, with –0.250 V bias potential vs. Ag/AgCl in 
the dark and under UV illumination. The lines are fi ts to the model of a version of the transmis-
sion line in Figure 12.1(a) [12.46].
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Here, j is the electrical current density, V is the voltage difference between the 
contacts, jsc is the short-circuit current density, jd is the dark reverse current density, 
q is the positive elementary electrical charge, kB is Boltzmann’s constant and T is the 
absolute temperature. The coeffi cient m is an ideality factor, and the “ideal” model 
corresponds to m = 1. From Eq. (12.2), we obtain the open-circuit voltage Voc:

 

V
mk T

q

j

joc
B sc

d

= +
⎛
⎝⎜

⎞
⎠⎟

ln 1  (12.2)
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Fig. 12.3 (a) A theoretical calculation of the current density-voltage characteristic of a solar 
cell (ideal diode model) with jsc = 25 mA cm−2, m = 1 and Voc = 0.8 V. Also indicated are the 
different regions of the applied bias voltage and of the dominant current, as well as the calcula-
tion of the dc resistance R dj dVdc

− =1 /  at a particular point (V0, j0). (b) The power output of the 
solar cell. The left vertical axis is normalized to the incident power of 1 sun (approximately) 
and estimates the conversion effi ciency, and the right axis normalization gives the fi ll factor at 
the maximum point.
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and we can also write Eq. (12.1) in terms of Voc

 
j j

q v v mk T

qv mk T
= −

−

−

−sc

oc B

oc B

1

1

e

e

( ) /

/
 (12.3)

Bias voltage is denoted “forward” when it injects charge in the solar cell and 
induces recombination. Otherwise it is referred to as “reverse”. By changing the 
illumination intensity Φ0, one can trace curves similar to that in Figure 12.3(a) with 
other values of jsc and Voc. The values and shape of these curves for a given solar cell 
allow us to determine the energy conversion effi ciency of the photovoltaic device, 
Figure 12.3(b). Another crucial parameter is the fi ll factor (FF), which is the maxi-
mum electrical power delivered by the cell with respect to j Vsc oc⋅ , Figure 12.3(b). 
A high FF requires that the current remains high at the maximum power point. This is 
obtained if the j-V curve is reasonably “squared” as in Figure 12.3(a).

12.2.2 Physical origin of the diode equation for a solar cell

It is important to clarify the physical interpretation of the diode equation. We consider 
a slab of p-type semiconductor with thickness L. At a position x, n is the density of 
minority carriers (electrons), and jn the fl ux in the positive x direction. The conserva-
tion equation can be written as:

 

∂
∂

= + − −n

t
x G x G x

J

x
x U x( ) ( ) ( ) ( ) ( )Φ

∂
∂d

n
n  (12.4)

where GΦ is the rate of optical photogeneration (per unit volume) due to the illumi-
nation intensity Φ0 (photons·cm−2), while Gd is the rate of generation in the dark by 
the surrounding blackbody radiation. Un is the rate of recombination of electrons per 
volume. A simple and important model is the linear form, with electron lifetime t0

 
U

n
n =
t

0

 (12.5)

Eq. (12.4) must hold locally, in equilibrium, therefore, assuming Eq. (12.5), 
we have

 
G

n
d = 0

0
t

 (12.6)

where n0 is the carrier density in dark equilibrium. This is due to, the rate of genera-
tion in dark equilibrium, by detailed balance principle, equilibrating the recombina-
tion rate [12.31]. A similar constraint on Gd applies for any recombination model.

The fl ux of electron carriers with the diffusion coeffi cient D0 relates to the gra-
dient of concentration by Fick’s law

 
J D

n

xn = − ∂
∂0  (12.7)
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While Eq. (12.4) can be solved for any kind of generation profi le and bound-
ary conditions, we now adopt certain assumptions that lead to the central diode 
model (12.1) in the simplest way. We assume that the photogeneration of carriers is 
homogeneous, and we consider that the transport of electrons is very fast. It can thus 
be assumed that D0 is extremely large, implying that the gradient of concentration 
required to maintain the fl ux is very small. With these assumptions all the quantities in 
Eq. (12.4), except the carrier fl ux, become independent of position. We now integrate 
between 0 ≤ x ≤?? and obtain

 

∂
∂

= + − − −n

t
G G

L
J L J UΦ d n n n

1
0[ ( ) ( )]  (12.8)

The next condition required is to assume that the semiconductor is supple-
mented with ideal selective contacts to form a solar cell, as shown in Figure 12.4 
[12.33]. Consequently, the left contact extracts all the arriving electron carriers.

The electrical current density in the positive x direction is:

 j qj= − n ( )0  (12.9)

and the right contact blocks the electrons perfectly:

 J Ln ( ) = 0  (12.10)

Therefore, the output current at time t is:

 
j qL G G U

n

t
= + − − ∂

∂
⎡
⎣⎢

⎤
⎦⎥Φ d n

 (12.11)
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Fig. 12.4 A basic model of a solar cell formed by a light absorber and two selective contacts for 
electrons and holes. The image shows the processes of (1) Generation (GΦ + Gd) (2) recombina-
tion (Un) and (3) charge extraction.
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If we restrict our attention to a steady-state condition, Eq. (12.11) reduces to:

 j qLG qL U G= − −Φ [ ]n d  (12.12)

Comparing Eqs. (12.1) and (12.12), the photocurrent generated during short-
circuit becomes:

 j qLGsc = Φ  (12.13)

The total generation per unit area, LGΦ is proportional to the incident light 
intensity, LGΦ Φ= hopt 0, where hopt is an optical quantum yield that depends on the 
properties of absorption of the radiation by the solar cell. We also obtain that:

 j qLGd d=  (12.14)

Consequently, the dark reverse current corresponds to the extraction of the car-
riers generated by the thermal surrounding radiation.

We already appreciate that the ideal diode model of a solar cell states that a 
constant current is drawn out of the cell, namely jsc + jd, which corresponds to all the 
electron carriers generated in the semiconductor. In addition, the recombination term 
produces a current in the opposite direction. At high forward bias the recombination 
term dominates and bends the j-V curve, as indicated in Figure 12.3(a). Note that this 
ideal model does not contain any trace of diffusion whatsoever. The only element 
required in order to obtain the diode model is to state that the contacts are selective, 
and extract only one carrier at each side, as indicated in Figure 12.4.

Another step for converting the conservation equation into a j-V characteristic is 
to relate the carrier density, n, to the applied voltage, V, by introducing Fermi levels. 
We assume the extended states for electrons at the level Ec (conduction band edge), 
with an effective density, Nc. With respect to the electron Fermi level EFn, we have:

 n N e E E k T= −
c

Fn c B( ) /  (12.15)

and considering the dark (equilibrium) Fermi level EF0,

 n N e E E k T
0 = −

c
F0 c B( ) /  (12.16)

we obtain

 n n e E E k T= −
0

0( ) /Fn F B  (12.17)

The voltage, V, is measured at the selective contacts, and corresponds to the dif-
ference in Fermi levels of carriers at the contacts. If the contacts are ideally reversible 
[12.33], each contact separately equilibrates with the Fermi level of electrons, EFn, 
and holes, EFp. This gives:

 
V E E q= −( ) /Fn Fp  (12.18)

For a p-semiconductor, the holes in the Fermi level remain at the dark equilib-
rium level, E EFp F0= , and Eq. (12.18) can thus be written:

 E E qVFn F0= +  (12.19)
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In consequence:

 n n e= 0
qV k T/ B  (12.20)

Using the linear recombination of Eq. (12.5) in Eq. (12.12), and applying the 
Boltzmann statistics indicated in Eq. (12.20), we obtain the diode equation (12.1) with 
m = 1. However, if we assume a nonlinear recombination model, more general than 
the one used previously

 U k nn r= b  (12.21)

we obtain the general diode equation with m = 1/b. Here, Eq. (12.21) is written as a 
purely empirical law, but its origin is further discussed below.

It should be noted that the recombination mechanism has a major impact on the 
shape of the j-?? curve, especially on the FF. Therefore also on the solar cell conver-
sion effi ciency. In fact, as we have shown with the above model, for ideal selective 
contacts, the diode ideality factor m is entirely determined by the bulk recombination 
mechanism. This point is well understood in solid-state electronics [12.69].

12.3 INTRODUCTION TO IS METHODS

In general, IS is applied to a system with electrical contacts. It consists of a measure-
ment of the ac electrical current, ˆ( )I v , at a certain angular frequency, v, when a cer-
tain ac voltage, ˆ ( )V v , is applied to the system, or vice versa, a measurement of ˆ ( )V v  
at an applied Î(v). The impedance is:

 
Z

V

I
v

v

v
( ) =

( )
( )

ˆ

ˆ  (10.22)

The symbol x̂ over a quantity x indicates that x̂ is:

(1) the complex amplitude of a sinusoidal (ac) perturbation of x and

(2) a small perturbation.

The “smallness” of x̂ is required in order to obtain the linear impedance in Eq. 
(12.22), i.e., Î(v) is linear with respect to ˆ ( )V v , or vice versa, so that Z(v) is inde-
pendent of the amplitude of the perturbation. In modeling work, this is ensured if the 
absolute value of ??x??  is much lower than that of the steady state quantities ??x??, 
??y??, … In practice this means that the amplitude of the voltage must be on the order 
of several mV. However, in certain situations, e.g., close to a phase transition, a small 
perturbation of the voltage induces very large variations of the charge or current, and 
the conditions of linearity must thus be carefully inquired.

During an impedance measurement, the system is (ideally) kept at a fi xed steady 
state by imposing stationary constraints such as the dc current, illumination intensity, 
etc., and the Z(v) is measured by scanning the frequency at a multitude of values 

Q1Q1

Q1Q1
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f = v/2p, typically over several decades, i.e., from mHz to 10 MHz, with 5-10 meas-
urements per decade. At each frequency the impedance meter must verify that the Z(v) 
is stable. At low frequencies, this takes a considerable amount of time, i.e., stabilizing 
a measurement at f = 10 mHz consumes minutes. Nevertheless, measurements at low 
frequencies are often important in order to make sure that one is approaching the dc 
regime, as further explained below. A judicious selection of the frequency window of 
measurement is therefore necessary, and this is often aided by experience.

In addition to scanning the frequencies, it is usually very important to deter-
mine the IS parameters at various conditions of steady state. This is the key approach 
in order to relate the measurement to a given physical model. At each steady state the 
Z(v) data is related to a model in the frequency domain, which is usually represented 
as an equivalent circuit. By modifying the steady state, the change in impedance 
parameters (resistances, capacitances, etc.) can be monitored in relation to the physi-
cal properties of the system. Since the impedance measurement takes a considerable 
amount of time, the steady state often changes along the impedance measurement, 
and precautions should be taken to avoid a serious drift of the parameters. In par-
ticular, care should be taken with unintentional changes of temperature in solar cells, 
since this introduces additional and unwanted variations of the parameters.

Note that, at each steady state, a full scan of frequencies is necessary. Thus 
many steady state points imply a long measurement, perhaps over an entire day. 
However, data that do not cover different steady states may in some cases be of little 
value, particularly if there is uncertainty regarding the meaning of the parameters. 
It is also important to verify the true signifi cance of parameters by material varia-
tions of the samples, e.g., to confi rm the correlation of a transport resistance with 
the reciprocal length of the sample. The extent to which these approaches must be 
judiciously realized depends on the preliminary knowledge and experience of the 
particular system.

12.3.1 Steady state and small perturbation quantities

As an example of the relationship between the ac impedance and steady-state quan-
tities, we discuss a characteristic experiment on a solar cell using the ideal model 
outlined in Figures 12.3 and 12.4. We choose a certain point of bias voltage, V0, with 
the associated current density, j0. At this point, a small displacement of voltage ˆ ( )V 0  
implies a change of current ˆ( )j 0 . The value v = 0 in parenthesis indicates that the 
displacement is infi nitely slow, i.e., ˆ ( )V 0  and ˆ( )j 0  attain a value that is independent of 
time. The displacement of the current and voltage is indicated in Figure 12.3(a) with 
arrows.

For a solar cell with area A, the quotient of the small quantities gives:

 
Z

V

Aj

Adj

dV
R0

0

0

1

( ) =
( )
( ) = ⎛

⎝⎜
⎞
⎠⎟

=
−ˆ

ˆ dc  (12.23)

In other words, the small quantities provide a derivative of the voltage with 
respect to the current. This is the reciprocal of the slope of the j-V curve, which is in turn 
the dc resistance of the solar cell Rdc (per area) under those particular conditions.
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A similar process occurs if we measure the change in the electrical charge, Q̂, 
under a perturbation of the voltage. The quotient is a capacitance:

 

ˆ ( )
ˆ ( )

Q

V

dQ

dV
C

0

0
= =  (12.24)

In general, the parameters obtained by IS are related to derivatives of the steady 
state variables describing the system, i.e., IS provides the differential resistance, dif-
ferential capacitance, etc. However, we usually omit the specifi cation of “differential” 
in the context of IS as it is implicitly assumed.

It is useful to observe that, since Rdc is the reciprocal of the slope of the cur-
rent density-potential curve, Figure 12.3(a), knowledge of Rdc at several points allows 
us to construct the full curve, provided that a single point of the curve is known (for 
example, the value of jsc):

 
j V j R dV

V
( ) = − −∫sc dc

1

0
 (12.25)

Therefore, understanding the different elements that determine Rdc is a key step 
in order to analyze the factors governing the effi ciency of the solar cell.

From the steady state characteristic, we can only derive Z(0), i.e., the imped-
ance at the frequency v = 0. However, in order to understand the operation of the solar 
cell we wish to know the origin of Rdc in terms of the internal processes occurring in 
the device: transport of charges, accumulation at certain points, recombination of car-
riers, and so on. Eventually, we are interested also in the dynamic behavior of the solar 
cell, i.e., how it responds with time to a certain perturbation.

One way to obtain the dc parameters of the solar cell is to apply a certain model 
of steady state operation. This can be done by an equivalent circuit that describes the 
dc current distribution, including diode elements. This differs to ac-equivalent circuits 
for IS spectra which are amply discussed below. In fact, since the diode is not a linear 
impedance, it is not a differential element in the sense explained previously.

In particular a dc model, including an ideal diode, shunt resistance, rshunt, and 
series resistance, rseries, is amply used in this context, see Figure 12.5 [12.70, 12.71]. 
This procedure normally assumes that rshunt and rseries are independent of the voltage 

r
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Z
load j

V

r
shunt

j
sc

Fig. 12.5 A typical electrical model for inorganic semiconductor-based solar cells. The current 
source accounts for the generation of electrons in the cell, the diode represents the recombina-
tion characteristics, rshunt is a constant resistance accounting for charge losses crossing the cell 
through the sides, and rseries also accounts for a constant resistance (contacts, wires, etc.)
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along the j-V characteristics. Such an assumption may work well in some classes of 
solar cells such as monocrystalline Si solar cells. However, in other cases, especially 
in devices including electrochemical processes such as in DSC, it is far from clear that 
resistances remain constant, even at reverse voltage. Great care should be taken when 
applying dc models to DSC, since one may impose a model that does not occur in the 
device and the results of which may have little meaning.

We demonstrate later how to construct a dc model that is normally useful for the 
analysis of DSC, but fi rst we need to discuss the origin of the elements that appear in 
equivalent circuits. To this end, we describe a much more powerful approach, apply-
ing IS, in order to obtain all the stationary and dynamic information concerning the 
current-voltage behavior of the system.

12.3.2 The frequency domain

In general, the method of IS, consists in measuring the quotient in Eq. (12.22), for a 
signal ˆ ( )V v  varying at different angular velocities. When the velocity, v, is very slow, 
we are close to steady state conditions and obtain exactly the dc resistance as indi-
cated in Eq. (12.23). However, when v becomes faster, certain processes in the system 
are unable to respond to the applied perturbation. Z(v) therefore contains contribu-
tions from “things faster than” v.

By scanning the frequency, we obtain a changing response (the impedance spec-
trum) that can be treated by several methods (analytical, numerical, and most impor-
tantly, by visual inspection of its shape) in order to provide a detailed physical picture 
of the dynamic properties of the system. In particular, it is essential for solar cell 
applications that this method renders it possible to dissect the steady-state response 
into its elementary components. A vivid explanation of the physics and an interpreta-
tion of the electrical magnitudes in the frequency domain for dielectric materials is 
given in the book Dielectric Relaxation in Solids by A.K. Jonscher [12.72].

One may wonder why one should use so many different angular frequencies in 
the measurement, when the same processes can be probed by time transients, i.e., by 
applying a voltage step and monitoring the subsequent evolution towards equilibrium. 
This way, the fast and progressively slower processes in the system can be observed, 
in a similar fashion as by the variation of the frequency of the perturbation.

Indeed, time transient methods are very important experimental tools, and 
mathematically, small-amplitude time transients contain the same information as the 
small-frequency linear impedance. Both are related by a Laplace transform. Indeed, 
when the decay of the system is governed by a single process (usually an exponential 
decay, with a characteristic time constant t), IS and time transients are equally valid 
approaches. The difference arises when the response is composed of a combination of 
processes. It then turns out that it is much easier to deconvolute the response, in terms 
of models, from the spectroscopic response Z(v) as opposed to from the featureless 
time-dependent signal.

As another example of the advantages of the frequency domain, let us consider 
the kinetic response of the capacitance that was derived for equilibrium conditions in 
Eq. (12.24). In the time domain, we apply a small step of the voltage ˆ ( ) ( )V t V u t= ⋅Δ , 
where u(??) is the unit step function at t = 0, and we observe the consequent  evolution Q1Q1
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of the charge ˆ ( )Q t  that passes to the system. However, it is generally not feasible to 
measure a charge transient, and we thus need to observe the current transient, Î(t), and 
perform an integration:

 

ˆ ( ) ˆ( )Q t I t dt
t

= ∫ ′ ′
0

 (12.26)

When considering at this process in the frequency domain, we use the variable 
s = iv, where i = −1. The Laplace-transformation of a function f(??) to the frequency 
domain is defi ned as:

 

F s e f t dt( ) ( )= −
∞

∫ st

0
 (12.27)

and the application of the transform to Eq. (12.26) gives:

 
ˆ ( )

ˆ( )
Q s

I s

s
=  (12.28)

We now introduce a frequency-dependent capacitance that generalizes Eq. (12.24)

 
C*(v) = 

ˆ ( )
ˆ ( )

Q

V

v

v
 (12.29)

Here, C*(v) is a function of the frequency, and it coincides with the static dif-
ferential capacitance C at v = 0. By applying Eq. (12.22), we obtain from (12.28):

 
C*(v) = 

ˆ( )
ˆ ( ) ( )

I

i V i Z

v

v v v v
= 1

 (12.30)

This result demonstrates the straightforwardness in resolving the small step-
charging experiment provided that the impedance is known. We observe in Eq. (12.30) 
that the conversion of impedance data to capacitance turns out to be a very simple 
operation. This simplicity of conversion between very different electrical magnitudes 
appears as a result of the convenient properties of complex numbers, as well as due 
to the fact that, in the frequency domain, derivatives and integrals are constituted of 
arithmetic operations involving s.

Switching the data between representations is a very useful tool of analysis in 
IS. The most frequently used functions are described in Table 12.6 [12.73] indicating 
also the separation of the magnitudes in their real and imaginary parts.

12.3.3 Simple equivalent circuits

Many measurements of IS in electrochemistry and materials devices can be described 
by equivalent circuits composed of combinations of a few elements that are indicated 
in Table 12.7. Equivalent circuits are formed by connecting these and other elements 
by wires, representing low resistance paths in the system. Two elements are in series 
when the current through them is the same, whereas they are in parallel when the 

Q1Q1
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voltage acting on them is identical. Using Kirchhoff rules, we add the impedances 
for two elements in series and the resulting impedance is an equivalent description of 
the initial connection (under an applied voltage, it produces the same current as the 
combination that it replaces). For elements in parallel, we add the admittances (or the 
complex capacitances) to form the equivalent impedance.

A fi rst example of an equivalent circuit is the R1C1 series combination. From 
the impedance

 
Z R

i C
( )v

v
= +1

1

1
 (12.31)

we obtain the complex capacitance

 
C

C

i
*( )v

v
=

+
1

11 t
 (12.32)

Table 12.6 Impedance representations.

Denomination Defi nition* Real and imaginary parts

Impedance Z(v) Z = Z ′ + iZ″

Admittance Y
Z

( )
( )

v
v

= 1
 Y = Y ′ + iY″

Phase angle tand = Z

Z

″
′

Complex capacitance C
i Z

*( )
( )

v
v v

= 1
 C* = C ′ + iC″

Conductivity s*( )
( )

v
v

= L

AZ
 s* = s′ + is′, s′(0) ≡ s

Complex dielectric constant e*(v) = LC*(v)/A e* = e′ + ie″
  s* = ive*

Complex electric modulus M *( )
( )

v
v

= 1

e
 M* = M ′ + iM″

*L is the length of the sample, A is the area.

Table 12.7 Basic ac electrical elements.

Denomination Symbol Scheme Impedance

Resistance R  R

Capacitance C  1

i Cv

Inductor L  ivL

Constant phase element (CPE) Qn  ( )i

Q

n

n

v
−
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Here, the relaxation time is defi ned as

 t = R1C1 (12.33)

Let us look more closely at the meaning of the relaxation time, t1, in relation to 
the response of the system in the time domain. We consider the type of measurement 
commented before, in which a change of voltage, ΔV, is applied at time t = 0, and for 
which the subsequent evolution of the electrical current is monitored. In the frequency 
domain, the step voltage ˆ ( ) ( )V t V u t= ⋅Δ  has the expression:

 
ˆ ( )V s

V

s
= Δ

 (12.34)

and the electrical current can be written:

 

ˆ( )
ˆ ( )

( ) ( ) ( )
I s

V s

Z s

V

sZ s

V

R s
= = =

+
Δ Δt

t

1

1 11
 (12.35)

By inverting Eq. (12.35) to the time domain, we obtain:

 
I t

V

R
e t( ) /= −Δ t1  (10.36)

In general, the process described by Eqs. (12.32) or (12.36) is an elementary 
relaxation with the characteristic frequency:

 
v1

1 1 1

1 1= =
t R C

 (12.37)

The plot of the complex capacitance is shown in Figure 12.8(a). The capaci-
tance displays an arc from the dc value C*(0) = C1 to the high frequency value. 
The top of the arc occurs at the characteristic frequency of the relaxation v1. The 
impedance, shown in the complex plane in Figure 12.8(b), forms a vertical line. This 
is a “blocking” circuit, since the impedance of a capacitor is ∞ at low frequency, 
which effectively constitutes an open circuit connection, thus preventing the dc cur-
rent from fl owing. However, the impedance of the capacitor decreases as the fre-
quency increases, and at very large frequencies, with respect to v1, the capacitor 
indeed becomes a short-circuit. Consequently, there remains only the resistance R1. 
The impedance of a resistor is the same at all frequencies, hence the vertical line in 
Figure 12.8(b). The arc in Figure 12.8(a) is a manifestation of an elementary relaxa-
tion process that corresponds to an exponential decay in the time domain, indicated 
in Eq. (12.36).

Another important example of an equivalent circuit is the RC parallel combina-
tion, depicted in Figure 12.9. The admittance of the combination is here:

 
Y

R
i C1

1
1

1
( )v v= +  (12.38)



 Impedance spectroscopy 17

With the addition of a series resistance, R2, we obtain the circuit shown in 
Figure 12.9. The impedance is:

 
Z R Y R

R

i
( )v

v
= + = +

+2 1 2
1

11 t
 (12.39)

The complex impedance plot is shown in Figure 12.9(a). The parallel RC forms 
an arc in the complex plane which is shifted positively along the real axis by the 
series resistance, R2. As we remarked before, the capacitor can at zero frequency be 
substituted by an open-circuit connection. In contrast to Figure 12.8, we observe in 
Figure 12.9 that this is a circuit with dc conduction determined by the low frequency 
intercept, Z(0) = Rdc = R1 + R2.

In Figure 12.9(a) the three plots correspond to a variation of the parallel resist-
ance, which implies a change in the characteristic time, t1 = R1C1. In the complex 
plane, we readily infer the structure of the circuit from the shape of the spectra, but fre-
quency values and time scales cannot be directly read. To this end, it is useful to apply 
the plot with respect to frequency (sometimes termed a Bode plot). Figure 12.9(b) 
shows the transition of the resistance from the low frequency (Rdc) to the high fre-
quency value (R2). This high frequency value occurs due to the fact that the capacitor 
impedance disappears at very high frequency, Z(v = ∞) = 0, thus shunting the parallel 
resistance. Another representation often used to display the characteristic frequencies 
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Fig. 12.8 Representations of the impedance of an equivalent circuit. R1 = 1 kΩ, C1 = 1 mF, 
t1 = 1 s. The thick arrows indicate the direction of an increasing angular frequency, v.



18 Dye-sensitized solar cells

is the phase angle. Figure 12.9(c) shows that the peak of the phase angle moves to 
higher frequencies when t1 decreases.

In measurement of material systems, it is rather frequent for the IS response 
to be composed of the combination of several processes. The time constants, and the 
connection of the elements describing such processes, depend on the internal structure 
of the system. A primary aim of the data analysis is to identify the contribution of 
separate relaxation processes in the frequency response of the system and such aim is 
greatly assisted by picking the appropriate form of data display. In IS measurement 
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Fig. 12.9 Representations of the impedance of an equivalent circuit. R1 takes on values 5, 4, 
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we obtain the data, and such data can be transformed as desired between the various 
representations of Table 12.6.

As mentioned in a previous section, the most critical information concerning 
solar cell device operation in stationary conditions relates to the separation of resist-
ances. However, in IS, capacitances also play a crucial role, since different elements 
with similar resistance provide very distinct spectral features if their associated capac-
itances differ suffi ciently in magnitude. The capacitance is, therefore, a key to the 
understanding of the origin of the measured resistances.

Figure 12.10 shows the example of a system composed of several relaxations rep-
resented by two series of RC circuits connected in parallel. This circuit is relevant for the 
analysis of multiple-trap systems in electronic materials [12.74, 12.75]. The inspection 
of the complex impedance plane in Figure 12.10(b) only shows the blocking response 
at low frequencies and an additional feature at high frequency. For a blocking circuit, it 
is natural to analyze the capacitance, and the plot of the capacitance components with 
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respect to the frequency, Figure 12.10(c), usually reveals a great deal of information. 
In Figure 12.10(c), we observe two plateaus of the real part of the capacitance which 
clearly indicate two distinct relaxation processes. These relaxations are manifested in 
the peaks of the loss component of the capacitance, C′. When increasing the frequency, 
each peak of C′ indicates the occurrence of a relaxation and a consequent decrease of 
the capacitance [12.72]. Such features can also be observed in the complex capacitance 
plot in Figure 12.10(a), demonstrating separate arcs for the two relaxations.

Let us consider in more detail how to obtain the parameters of a given IS data 
set. The main method consists in fi tting by least squares methods using an equivalent  
circuit software that is available in many kinds of measuring equipments. However, the 
fi tting process requires the assumption of a given equivalent circuit, and sometimes, in 
addition, the input of reasonable trial parameters. As we have mentioned before, the 
inspection of the data set in several complementary representations usually provides a 
good hint of the equivalent circuit structure, at least in the less complex cases. Another 
useful approach is to read the parameter values directly from the data representation, 
e.g., resistances and capacitances of separate contributions. How to perform this has 
already been discussed in the examples of Figures 12.9(b) and 12.10(c). However, the 
values of capacitance or impedance in a certain frequency domain can be infl uenced 
by the whole equivalent circuit. So, to obtain the circuit parameters, there is often 
no substitute for integral data fi tting. Separately treating part of the spectral data is a 
valuable resource, but one that should be used with care.

For instance, in Figure 12.9(a) we observe that the impedance displays a verti-
cal line when approaching the dc limit. Therefore, at low frequency, Figure 12.9(a) 
can be simply described by RC parallel combination. The low frequency resistance is 
clearly given by Rdc. But what should be used as the low frequency capacitance Clf? It 
cannot be C1, otherwise the arc would fi nish at the origin of Figure 12.9(a), which it 
does not. In general, it is very useful to obtain the impedance formula in a restricted 
frequency domain, and the method is demonstrated with this example.

First, from the expression of the impedance in Eq. (12.39), we fi nd the low 
frequency limit, which gives:

 Z R R i R C( )v v= + +1 2 1
2

1  (12.40)

This last equation does not correspond to any recognizable combination of cir-
cuit elements. In fact, we seek a parallel combination, which should provide a good 
description of the data in Figure 12.9(a) at low frequencies. Consequently, we trans-
form Eq. (12.40) to the admittance, maintaining the fi rst order approximation in v, 
with the result:

 
Y

R R
i

R

R R
C( )

( )
v v=

+
+

+
1

1 2

1
2

1 2
2 1  (12.41)

In Eq. (12.41), we readily recognize the parallel RC admittance formula. The 
low frequency capacitance is:
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R

R R
Clf =

+
1
2

1 2
2 1( )

 (12.42)
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The capacitance therefore depends on the resistances of the original circuit. This 
result is quite natural, since the capacitance relates to the reciprocal of the impedance 
(see Table 12.6), and the latter is greatly infl uenced by the series resistance. However, 
the result in Eq. (12.42) cannot be inferred without a proper calculation.

Let us continue with the analysis of the effect of different types of equiva-
lent circuit elements. While the combination of resistances and capacitors provides a 
spectrum that remains in the fi rst quadrant of the complex impedance plane, it is not 
uncommon to fi nd that the data cross to the fourth quadrant. One reason for this is 
the inductance of the leads, which very frequently causes a tail at high frequencies in 
which the spectrum crosses the real axis. A different feature is often found in several 
types of solar cells at low frequency, consisting in a loop that forms an arc in the fourth 
quadrant [12.76]. One of the representations of this effect is a series RL branch com-
plementing the RC circuit of Figure 12.9. The model is shown in Figure 12.11, and 
the total admittance has the value

 
Y

R R i L
i C( )v

v
v= +

−
+1 1

1 3 3
1  (12.43)

The low frequency limit of Eq. (12.43) is written
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Eq. (12.44) shows that, when R3 is small, the capacitance becomes negative at 
low frequencies, i.e., C = −CN with the value
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R
CN = −3

3
2 1  (12.45)

The spectra with both a positive and negative low frequency capacitance are 
shown in Figure 12.11(a). If R3 < (L3/C1)1/2, the impedance traces a low frequency arc 
in the fourth quadrant, otherwise, the impedance remains in the fi rst quadrant. The 
intercept of Z with the real axis (i.e., the transition of C′(v) to negative values) occurs 
at the frequency
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In the capacitance vs. frequency representation, Figure 12.11(b), the presence of 
the inductor appears as the negative contribution that becomes more negative towards 
lower frequencies. At high frequencies, the plot is dominated by C1, whereas at lower 
frequencies, the circuit capacitance starts to decrease due to the inductive effect. At vNC, 
it shows a dip at the transition from positive to negative values, after which the absolute 
value increases towards lower frequencies, until it saturates at the value − CN.

As a fi nal example of the simple equivalent circuits, we consider the presence of 
a Constant Phase Element (CPE) as shown in Figure 12.12. The normal application of 
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a CPE is to describe a capacitive process that presents a certain frequency dispersion. 
The latter occurs when the CPE index n departs from 1. In fact, the pure capacitance 
response with n = 1 is very rare, and it is often necessary to use CPEs with n < 1 in 
fi tting of data [12.46]. Despite such a widespread occurrence, a general origin for CPE 
responses in terms of a unique physical process has not been identifi ed. CPE is related 
to systems that show some kind of self-scaling, either of geometric origin (such as 
fractal electrodes [12.77]) or dynamical origin (like in certain multiple trapping sys-
tems [12.75]). Due to self-scaling properties of the CPE response, it is normally diffi -
cult to identify the specifi c factor causing the dispersion, and CPE should be regarded 
as a useful and often indispensable tool for data description.

When index n decreases, the modifi cation of the capacitive response becomes 
rather large, whereas the RQ arc becomes progressively depressed, as shown in 
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Figure 12.12(a). The CPE also gives rise to a signifi cant deceleration of the response. 
Figure 12.12(b) shows that the transition from a low to high frequency resistance 
of the capacitor response is completed in less than two decades of frequency, while 
for n = 0.6, it requires more than four decades. Consequently, the characteristic 
 frequency presents an important reduction as n decreases, according to the expres-
sion [12.46]

 

v1

1 1
1

1
=

( )R Q
n/

 (12.47)

The foregoing discussion has shown that equivalent circuit representations are 
a very powerful resource for the inverse problem that is usually a main task in IS data 
treatment: to establish an impedance model from a set of data. Importantly, equivalent 
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circuits render it possible to visualize the structure of the model and to separately treat 
data portions in certain relevant frequency windows. However, equivalent circuits are 
by no means necessary in order to establish a physical model; what is needed is an 
impedance function, in any of all its possible analytical representations.

It should also be mentioned, that not all complex functions of frequency are 
valid impedance responses. The complex function Z(v) must obey causality condi-
tions (i.e., the stimulus must precede the response), which imposes analytical con-
straints known as Kramers-Kronig transforms [12.72]. These transforms enable the 
construction of the real part of Z(v) provided that the imaginary part is known at 
all frequencies, and vice versa. Using equivalent circuit elements, such as those of 
Table 12.6, ensures that the resulting model obeys the Kramers-Kronig relations.

12.4  BASIC PHYSICAL MODEL AND PARAMETERS OF IS IN 
SOLAR CELLS

12.4.1 Simplest impedance model of a solar cell

In the process of obtaining physical information from IS data, it is necessary to relate 
the observable equivalent circuit elements with the system properties. As mentioned 
before, equivalent circuits are a useful tool for interpretation, and the signifi cance 
attached to the circuit elements, the potential in the circuit, etc., may be quite different 
from the standard physics textbook examples.

This is particularly the case in the analysis of solar cells. Note that the ac-
equivalent circuits that we have discussed are composed of passive elements (i.e., 
resistances and capacitances). It is common to interpret the fl ow of charges in cir-
cuits in terms of the mechanistic view of the drift of charges in an electrical fi eld 
caused by potential differences. This image is also very popular for explaining the 
photovoltaic action, e.g., in a p-n junction, in terms of an electric fi eld that sends 
oppositely charged carriers in different directions. However, a solar cell is a kind 
of battery, i.e., an element producing an electromotive force, and such an element 
cannot work with electrostatic voltage differences alone. According to Volta’s idea, 
the electromotive force is an nonelectrostatic action on charges in conductors that 
causes unequal charges to separate and remain separated [12.78]. We thus wish to 
obtain the internal ac-equivalent circuit of a solar cell using only linear elements 
associated to a small signal ac perturbation, with emphasis on the interpretation 
of the elements that make it work as a device for the production of electricity. The 
key approach for useful reading of ac-equivalent circuits of DSC, is that potentials 
in the circuit represent an electrochemical potential of electrons (or holes) in the 
actual device.

To clarify this, we start with the simplest model of a solar cell, discussed above 
in Sec. 12.2.2, which contains the necessary elements without complications of car-
rier transport, specifi c features of selective contacts, etc. We calculate the IS response 
of the solar cell of Figure 12.4 [12.35], corresponding to the application of a small ac 
electrical perturbation.
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It was demonstrated before that the dynamic response of the simple solar cell 
model in Figure 12.4 was determined by the equation:

 

∂
∂

= − −n

t
G U

j

qLn  (12.48)

where G = GΦ + Gd is the carrier generation rate. In order to calculate the IS response, 
we need to combine two approaches: (1) All physical quantities are composed of a 
stationary part (e.g., n) and a small perturbation part that varies with time. (2) We 
must reduce all the dependencies implicit in Eq. (12.48), explicitly to voltage, so that 
the result becomes an impedance.

For example, the carrier density dependence on time takes the form:

 n t n n t( ) = + ( )ˆ  (12.49)

The variation of voltage applied in the solar cell produces a variation of the 
electron Fermi level, which changes according to:

 E t E q tFn Fn n( ) = + ( )ŵ  (12.50)

where ŵn is the small perturbation voltage. However, with by Eq. (12.15), there is a 
unique dependence of n on EFn. Thus:

 n t n E( ) = +( )Fn nŵ  (12.51)

Expanding Eq. (12.51) to fi rst order, we obtain:
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The derivative in Eq. (12.52) appears recurrently in solar cell theory and 
requires a special denomination. We introduce the chemical capacitance, a thermody-
namic quantity that refl ects the capability of a system to accept or release additional 
carriers with density Ni due to a change in their chemical potential, mi [12.35, 12.79]. 
In general, for a volume element that stores chemical energy due to a thermodynamic 
displacement, the chemical capacitance per unit volume is defi ned as:
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More generally, Eq. (12.53) employs the electrochemical potential, that coin-
cides with the electron Fermi level [12.60]. Thus, the chemical capacitance for con-
duction band electrons is [12.35]:
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The macroscopic capacitance for a fi lm of thickness L, area A and porosity p is 
written as:

 C LA p cm m

cb cb= −( )1  (12.55)
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where LA(1 − p) is the amount and Vf is the volume of the fi lm. Using Eqs. (12.49), 
(12.52) and (12.54), we arrive at the relationship between the small perturbation of 
carrier density and voltage:
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Next, we expand the recombination term in Eq. (12.48) and obtain:
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Finally, the current can be expressed as

 j t j j t( ) = + ( )ˆ  (12.58)

When we insert the different expanded expressions into Eq. (12.48), we fi rst 
obtain a time-independent equation that has already been discussed, (12.12), and 
which gives the stationary condition of the solar cell according to bias voltage and 
illumination. In addition, the time dependent terms provide a new equation that takes 
the form:
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where the recombination resistance per unit volume is given by:

 

r
c

U

nr
cb

cb
n=

∂
∂

⎛
⎝⎜

⎞
⎠⎟

−
1

1

m

 (12.60)

Note that Eq. (12.60) can be represented by the following expression:
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and the macroscopic recombination resistance, which corresponds to the reciprocal 
derivative of the recombination current with respect to voltage, is written as:

 
R
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cb
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 (12.62)

The fundamental parameter describing recombination, however, is the recom-
bination per unit of effective internal area (Aeff) r A R LA p hR hr′r = = − =eff r r r( ) ,1  
where h is the ratio between the effective area and the volume of the TiO2 fi lm, i.e., 
h = Aeff/LA(1 − p).

We remark that the carrier generation terms are absent from Eq. (12.59), since it 
is only possible to modulate electrical injection of carriers in IS; the situation is differ-
ent in light-modulated techniques, as explained by Peter and Hagfeldt in Chapter 11.
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The structure of the impedance model can be inferred directly from Eq. [12.59] 
[12.35]. ŵn can be viewed as the potential in an equivalent circuit (but one should 
remember that it is physically the electrochemical potential!). Then, Eq. (12.59) is 
Kirchoff’s rule for current conservation. The fi rst term is a capacitive current, the sec-
ond is an ohmic current through the resistor Rr, and the third is the extraction current. 
Note that the two fi rst currents do not represent transport currents (i.e., an ensemble 
of carriers moving in a certain direction in space), but rather the rates of creation and 
destruction of conduction band electrons. In fact, recombination is what maintains the 
current in a diode, as explained in the book by Sha [12.69].

In order to calculate the impedance, we apply the Laplace transform (∂/∂t → iv) 
in Eq. (12.59) and use the defi nition in Eq. (12.22):
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Eq. (12.63) clearly corresponds to the parallel combination of the chemical 
capacitance and recombination resistance, which is the minimal IS model of a solar 
cell. Figure 12.13(b) shows the equivalent circuit corresponding to the basic solar cell 
scheme of Figure 12.13(a).

In Figure 12.13(b), we can observe that the chemical capacitance is a necessary 
element of the solar cell: it produces a voltage (associated to a splitting of Fermi levels) 
by the creation of excess carriers from photons. An important message in Figure 12.13 
is that the recombination resistance needs to be be large, as this will allow carri-
ers accumulated in the capacitive element to fl ow through the external circuit when 
returning to the equilibrium situation. We point out that the recombination resistance 
in Figure 12.13(b) corresponds to the diode in the dc circuit of Figure 12.5.

Figure 12.13(b) also displays the special structure of connection of the R and 
C elements by selective contacts which is implicit in the derivation of the result in 
Eq. (12.63). This connection is essential in order to channel the carriers in the desired 
direction. An example of the failure of selective contacts is shown in Figure 12.13(c). 
Electrons and holes meet directly at the left contact, producing an internal short cir-
cuit. Such a device cannot produce a photovoltage.

It should also be recognized that, in contrast to electrochemical batteries and 
capacitors, there is in solar cells always an electrical connection between the outer 
electrodes via the internal resistance, rr. In fact, the solar cell works by promotion of 
carriers from a low to a high energy level, with the energy of the photons [12.33], and 
such energy levels are separately connected to the outer electrodes. Since the excita-
tion is possible, the converse process, which is the decay from a high to a low energy 
level by radiative recombination, must also be possible. This is the most favorable 
case of the recombination resistance, which is unavoidable, as it is an intrinsic com-
ponent of the photophysical process causing the solar cell to produce useful work. In 
this sense, we regard Figure 12.13(b) as the minimal model.

Nevertheless, while certain recombination processes are unavoidable in the 
solar cell, additional sources of recombination are detrimental to the performance. For 
example, in Figure 12.13(c), a strong recombination at the left contact produces a low 
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internal resistance, and this in a process that does not contribute at all to the carrier 
generation. Such a behavior must be regarded as a failure of the device. In fact, reduc-
ing surface recombination is the most critical step in the preparation of high effi ciency 
industrial silicon solar cells [12.80]. In general, equivalent circuits illustrate a main 
point with regard to solar cell operation: the dc current predominantly follows the path 
of least resistance. Therefore, low resistances in parallel to the chemical capacitance 
reduce the output power.

The ideal model provides a very useful reference for understanding IS results of 
solar cells. However, it should be emphasized that one of the goals of hybrid nanos-
tructured organic-inorganic solar cells is to obtain low-cost photovoltaic devices. For 
this reason, there are additional elements contributing to the photovoltaic conversion 
process. A key feature rendering IS attractive is that it can be applied in full devices 
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Fig. 12.13 (a) A scheme of voltage injection of electrons (1) and holes (3), as well as recom-
bination (2) processes in a DSC. (b) The basic equivalent circuit for ac electrical perturbation. 
(c) An internal short-circuit.
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and indicate the main limitations to photoelectrical performance. We will in subse-
quent sections progress towards a full realistic model for DSC devices, but a simple 
example may be illustrative.

The common way to construct a selective contact for holes is by using a hole-
transport material that readily conducts hole carriers and blocks electrons. This is 
shown in Figure 12.14. However, the organic conductors, which are able to pene-
trate the pores of TiO2 nanostructures, generally posses a limited carrier mobility. 
Constituting the conductivity low, a gradient of the hole Fermi level is required to 
inject, as in Figure 12.14 (a), or to extract the holes across the layer. Comparing this 
case with the ideal selective contact in Figure 12.13(a), the difference is that, in the 
latter case, the extraction of holes represents no cost at all in terms of the Fermi level 
gradient. We have mentioned above that parallel resistances should be large, and, 
from the present example, we appreciate that series resistances must be relatively 
small to avoid power losses.

The Fermi level drop for hole transport in Figure 12.14 implies a “potential 
drop” in the equivalent circuit, with an associated impedance which is related to hole 
diffusion. Therefore, problems in the performance of contacts, or transport layers, 
can be detected with IS measurements. To do so, we must be able to separate, in the 
IS data, according to the previous example, the contribution of the recombination 
resistance and the transport layer resistance. This will largely depend on the values 
of capacitances of the two elements. As mentioned before, the interpretation of the 
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Fig. 12.14 A scheme of voltage injection of electrons (1) and holes (4) as well as recombina-
tion (2) processes of a DSC, including transport losses in the hole-conducting layer (3). The 
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capacitance is a major tool for identifying the physical origin of processes observed 
in IS measurements.

12.4.2 Measurements of electron lifetimes

It is interesting to explain in more detail the relationship between the equivalent 
circuit elements describing the solar cell IS response and the electron lifetime. In 
order to describe the IS behavior, we have considered in Eq. (12.63) an experiment 
relating voltage to an electrical current measurement. However, we can employ the 
general dynamic equation (12.59) in experiments in which we apply a perturbation 
and let the system decay by itself [12.54, 12.57]. Since no current is extracted, we 
obtain:

 

∂
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Eq. (12.64) describes, for instance, the exponential decay of a small step of 
excess carrier concentration by recombination. From Eq. (12.64), the time constant of 
the decay process, which we denote the response time, is:
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In the model outlined above, this also gives:
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With the normal assumption of a fi rst-order reaction for direct electron trans-
fer from the conduction band, Eq. (12.5), we obtain simply tr = t0. In this simple 
model, the lifetime is constant, and the response time and electron lifetime have 
the same meaning. But in general, the lifetime can be dependant on steady-state 
conditions, as is obvious in Eq. (12.66). In addition, in the presence of additional 
relaxation  processes such as trapping and release in localized electronic states, the 
response time contains components due to kinetic delays in addition to the free car-
rier lifetime [12.40].

12.5  BASIC PHYSICAL MODELS AND PARAMETERS OF IS 
IN DYE-SENSITIZED SOLAR CELLS

12.5.1 Electronic processes in a DSC

A general view of the electronic and ionic processes occurring in a DSC is given in 
Figure 12.15. With respect to the basic solar cell model in Figure 12.4, the sensitizer 
in a DSC (molecular dye, inorganic quantum dot, etc.) is the absorber [12.33]. The 
selective contacts to the absorber are formed, fi rst, by an electron transport material 
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(ETM), which is the wide bandgap semiconductor nanostructure on top of a TCO, 
where TiO2 is the archetypical semiconductor. The second selective contact is a 
hole-transport material (HTM), which in original DSC is a redox carrier in a liquid 
electrolyte. In fully solid devices, on the other hand, it is an organic hole-conductor, 
as explained in by Snaith in Chapter 6.

In IS, we do not directly monitor the photoinjection process, as explained above, 
and the main attention is focused on electronic processes of electrons in the ETM (and 
eventually holes in solid state HTM), which are described in Figure 12.16. The rea-
son why IS relates predominantly to electrons in the wide bandgap semiconductor, 
is that the concentration of redox carrier in an electrolyte is very high (approaching 
1020 cm−3). Moreover, it is hardly affected by the bias, whereas the electron concen-
tration changes by many orders of magnitude when the potential is displaced [12.81]. 
We can therefore monitor wide variations of the IS parameters related to electronic 
processes, as discussed below.

Materials for hybrid solar cells based on low-cost semiconductors usually 
include a large extent of electronic energy disorder, implying a wide distribution of 
localized electronic states in the bandgap, as indicated in Figure 12.16 [12.61]. The 
transport of electrons is usually described in terms of a classical multiple trapping 
transport [12.61]. This model includes two classes of electronic states: the transport 
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states above the mobility edge (which may be associated with extended states in the 
conduction band), and localized states in the bandgap. The latter states do not par-
ticipate in spatial displacement but rather retain the carriers for a certain time by a 
trapping-detrapping process. A process of injection (or extraction) of carriers causes 
diffusion of electrons along the extended states, and these carriers have the chance to 
be captured, and later released, by traps.

In addition, free carriers have a possibility to be captured in a recombination 
process. Figure 12.16 specifi cally shows the electron transfer from the metal oxide 
nanoparticles towards ionic species in solution (these are depicted around their own 
Fermi level, the redox potential). This represents the dominant recombination mecha-
nism in standard liquid electrolyte DSCs [12.1], where the I I− −/ 3 redox couple is 
normally used to regenerate the oxidized dye molecules from the counterelectrode. In 
DSCs with solid HTM [12.82], the interfacial charge transfer implies a recombination 
of electrons and holes in the separate materials.

In the following subsections, we discuss the impedance elements associated 
with the electronic processes shown in Figure 12.16.

12.5.2 The capacitance of electron accumulation in a DSC

The chemical capacitance associated with delocalized, transport states, has already 
been described in Eq. (12.54) using the Boltzmann distribution (nondegenerate condi-
tions). The presence of bandgap states introduces additional possibilities for loading 

E
redox

E
CE

F

el
ec

tr
on

 e
ne

rg
y

L

(a)

(b)

Fig. 12.16 (a) A mesoporous semiconductor fi lm deposited over a conducting substrate, the 
matrix of the active layer in a DSC. (b) Electronic processes in the porous fi lm, when immersed 
in a redox electrolyte. Electrons injected from the substrate diffuse by displacement in the 
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the semiconductor with charges. For one specifi c electronic state characterized by an 
energy E (an energy defi ned to be increasingly negative for states deeper in the gap), 
the average equilibrium occupancy is determined by the Fermi level as described by 
the Fermi-Dirac distribution function:
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If the distribution of localized states is g(E), the chemical capacitance is obtained 
by integrating all the contributions through the bandgap
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Using df (E − EFn)/dEFn = −df (E − EFn)/dE and integrating Eq. (12.68) by parts, 
we arrive at
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A simple solution to Eq. (12.69) is obtained by the zero-temperature limit of the 
Fermi function, i.e., a step function at E = EFn separating occupied states from their 
unoccupied counterparts. It then follows that:
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In this approximation, Eq. (12.70), the charging related to the perturbation dV 
corresponds to fi lling a slice of traps at the Fermi level, as explained in Figure 12.17, 
and the chemical capacitance is proportional to the density of states (DOS).

A common fi nding in nanostructured TiO2 is an exponential distribution of 
localized states in the bandgap as described by the following expression:

 
g E

N

k T
E E k T( ) exp ( ) /= −[ ]L

B
C B

0
0  (12.71)

Here, NL is the total density and T0 is a parameter with temperature units deter-
mining the depth of the distribution, and which can be alternatively expressed as a 
coeffi cient a = T/T0. According to Eqs. (12.70) and (12.71), the chemical capacitance 
should display an exponential dependence on the applied potential:
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where the slope is q/KBT0 in log-linear representation with respect to the voltage; a 
fact that has been observed many times in the literature when using IS (as discussed 
in the next section) and cyclic voltammetry (CV) [12.51, 12.53, 12.83, 12.84]. In 
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addition, nanostructured TiO2 usually shows a nearly-monoenergetic state below the 
bandgap. Therefore, the total chemical capacitance, due to occupation of electronic 
levels, displays the shape shown in Figure 12.18. This shape can indeed be obtained in 
measurements [12.85]. From here onwards, we will use Cm as the sum of the contribu-
tions from traps and extended states, see Eq. (12.113) below.

One important parameter for nanostructured devices is the position of the semi-
conductor conduction band/transport level, EC, with respect to the Fermi level of holes, 
or redox potential of ion carriers. EC determines, for example, the maximum photovolt-
age that can be obtained in a DSC [12.24] and also the effi cient injection of photoexcited 
electrons from the sensitizer. EC can be modifi ed by absorption of dipolar species at the 
metal oxide/electrolyte interface, as indicated in Figure 12.19(a) [12.86]. Measurements 
of capacitance by IS or CV immediately reveal the global displacement of the semicon-
ductor energy levels as a shift along the potential axis, as illustrated in Figure 12.19(b).

In order to maintain the charge neutrality in a nanostructured fi lm under electron 
accumulation, it is essential that the increasing electron charge in the nanoparticles be 
accompanied by a positive ion charge at the semiconductor/electrolyte interface. In 
addition to the chemical capacitance, Cm, ionic accumulation charges the Helmholtz 
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Fig. 12.17 An electron energy diagram illustrating the behavior of a nanostructured TiO2 
electrode (shown in the top scheme) when a variation dV of the electrochemical potential of 
electrons EFn (Fermi level) is applied, assuming that the conduction band energy (EC) remains 
stationary with respect to the redox level, Eredox. Changes of occupancy for both the conduction 
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capacitance, CH, which is usually a constant, and is connected in series. The total 
capacitance thus becomes:
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H  (12.73)

Eq. (12.73) also describes the distribution of the applied bias, either as a Fermi 
level in the semiconductor, or as an interfacial potential drop. As discussed later in 
more detail, it is common for the capacitance to saturate towards CH at strong forward 
bias, implying that the increasing potential modifi es the voltage in the Helmholtz 
layer, causing the band to shift.

It should be emphasized that Cm generally depends on the properties of the 
electrochemical potential of the carriers. The model explained above in terms of the 
distribution of electronic states is one possible approach that has been found to be 
very useful in the interpretation of capacitance measurements of DSC [12.53, 12.87]. 
In general, however, ionic effects, interactions, etc., governing the electrochemical 
potential [12.88], will affect the chemical capacitance.

12.5.3 Recombination resistance

In the Applications Section, we demonstrate that the DSC operation is very similar to 
the ideal photovoltaic model that has been outlined above. The main reasons for this 
are that:

(1) The TCO/TiO2 contact and nanostructured TiO2 network provide a very good 
electron selective contact, whereby the Fermi level of the TCO follows the 
increase of the electron Fermi level in TiO2 nanoparticles.

(2) Electron transport is fast enough to provide long diffusion lengths.
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with density Nexp = 1020 cm−3 below the lower edge of the conduction band (EC = 0eV) and 
a monoenergetic energy level with density Nm = 1018 cm−3 (Em = −0.4cV) at a temperature 
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Despite these properties, DSC performances remain far below the theoretical 
effi ciencies that can be calculated on the basis of the absorption band of current sensi-
tizers such as N719 [12.89]. One important limitation to present the DSC effi ciency is 
that the Fermi level (redox potential) of the dominant redox couple, I I/ 3

−, is too high 
and limits the photovoltage. Other redox couples, with a more positive redox potential 
(in electrochemical scale), present poorer kinetic properties at the various internal 
interfaces [12.90], yielding higher recombination losses [12.68].

Governing recombination at the semiconductor/electrolyte interface is perhaps 
the most critical issue when striving to improve the DSC performance. There exist 
two basic approaches for analyzing recombination in a DSC: one can study either 
the recombination resistance in IS, or the electron lifetime. According to the litera-
ture, the second method is preferred since it can be directly measured by several 
techniques. From the point of view of IS, both quantities are related by the chemical 
capacitance as indicated in Eq. (12.65), and more generally, by the capacitance, which 
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may or may not be chemical in origin [12.91]. However, the lifetime is a quantity 
that corresponds to the transient behavior of the solar cell, while the recombination 
resistance contains primary information regarding the recombination rate at steady 
state [12.40]. We consider that this resistance, appearing in the fundamental circuit 
of Figure 12.13, is the central quantity when discussing recombination in relation to 
the steady state performance of DSCs. Even if we choose to study electron lifetimes, 
the main information on charge transfer in the lifetime is the resistance, and not the 
capacitance in Eq. (12.65).

Let us specify the meaning of recombination fl ux. Figure 12.4 showed that 
solar cell operation under illumination consists basically in the competition between 
two currents: the photocurrent due to extraction of the photogenerated carriers, and 
the recombination current which travels in the opposite sense as opposed to genera-
tion. In Eq. (12.12), the recombination current was therefore jrec = qLUn. However, 
in practice, the situation is much more complicated, both in terms of morphology 
and kinetics, and we need to identify the main components of recombination through 
measurement. We have already mentioned the diffi culty of separating the components 
of a measured dc current, which is why we adopt the analysis of IS.

As discussed with regard to Eq. (12.61), we can calculate the macroscopic 
recombination resistance as the derivative:
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In Figure 12.15, we indicated that the recombination process in a DSC is the 
interfacial charge transfer of electrons in the ETM, to oxidized ions in the electrolyte 
or holes in the HTM. In order to perform model calculations, precise assumptions 
on the recombination current dependence, both with regard to the electron density 
and the concentration of electron acceptors in solution, or in HTM, c, are required. 
A simple way of formulating the recombination rate is a fi rst-order reaction, as in 
Eq. (12.5):

 Urec = kreccn (12.75)

The recombination current density is then:

 jrec = qLUrec = qLkreccn (12.76)

and we obtain from Eq. (12.74):
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If we assume that electron recombination occurs from the conduction band 
energy level, this last equation can also be expressed as:
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Eq. (12.78) shows that the recombination resistance decreases as the applied 
forward bias increases, due to the increasing electron density that augments the 
recombination rate.

In the experimental results of measurements in DSC, it is common to fi nd an 
expression such as Eq. (12.78), however with a different exponent, that can be param-
eterized with a constant b:
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We should note that Eq. (12.79) is an empirical approximation that works well 
in restricted domains of bias voltage. The observed dependence of recombination 
resistance on bias may contain additional features, such as a valley, i.e., a minimum of 
resistance, at low potential [12.92], see Figure 12.38 below.

The parameter b in Eq. (12.79) has different denominations: it can be related 
to a classical electrochemical behavior known as the Tafel law, and can also be asso-
ciated with the nonideality factor of the classic solar cell theory, i.e., b = 1/m in Eq. 
(12.1). It should nevertheless be recognized that the Tafel law in electrochemistry 
usually corresponds to the voltage dependence of the charge transfer rate at the metal/
solution interface. In contrast, in Eq. (12.79), V is not an overpotential, but rather the 
Fermi level of electrons. Thus, the primary cause for the recombination resistance 
dependence on bias voltage in a DSC is the increase of the electron density in the inor-
ganic semiconductor, as already mentioned. These two causes for the exponential law 
are widely recognized in photoelectrochemistry of semiconductor electrodes [12.93]. 
Eq. (12.78) expresses such a model in the case of ideal statistics for electrons. Eq. 
(12.79) corresponds to the fact that a recombination current is not simply proportional 
to the total electron density. As stated, such deviations are common in many classes 
of solar cells, even in highly effi cient silicon ones [12.94], where the diode ideality 
factor often departs from 1 [12.95].

Recombination in DSC depends on a multitude of factors, and these are not 
easy to separate in experiments using working DSC devices. While no well estab-
lished consensus has been achieved regarding a fundamental quantitative description 
of recombination, we can provide a basic classifi cation of the main elements deter-
mining recombination in the following way. Recombination is an interfacial charge 
transfer event at the surface between the semiconductor and the ionic/hole carrier. 
(Additionally, recombination from the substrate becomes important in certain circum-
stances [12.96], a subject that is also treated in the Applications Section). Since the 
distance for electron tunneling should be on the order of 1 nm, the recombination fl ux 
can be naturally separated into three elements:

(1) electrons reaching recombination sites in the semiconductor surface;

(2) ions or holes reaching the surface from the electrolyte or hole-conductor 
side; and

(3) interfacial events.
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The electronic density in semiconductor nanoparticles in a DSC can be read-
ily varied by potentiostatic control, and is accessible by several means. We can for 
instance obtain separate information on this by determining the chemical capacitance 
and transport resistance, which can be utilized as an input in the analysis of the recom-
bination resistance. However, due to spatial and energetic disorder in the semicon-
ductor, there are several electronic paths for charge transfer at the surface, which 
complicates the analysis, as further discussed below.

In contrast, as mentioned previously, for redox ionic species in the electrolyte, 
the concentration is very high and cannot be varied in situ, maintaining the integrity of 
the solar cell. For a majority of studies, the standard iodine/iodide has been employed 
as a redox carrier. The overall recombination reaction is given by:

 I 2e  (TiO )  3I3 2
− − −+ →   (12.80)

The reaction (12.80) must be constituted of a multiple-step mechanism, very 
probably involving the species I2 [12.97], and one of the steps will be rate- determining. 
The oxidized species in the electrolyte may therefore be I2, and/or I3

−. Another very 
important issue for DSC operation is the regeneration of the oxidized dye, and this 
may involve a transient (dye+-iodide) intermediate complex [12.98], though such a 
process is diffi cult to access by IS.

The formulation of charge transfer models requires that the probability of elec-
tron transfer from an electronic state at the energy level E to an acceptor species in the 
electrolyte with concentration c be specifi ed. This is usually given [12.99, 12.100] by 
the expression of the Marcus model:
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where k0 is a time constant for tunneling, which is dependent on the distance of the 
acceptor to the surface [12.101], and l is the reorganization energy.

It is well established that recombination rates are mainly affected by two fac-
tors: (1) the position of the semiconductor energy levels, with respect to the redox 
levels, and (2) treatments of the surface which intercept charge transfer from the 
semiconductor without decreasing the rate of photoinjection from excited dye mol-
ecules [12.84]. Recombination with oxidized dye molecules is thought to be of minor 
relevance. However, as already mentioned, while a quantitative control of electron 
density is possible, the measured lifetime or recombination resistance still contains a 
combination of mechanisms that have not been ascertained in detail.

Leaving aside the complexity of individual charge transfer events, we discuss the 
density dependence of the recombination resistance analyzing the various electronic 
paths that may occur in the semiconductor surface of a DSC. Figure 12.20(a) provides 
a possible outline of electronic states that participate in electron transfer at the surface 
[12.54, 12.102, 12.103]. Consistent with the density of states that is measured by capac-
itance techniques, as indicated in Figure 12.18, we assume that the surface may contain 
transfer states that we classify in three kinds: the transport (conduction band) states, an 
exponential distribution of surface states, and a monoenergetic deep surface state.
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Fig. 12.20 (a) A schematic representation of the steps involved in the recombination between 
the electrons in TiO2 nanoparticles and the oxidized species in the electrolyte. (EFo) shows the 
position of the Fermi level in the dark, equilibrated with the redox potential (Eredox) of the accep-
tor species in solution. (EFn) is the Fermi level of electrons under illumination and Ec is the 
transport level (conduction band) energy. The following steps are indicated: (A) electron trans-
port; (B) capture by surface states; electron transfer through (C) the conduction band, (D) deep 
mono-energetic and (F) exponential distribution of surface states. On the left side, we show the 
density of electronic states in the TiO2 nanoparticles, and to the right, the fl uctuating energy lev-
els of oxidized species in solution according to the Marcus-Gerischer model are presented. (b) A 
scheme of the processes of interfacial charge transfer, displaying the electron exchange between 
the transport levels, and a surface state in the bandgap at energy Ess, with rates Utr and Ure for 
trapping and release. The rate of interfacial charge transfer from transport states is Un

cb and the 
rate of charge transfer from the surface state is Un

ss. l corresponds to the reorganization energy 
of the acceptor species in the ionic or hole transport material, with an effective density of states 
D. Eox is the most probable energy levels for the oxidized state of the acceptor species.
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In Figure 12.20(a), we appreciate that only transport states establish the elec-
tronic communication of the surface with the substrate. So in this model, there is a 
single channel for transport. But when the electrons arrive at the surface, the recom-
bination current branches into several parallel channels. Figure 12.20(b) provides a 
clearer image of the situation, by indicating in more detail the trapping and release 
events on a single surface state, that subsequently acts as a recombination center 
[12.28, 12.92].

It is now clear that, in the situation of Figure 12.20(b), the recombination cur-
rent is no longer linearly dependant on the concentration of electrons in the transport 
state, ncb, but rather also depends on the density at the surface state, nss. In steady 
state, nss depends uniquely on ncb, although this dependence may be quite involved 
[12.102, 12.103]. In any case, in the presence of two channels for charge transfer, the 
recombination rate is:

 U U Un n
cb

n
ss= +  (12.82)

From the general form of the recombination resistance (per unit volume) in Eq. 
(12.61), we may write the reciprocal resistance as:
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Here, tcb is the lifetime of conduction band electrons. The fi rst term in paren-
theses in Eq. (12.83) recovers Eq. (12.78), while the second term introduces a differ-
ent dependence.

Eq. (12.83) demonstrates nicely that the various recombination branches imme-
diately translate into parallel branches in the equivalent circuit for recombination. In 
order to obtain a detailed understanding of recombination mechanisms in DSCs, it is 
of critical importance to separately measure the different recombination paths, and 
one may ask oneself if this is possible using IS?

The answer to this question depends on the dynamic response of the various 
recombination channels; i.e., whether the different channel have associated different 
capacitances? This would provide spectral features for discriminating the channels in 
the IS data.

In general, surface states, have a separate capacitive component. This is related 
to the chemical capacitance of each state, which is observable depending on rates of 
trapping and release. These are shown in Figure 12.20(b), and determine the trap resist-
ance [12.75]. Indeed, in the literature of photoelectrochemistry, one may fi nd a detailed 
treatment of the dynamic effects of surface states [12.13, 12.14, 12.104, 12.105], and 
the equivalent circuit resulting from this approach is shown in Figure 12.21. Note, in 
particular, the resistances of the two recombination branches r rr

cb
r
ss, , corresponding to 

the two terms in Eq. (12.83). However, the dynamic effect of surface states in TiO2-
based DSCs has so far not been clearly identifi ed in experiments of IS. We therefore 
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need to work under the assumption of a quasistatic approximation [12.40, 12.75]: we 
assume that the trapping and release rates, Utr and Ure, in Figure 12.20(b) are so fast, 
that the density of the surface state, nss, remains at a quasiequilibrium level in the 
measurement. We then measure a unique recombination resistance that will contain 
the contribution from all the transfer channels present, i.e., rr. The signifi cance of the 
different channels has to be inferred from the steady state variation of the recombina-
tion resistance [12.92].

As suggested in Figure 12.20(a), we should consider the charge transfer from 
a distribution of surface states, gss(E), in the semiconductor [12.102, 12.103, 12.106]. 
The current per unit macroscopic area of an electrode of thickness L is:
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Here, f(??) is the occupation of the surface state. In general, EFn is denoted the 
Fermi level of electrons in transport states. For electrons in surface states, the equi-
librium statistics are more complex, and it is generally not possible to defi ne a Fermi 
level [12.92]. As mentioned above, if the trapping-release rate is suffi ciently fast, we 
can assume that the surface state is in equilibrium with the transport states, and the 
occupancy of both is described by the Fermi-Dirac distribution, Eq. (12.67), with a 
common Fermi level.

The recombination resistance is expressed as:
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Applying the zero temperature limit of the Fermi-Dirac distribution, as before 
in Eq. (12.68), the following result is obtained:
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Fig. 12.21 An equivalent circuit for the model of Figure 12.20(b), with electron transfer from 
both the conduction band and a surface state in the bandgap at energy Ess. cm

cb is the chemical 
capacitance of free carriers, rr

cb is the recombination resistance of free carriers, rtrap  is the resist-
ance for trapping and release, c

m

ss is the chemical capacitance of the surface state, and rr
ss is the 

charge transfer resistance from the surface state.
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Eq. (12.86) states that the reciprocal charge-transfer resistance is proportional 
to the product of the density of surface states at the Fermi level, and the probability 
of electron transfer from such states. This result occurs due to the resistance, as dis-
cussed before, being a differential quantity corresponding to the current gained by a 
small step in voltage. In Figure 12.20(a), a small displacement of the Fermi level fi lls 
the surface states precisely at the Fermi level, hence the resistance detects only those 
states, as indicated in Eq. (12.86).

Assuming that gss(E) has the exponential shape of Eq. (12.71) with parameters 
Ns and T0, the resistance in Eq. (12.86) takes the form [12.65]:
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Eq. (12.87) can also be expressed as:
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Figure 12.22(b) shows the characteristic probability of electron transfer accord-
ing to the Marcus-Gerisher model. The probability increases with the driving force for 
the transition, which is Ess − Eredox with a maximum at Eox = EFn − Eredox = l, where 
activationless charge transfer occurs. According to Eq. (12.89), the dependence of 
resistance on voltage, V = q(EFn − Eredox), consists in a Gaussian function, centered 
at the energy Em indicated in Eq. (12.90). The center Em of the Gaussian is shifted 
towards positive values in the scale of the Fermi level, with respect to Eox, by an 
amount 2la. In other words: Em = Eox + 2la. The behavior of Rr(EFn) in this model is 
illustrated in Figure 12.22(a).

When the Fermi level is below the minimum Em, we obtain a useful approxima-
tion of Eq. (12.89):
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Therefore, this model satisfactorily explains the Tafel dependence indicated in 
Eq. (12.79). In addition, b1 is predicted to increase linearly with the temperature.

The outlined model should be taken as an example for a combination of charge 
transfer channels (in this case by a wide distribution of energies of the surface states) 
providing a new dependence of the recombination resistance on the Fermi level (or 
electron density). An experimental application of this model is discussed later on.

12.5.4 The transport resistance

Obtaining a high solar cell effi ciency requires that most of the incident photons be 
absorbed. Depending on the absorption coeffi cient of the specifi c absorber, a certain 
thickness of the semiconductor is required. Therefore, photogenerated carriers must 
travel a certain distance to reach the contact, as indicated in Figure 12.16(b), and 
this is often an important aspect of solar cell operation. Electron or hole transport is 
always driven by a gradient of the Fermi level, as discussed below, and the transport 
in the semiconductor therefore constitutes a loss of free energy of the carriers. In 
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Fig. 12.22 Model simulations of: (a) The electron recombination resistance, Rr, normalized to the 
minimum value, as a function of the Fermi level position, for the model of charge transfer in an 
exponential distribution of surface states with parameter T0 = 800 K, (b) the charge transfer prob-
ability normalized to the maximum value, as a function of the Fermi level position. Results are 
shown for several values of the reorganization energy, l, at a temperature T = 300 K, and for vary-
ing temperatures in the case l = 0.8 eV. The position of the conduction band, EC, is indicated.
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addition, the extraction of carriers to provide a photocurrent in the external circuit is 
in competition with recombination processes. It is therefore important to determine 
the basic transport coeffi cients of the electronic carriers, such as the mobility, un, and 
the diffusion coeffi cient, Dn, since this allows us to evaluate the energy losses associ-
ated with carrier transport and the diffusion length. The basic quantity that describes 
the transport features in IS is a transport resistance, rt. A description of the method to 
obtain Dn from rt is presented below.

Diffusion under concentration gradients is a collective phenomenon, and in 
DSC as well as in disordered materials in general, diffusion involves electronic states 
with widely varying energies [12.61]. A clear manifestation of this is the fact that, in 
DSC, the diffusion coeffi cient varies several orders of magnitude under modifi cation 
of bias voltage [12.56]. It is therefore useful to carefully establish the meaning of 
measured transport quantities.

To discuss the motion of electrons in a semiconductor material, with concentra-
tion n(x) at position x, we assume that the Fermi level, or electrochemical potential, of 
the electrons has two basic components [12.60, 12.107]:

 EFn = Ec + mn (12.93)

The fi rst one, Ec, is the energy of the edge of the conduction band (or transport 
level), which can be associated to the Galvani (electrostatic) potential, f, with respect 
to some suitable reference level, as follows:

 EC = −qf (12.94)

The second component in Eq. (12.93), mn, is the chemical potential of electrons. 
This is an entropic contribution that accounts for the dispersion of the carriers over 
all the available sites, and can normally be formulated in terms of the carrier density. 
If the species is randomly distributed in the available sites, the following expression, 
which is equivalent to Eq. (12.67), holds:
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If the sites are far from saturated, we obtain the ideal statistics:
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which is equivalent to Eq. (12.15). Eqs. (12.95) and (12.96) are very important 
instances of the chemical potential, but, more generally, the diffusion theory formu-
lated below is valid for any mn.

Let us now consider the system of main interest here: a nanostructured metal-
oxide semiconductor, surrounded with electrolyte that contains abundant ionic spe-
cies of both change signs. Figure 12.23(a) shows a scheme of such a semiconductor 
in equilibrium. When a bias voltage, V, is applied in the substrate, two basic sit-
uations may occur, as shown in Figures 12.23(b) and (c). Note that the voltage V 
in these fi gures is positive according to the convention of photovoltage used in this 
 chapter, but that it is negative according to the usual convention of electrochemistry. 
In Figure 12.23(b), the voltage causes a change of the concentration of the electrons 
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in the semiconductor, i.e., a change of their chemical potential, thereby inducing a 
diffusion force. In Figure 12.23(c), the bias voltage promotes a bending of the band, 
and this creates an electric fi eld F(x) = −∂w/∂x at position x, whereas the concentration 
of electrons remains constant everywhere. In this case, the electrons move under drift 
in the electrical fi eld.

What actually happens when we apply a voltage in a certain case depends 
mainly on the conditions of shielding. In fact, by applying a voltage at the contact, 
there is a difference of electrostatic potential that must be distributed somewhere into 
the fi lm. The difference between Figures 12.23(b) and (c) is that, in (b), the electrical 
fi eld remains very close to the interface with the substrate, absorbed by a large change 
of the band offset EC − EC(TCO). In contrast, in (c), EC − EC(TCO) remains as in equilib-
rium and the electrical fi eld enters deep into the semiconductor layer.

In DSC, we usually employ electrolytes with large concentration of ions (about 
1020 cm−3). When electrons are injected into the nanostructured metal oxide, posi-
tive ions move to the surface of the charged nanoparticles and neutralize long range 
electrical fi elds. Therefore, the change in electrical fi eld occurs right at the substrate 
interface, [12.108-12.110], as in Figure 12.23(b) and electron transport occurs mainly 
by a concentration gradient, i.e., by diffusion. This is the case also in crystalline 
 p-silicon solar cells, due to the fact that injected electrons are signifi cantly fewer than 
the majority carrier holes [12.94].

Nonetheless, a drift component is possible also in nanostructured semiconduc-
tors surrounded by an electrolyte. As indicated in Eq. (12.73), the shielding ions may 
cause a local shift of the conduction band, and if this shift is not homogeneous, it 
induces a macroscopic fi eld in the semiconductor nanoparticulate network [12.29, 
12.111]. However this effect is minor in liquid electrolyte-based DSCs and one may 
generally neglect it.

In other devices, such as amorphous silicon solar cells [12.112], and organic 
light-emitting diodes [12.113], the intrinsic carrier density in the semiconductor layer 
is very low, and becomes overwhelmed by the number of injected carriers. In such 
cases, the electrical fi eld is self-consistently determined via a Poisson equation. This 
is called space-charge-limited transport [12.114], and is governed by drift transport. 
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Fig. 12.23 (a) A scheme of a nanostructured semiconductor layer in contact with a conducting 
substrate to the left, showing the edge of the conduction band EC, the Fermi level of electrons 
EFn and the conduction band of the substrate EC(TCO), (b) an equilibrium situation, and (c) two 
possible situations under application of a bias voltage V.
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In a certain sense, it is an opposite extreme of a transport situation, as compared to 
diffusion.

Diffusion

Turning our attention to the dominant conditions in DSC, we now analyze the dif-
fusive transport of electrons [12.58, 12.60, 12.61]. The driving force for diffusion is 
the gradient of the chemical potential of the electrons. In simple terms, there are two 
forms of the diffusion law:

1. In the Onsager form, a linear relationship is assumed [12.115] between the 
diffusive fl ux and the gradient of the chemical potential:
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The prefactor Ln = nun/q is known as the Onsager coeffi cient.

2. In the Fick form, diffusion is formulated in terms of the concentration gradient
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The coeffi cient Dn in Eq. (12.98) is called the chemical diffusion coeffi cient 
[12.116, 12.117]. By comparing Eqs. (12.97) and (12.98), we obtain the expression:
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Here, Dn contains two components: (i) a phenomenological coeffi cient un (the 
mobility) and (ii) the term n∂mn/∂n, accounting for the difference between a gradient 
in concentration, and a gradient in chemical potential. This last term is expressed in 
dimensionless form as the thermodynamic factor introduced by Darken [12.118]:
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The thermodynamic factor can, with respect to the chemical capacitance, be 
expressed as:
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Another way to approach the diffusion coeffi cient is to monitor the random 
walks of the electronic carriers. The resulting coeffi cient is termed the jump (or 
kinetic) diffusion coeffi cient, and is simply proportional to the mobility:
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It should be emphasized that DJ is closely related to the tracer diffusion coef-
fi cient, D*. We can now write the chemical diffusion coeffi cient as the product:

 Dn = χnDJ (12.103)

Alternatively, we have:
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Eq. (12.103) is a statement of the generalized Einstein relation [12.61].
The electron conductivity is:

 sn = nqun (12.105)

Using Eqs. (12.101), (12.104) and (12.105), the conductivity can be expressed 
in terms of the chemical diffusion coeffi cient and the chemical capacitance as:

 sn = cmDn (12.106)

Diffusion and drift

As mentioned above, in a system in which the electrochemical potential has the two 
components indicated in Eq. (12.93), we may view the electrical current as composed 
of the sum of conduction and diffusion currents:
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Now, Eq. (12.107) can be written as:
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This relationship states that the electrical current associated with one kind of 
carrier is proportional to the gradient of the electrochemical potential, EFn. Such an 
approach is usually employed in electronic device modeling [12.25, 12.29].

The transport resistance

We can now obtain an expression for the transport resistance that we measure in IS. 
We recall that we are interested in systems, such as a semiconductor layer of thickness 
L, which may be far from homogeneous in terms of the carrier distribution. We there-
fore want to determine the resistance, associated with a specifi c kind of carrier (e.g., 
electrons), in a small spatial distance Δx. Associated with this distance, is a differ-
ence of electrochemical potential, which may be expressed as a difference in voltage: 
ΔEFn = qΔwn, see Eq. (12.50). Applying the transport equation, (12.108), we obtain:
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Δ
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and therefore:

 
R

Aj

x

A pt
n

n n

= − =
−

Δ Δw

( )1 s
 (12.110)

In Eq. (12.110), we appreciate that the transport resistance depends on the geo-
metric dimensions of the semiconductor slab, and on the reciprocal conductivity.

Transport in a single level

Let us consider a semiconductor with a single transport level, in which the electron 
carriers are free from interactions. In this case, the relation between the electrochemi-
cal potential and the carrier density is simply given by Maxwell-Boltzmann statis-
tics, Eq. (12.17). Since this is the ideal statistics, the thermodynamic factor, chemical 
 diffusion coeffi cient, etc., become considerably simplifi ed [12.61]. We have χn = 1, 
thus Dn = DJ = D0, and we thus obtain Eq. (12.7) as well as the standard Einstein rela-
tion relating diffusivity with mobility:
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q
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B
n=  (12.111)

Multiple trapping transport

In classical multiple trapping transport [12.119-12.121], we distinguish between two 
classes of electronic states: the transport states above the mobility edge (that may 
be associated with extended states in the conduction band), and localized states in 
the bandgap. The multiple-trapping model describes the effect of trap levels over the 
rate of displacement through transport states. Such an effect can be analyzed using 
the full set of transport-kinetic equations of the model, which provides the system’s 
response under any required set of conditions. However, if trapping and detrapping 
are fast processes, we apply the quasi-equilibrium approach that was discussed above 
in the analysis of surface states. Subsequently, electron trapping kinetics can be read-
ily described in terms of electron densities in transport and trap states, and this second 
approach will be adopted herein [12.40]. In fact, a detailed analysis [12.75] shows 
that the fi rst, general, approach reduces to the second one whenever the traps can be 
considered in quasi-equilibrium conditions.

In the transport states, we have a number of carriers, ncb, and a chemical 
 capacitance, cm

cb. Assuming ideal statistics, jump and chemical diffusion coeffi cients, 
we have D D DJ

cb
n
cb= = 0. The localized states (below the mobility edge), have a distri-

bution gL(E), a number of carriers, nL, and a chemical capacitance cm
traps. The relation-

ships for the total carrier density and total chemical capacitance are, respectively:

 n = ncb + nL (12.112)
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It can be shown [12.61] that the jump diffusion coeffi cient is given by:
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The thermodynamic factor can be written as:
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Hence, the chemical diffusion coeffi cient has the general form [12.58]:
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Alternatively, we can write Eq. (12.116) as:

 

D
c E

c E c E
Dn

cb
Fn

cb
Fn

traps
Fn

=
+
m

m m

( )

( ) ( ) 0  (12.117)

The effect of trapping in the chemical diffusion coeffi cient is dominant when 
∂nL/∂ncb >> 1. In this case the result becomes:
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or alternatively:
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Eq. (12.118) shows that the chemical diffusion coeffi cient in the presence of 
traps is reduced by the relationship of the number of free to trapped electrons for a 
small variation of the Fermi level.

We obtain the following result for the conductivity:

 
s mn n

traps= D c  (12.120)

This last equation is a formulation of the generalized Einstein relation link-
ing the conductivity, the chemical diffusion coeffi cient and the chemical capacitance 
[12.61, 12.122].
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We can also express the conductivity in terms of the carrier density and jump 
diffusion coeffi cient:
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2 2

0  (10.121)

Equation (12.120) can also be written as s mn D c= 0
cb. This shows that, in the 

multiple trapping model, the conductivity is determined exclusively by the trans-
port level and is completely independent of the presence and distribution of traps. 
The steady-state conduction is not affected by the trapping process, due to the traps 
remaining in equilibrium.

Multiple trapping in exponential distribution

As mentioned before, it is well established that nanostructured (anatase) TiO2 used 
in DSC shows this type of distribution of states in the bandgap [12.51, 12.53, 12.83, 
12.84, 12.123]. We discuss the regime of electrochemical potentials in which the 
Fermi level is well below the conduction band. Hence, the free electron density is 
much lower than the number of trapped electrons, ncb/nL << 1. It is easy to show 
[12.61] that the thermodynamic factor is constant [12.58]:
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Here, a = T/T0 For typical values of T0, χn ≈ 5 at room temperature. The cal-
culation of the jump and chemical diffusion coeffi cient, gives, respectively [12.58, 
12.61]:

 DJ = aDn (12.123)
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The diffusion length is usually defi ned for transport in a single level, as:

 
L Dn

0
0 0= t  (12.125)

where t0 is the electron lifetime. Ln
0  is a very useful quantity which indicates the aver-

age distance that an electron travels before undergoing a recombination event.
Transient techniques that induce a gradient of the Fermi level, such as IS, IMPS, 

etc., provide a determination of the chemical diffusion coeffi cient [12.124]. Therefore, 
we do not experimentally have direct access to D0. Similarly, when we measure the 
electron lifetime by transient methods, we do not directly observe the decay time of 
carriers in the transport level. Using again a quasi-equilibrium approach, the trapping 
and detrapping effects introduce a delay factor leading to the measured quantity being 
a response time [12.40]
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If the carrier density is homogeneous, we can defi ne a diffusion length Ln 
from the measured parameters Dn and tn. By combining Eqs. (12.116), (12.125) and 
(12.126), we obtain:

 
L D Ln n n n= =t 0  (12.127)

The time constants determined by the transient or frequency techniques can 
thus be used to calculate the diffusion length in Eq. (12.125). Eq. (12.127) implies 
that, despite the variation of Dn and tn, the diffusion length should be constant, since 
the variation of both quantities has the same origin in the delay by trapping factors 
[12.40]. However, Eq. (12.127) should be used with some points of caution: (1) the 
time constants depend on local conditions of the carrier density (or Fermi level), and 
both Dn and tn should therefore be determined under equivalent conditions [12.125] 
(2) the free carrier lifetime t0 in Eq. (12.126) may include also a combination of 
 processes by the different electron transfer channels as discussed in Sec. 10.5.3. Such 
a variation of t0 with voltage has no counterpart in Dn and for this reason, Ln will not 
be constant.

12.6 TRANSMISSION LINE MODELS

12.6.1 General structure of transmission lines

Transmission line (TL)-equivalent circuits, such as those shown in Figure 12.1, are 
frequently used in electrochemistry in connection with porous electrodes or diffusion 
in active electrodes [12.41, 12.43, 12.46, 12.126-12.128]. Models for nanostructured 
semiconductor electrodes used in DSC are described in Refs. [12.46, 12.47, 12.49, 
12.129].

The use of TL-equivalent circuits in solar cells is a consequence of the neces-
sary spatial extension of the absorber to optimize the capture of the solar photons. 
This introduces the need to transport the photogenerated carriers towards the external 
contacts, as mentioned in Sec. 12.5.4. The situation, indicating the different elec-
tronic processes in an extended solar cell, is schematically shown in Figure 12.24(a). 
Carriers that are generated must travel to the contact and this process competes with 
recombination. In addition, the outer contacts often introduce major recombination 
sites that should be controlled separately, since the recombination mechanism is usu-
ally different at these points.

The structure depicted in Figure 12.24(a) is a basic outline and can be realized 
in various ways. For example, in crystalline Si solar cells, electron and hole carriers 
travel in the same medium, and recombination at the back surface is a major point 
of concern [12.94]. Nanostructured hybrid solar cells and organic solar cells rapidly 
separate the charges to different transport media. Electrons and holes thus travel in 
separate material phases [12.33], while the transport is intercepted by charge transfer 
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events. We take Figure 12.24(a) as a basic reference to generally discuss the imped-
ance models of solar cells with outer planar contacts.

Intuitively, one can see that the local processes that where discussed in the 
fundamental model of Sec. 12.4.1 and Figure 12.13, i.e., recombination resistance 
and chemical capacitance, are also present everywhere in Figure 12.24(a). However, 
due to the spatial extension, additional impedances are required in order to transfer 
the carrier from one point to a neighboring one [12.130]. There are, consequently, 
two horizontal channels for transport, corresponding to each kind of carrier. One thus 
obtains the connection of Figure 12.24(b), which is a TL. The TL model includes 
specifi c elements at the boundaries which account for the particular properties of 
recombination, at the point where one carrier should be blocked, and the other 
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Fig. 12.24 (a) A basic energy diagram of a solar cell showing the main electronic processes: 
(1) generation, (2) bulk recombination, (3) electron transport, (4) hole transport, (5) recombination 
of electrons at the hole-selective contact, (6) recombination of holes at the electron- selective con-
tact. (b) The general transmission-line-equivalent circuit. (c) The local RC-equivalent circuit.
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 withdrawn by the contact. Note that the TL model can also be adapted to heterogene-
ous models, as in porous electrodes or nanostructured solar cells. This is illustrated 
in Figure 12.1.

In general, transport and recombination processes in solar cells with spatial 
extension should be described by highly nonlinear relations between the driving 
force (gradient or difference of electrochemical potentials) and carrier fl ux, such as 
Eq. (12.1). However, we have already discussed that IS uses a small perturbation over 
a steady state, hence all relations between difference of electrochemical potential and 
carrier fl ux are linear, the coeffi cient being a local impedance, and this is why the 
model may be represented as an ac-equivalent circuit (we should recall that all the 
elements in Table 12.7 are linear impedances).

With reference to Figure. 12.24(b), we denote ŵk the small perturbation of the 
electrochemical potential (in units of electrical potential) in channel k (where k = 1, 
2). This corresponds to the Fermi level of the respective carrier. Furthermore, we 
denote îk the small perturbation of electrical current in channel k. As explained earlier, 
the impedance model is formulated with a set of linear relationships between ŵk and 
îk. There are two kinds of such relationships. One describes the variation of ŵk with 
position in relation to current îk, in a single channel. We call such a coeffi cient χk, and 
since it is related to the driving force for transport, its archetypal form is a resistance 
(although more complex forms exist, associated to anomalous transport [12.48]).

The other kind of relationship stands for a loss of current in one transport chan-
nel while there is gain in the other. This current can basically occur (1) between dif-
ferent carriers in a homogeneous medium, cf. Figure 12.24, or (2) between carriers in 
different phases, cf. Figure 12.1. The current, related to recombination and/or interfa-
cial charge transfer, is in either case driven by the local difference of electrochemical 
potentials between the carriers. We describe this kind of process with local imped-
ances z. The archetype element is an RC circuit if there is charge transfer or recombi-
nation, or merely capacitance if these processes are not permitted.

The elements χ, distributed in the spatial direction of each channel, are continu-
ously interrupted by interphase elements z. This combination, corresponding to the 
physical probabilities for electronic events (i.e., either lateral or “vertical” displace-
ment) in Figure 12.24(a), gives rise to the characteristic ladder structure of a TL. 
Generally, linear equations for physical quantities varying in space with local dissipa-
tion are represented with transmission lines, e.g., acoustic waves [12.131].

In the model of Figure 12.24, when considering a slab of thickness dx parallel 
to the macroscopic contact, we obtain the following equations [12.132]:

 

d

dx
i

ˆ ˆw1
1 1= −χ  (12.128)

 

d

dx
i

ˆ ˆw2
2 2= −χ  (12.129)

 

di

dx

ˆ
( ˆ ˆ )1

1 2

1= −
ζ
w w  (12.130)



 Impedance spectroscopy 55

 

di

dx

di

dx

ˆ ˆ
1 2 0+ =  (12.131)

The last equation describes the conservation of current.
It should be mentioned that a TL impedance model is derived from the pre-

ceding macrohomogeneous equations. Regardless of the morphological details of the 
active fi lm, it is assumed that the carrier fl uxes occur one-dimensionally, normal to 
the outer planar contacts. Therefore, the TL must be regarded as a spatially continu-
ous model in which the branching does not correspond to fi nite distances, or specifi c 
morphological elements in the system such as nanoparticles. Indeed, we have previ-
ously indicated that the “voltage” in each channel is associated to the Fermi level 
(electrochemical potential) of one specifi c carrier, and the transport channel indicates 
the phase in which the displacement of such a carrier occurs.

Figure 12.13 emphasized the importance of the selective contacts. In the TL 
model, this is represented by the boundary conditions that complement Eqs. (12.128)-
(12.131). To realize ideal selective contacts in Figure 12.24(a), the electrons must be 
blocked at x = L and the holes at x = 0. Therefore:

 
ˆ ( )i L2 0=  (12.132)
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The electrode impedance Z is given by:

 
ˆ ( ) ˆ ( ) ˆw w1 2 00 − =L Zi  (12.134)

where ˆ ˆ ˆi i i0 1 2= +  is the ac electric current fl owing through the cell. From Eqs. (12.128-
12.134) the following expression is obtained [12.49]:
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where l = +[ ]ζ χ χ/( )
/

1 2
1 2

.
However, if the outer boundaries are not perfectly selective, there occurs some 

fl ow of current between the two channels at the endpoints. This can be associated 
with surface recombination. We can therefore, in the general case, use the following 
boundary conditions [12.49]:

 
ˆ ( ) ˆ ( ) ˆ ( )w w1 2 20 0 0− = Z iA  (12.136)
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ZA and ZB are specifi c impedances describing charge transfer/recombina-
tion, and polarization at the boundaries. The refl ecting boundary conditions of Eqs. 
(12.132) and (12.133) can now be stated with the particular form:

 Zboundary → ∞  (all frequencies) (12.138)
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where boundary = A, B. Notice that the refl ecting boundary condition of Eq. (12.138) 
corresponds to an open circuit.

The general expression of the TL model with the generalized boundary condi-
tions is [12.49]:
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where the shorthand notations Cl = cosh(L/l) and Sl = sinh(L/l) have been used.
Several particular cases of Eq. (12.139) can be examined.
First, if we have the following conditions: (i) ZA → ∞ and ZB → ∞ at all frequen-

cies and (ii) a large conductivity in channel 2 so that the lower transport channel becomes 
short-circuited, then the standard double-channel TL of Eq. (12.135) is recovered.

Second, we assume again two conditions: (i) ZA → ∞ (refl ecting boundary) and 
(ii) large conductivity in channel 2 so that the lower transport channel becomes short-
circuited, i.e., χ2 = 0. In this case, we obtain the TL shown in Figure 12.25(b). The 
following expression results:
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This model is also applied for diffusion with a special boundary condition 
[12.133].

Next we apply blocking boundary conditions at both ends of the transport chan-
nels in the TL. We set ZA → ∞, ZB → ∞ in Eq. (12.140), and χ2 = 0 in Eq. (12.135), 
and obtain the TL shown in Figure 12.25(a), with an impedance

 Z = lχ1 coth(L/l) (12.141)

Experimentally, it is no easy task to separate the transport elements in both 
channels of the TL [12.134]. Normally, one channel is much more conducting than the 
other, and thus the simple expression in Eq. (12.141) is undoubtedly the most widely 
used type of TL model.

Finally, Figure 12.25(c) shows the case in which the generalized boundary con-
dition is at the end of the more conductive transport channel. Note that the TL imped-
ance is simply the parallel connection of ZA and Eq. (12.141).

TL models with three transport channels have also been solved analytically 
[12.129].

12.6.2 General diffusion transmission lines

We turn our attention to the scheme of a DSC in Figure 12.16(b), where electrons 
diffuse in a nanostructured semiconductor surrounded with redox electrolyte that 
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 provides for charge compensation and electrostatic shielding. We extend Eq. (12.4) 
in the following way:
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Here, Jn is the fl ux of free carriers at position x relating to the gradient of con-
centration by Eq. (12.7), where D0 is the diffusion coeffi cient of the free electrons in 
extended states. The third term to the right in Eq. (12.142) stands for trapping of the 
free carriers in localized states. Eq. (12.142) must be complemented with dynamic 
equations of the traps [12.75].

The analysis of diffusion impedance models has been addressed in several stud-
ies [12.47, 12.48, 12.135]. The solution of Eq. (12.142) for a small ac perturbation, 
with a blocking boundary condition, is the general expression of the diffusion imped-
ance in a fi lm of thickness L:
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where s = iv . This last equation corresponds to the TL shown in Figure 12.26(a), con-
stituting a specifi c instance of Eq. (12.141). In Eq. (12.143), rt is the resistivity of the 
material (or distributed transport impedance, per unit length per area) (Ω m), i.e.,

 rt = A(1 − p)Rt/L (12.144)
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Fig. 12.25 Transmission lines with a large conductance in the lower channel. (a) Blocking 
boundaries at the end of both transport channels. (b) A general boundary condition at the end 
of the resistive transport channel. (c) A general boundary condition at the end of the conductive 
transport channel.
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where Rt is the macroscopic transport resistance of the fi lm of geometric area A. In 
accordance with Eq. (12.110), rt is the reciprocal to the electronic  conductivity sn:

 rt n= −
s

1  (12.145)

We recall that the conductivity is given by Eq. (12.121)
The element z in Eq. (12.143) and Figure 12.26(a) adopts a variety of forms, 

depending on the local processes included in the model (trapping, recombination, 
etc.). Recombination, for instance, introduces a vertical resistance, cf. Figure 12.26(c) 
[12.47], and trapping introduces the RC series connection, cf. Figure 12.26(d) [12.74, 
12.75, 12.135]. In general, each term that implies a carrier loss from the transport 
level in Eq. (12.142) produces an additional parallel branch in z. Consequently one 
can obtain a variety of TL models that represent diffusion in a restricted layer coupled 
with additional processes, as shown in Figure 12.26(b)-(e).

The element in common for all these TLs is the chemical capacitance occur-
ing in z. The origin of the chemical capacitance is the charging term to the left in 
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Eq. (12.142), and this was explicitly shown in Eq. (12.59). It is not surprising that 
diffusive transport must always produce a chemical capacitance under ac conditions. 
In reality, a difference of potential between neighboring points in Figure 12.26(b) rep-
resents a difference in chemical potential. Therefore, neighboring chemical capacitors 
do not obtain the same charge, i.e., concentration. This concentration gradient drives 
the transport of carriers across the transport resistance [12.130].

The model in Figure 12.26(e) is special as a result of the standard chemical 
capacitance being replaced by CPEs. This is related to anomalous diffusion [12.48] 
that often occurs in disordered systems.

We discuss in more detail the simplest (ordinary) diffusion model, without traps 
or recombination, shown in Figure 12.26(b). In this model, the distributed admittance 
z−1 consists in the chemical capacitance:
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1 1C A p L sm
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Here, Cm
cb is the macroscopic chemical capacitance previously derived in Eq. 

(12.55). Eq. (12.146) gives:
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The characteristic transport frequency, vd, is the reciprocal of the transit time 
through the layer of thickness L:
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Figure 12.27 shows the impedance spectrum of diffusion in a restricted layer. 
At high frequencies, the spectrum exhibits a 45° line. In semi-infi nite diffusion, this 
45° line extends indefi nitely to low frequencies and is termed a Warburg impedance. 
In spatially restricted diffusion, at frequencies lower than vd, there is a change of the 
shape of the spectrum, and Eq. (12.148) may be approximated as:
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 (12.149)

Therefore, at low frequencies, the impedance becomes capacitive, and the 
capacitance is naturally the chemical capacitance of the whole layer. The low fre-
quency resistance is Rt/3. This is an important feature, since the electronic conductiv-
ity of the semiconductor layer can be directly extracted from Rt.

12.6.3 Diffusion-recombination transmission line

The main TL model for DSC is the diffusion-recombination model of Figure 12.26(c) 
[12.47]. In fact, this model arises from that of Figure 12.13, with ideal selective con-
tacts, complemented with the diffusive transport, introducing the resistances along 
the upper channel. The model has been applied in DSC [12.51, 12.65], as well as to 
crystalline Si solar cells (with the addition of surface recombination) [12.94].
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For the interpretation of the impedance of diffusion-recombination, it is use-
ful to fi rst discuss the carrier distribution under steady state conditions. We have 
already introduced the diffusion length, Ln, defi ned in Eq. (12.125), which indicates 
the average distance that generated or injected electrons travel before recombining. 
The infl uence of Ln in the carrier distribution is in Figure 12.28, illustrated for a 
semiconductor forward biased at the left contact in the dark [12.47, 12.136]. For a 
long diffusion length and refl ecting boundary (1), the carrier profi le is nearly homo-
geneous, whereas for a short diffusion length (2), a gradient of carriers of the size of 
the diffusion length is built from the injection point. Another crucial factor is the rate 
of recombination at the back surface. If the rate is large (3), excess carriers cannot 
be maintained at this boundary, and a gradient of the size of the semiconductor layer 
is created.

The case of interest for DSC and solar cells in general is the diffusion-
 recombination impedance with a refl ecting boundary condition at the end of the 
 electron transport channel, i.e., Figure 12.26(c). A recombination process introduces 
a recombination resistance in parallel with the chemical capacitance in the TL [12.47]. 
In this case, the transverse z-impedance in Eq. (12.143) becomes:
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Fig. 12.27 A representation of diffusion impedance of a fi lm of thickness L with a blocking 
boundary. The intercept of the vertical feature with the real axis gives 1/3 of the transport 
resistance. The characteristic frequency (Hz) of the turnover from a Warburg behavior to low-
frequency capacitance (square point), related to the characteristic frequency vd = 1/RtCm is 
shown. Rt = 103 Ω Cm = 1 × 10−3 F.
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The characteristic frequency of recombination is:

 vrec = −
t0

1  (12.151)

where t0 is the free electron lifetime, and the distributed recombination resistance is 
given by:

 

r LA p R LA p
Cr r= − = −( ) ( )1 1 0t

m

 (12.152)

Here, Rr is the macroscopic recombination resistance of the layer, as discussed 
in Sec. 12.5.3. The impedance adopts the form [12.47]:

 

Z
R R

R R( )
/

coth / /
/

/ /
v

v v
v v=

+
⎛
⎝⎜

⎞
⎠⎟

( ) ( )⎡
⎣

⎤t r

rec
t r rec1 i

1 i
1 2

1 2 1 2+ ⎦⎦  (12.153)

The impedance spectra of the model of Eq. (12.153) are shown in Figure 12.29. 
In contrast with Figure 12.27, the spectra of diffusion-recombination are resistive at 
low frequencies. This is due to the fact that recombination introduces a dc conduction 
path. There are now two competing processes: the transport across the layer (vd) and 
the carrier loss by recombination (vrec). The shape of the spectra is regulated by the 
factor relating the characteristic frequencies, that can be expressed in several alterna-
tive ways [12.47]:
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The diffusion-recombination impedance provides two basic kinds of spectra, 
according to the conditions of Eq. (12.154). The spectrum for Rt < Rr, presented in 
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Fig. 12.28 The concentration in the diffusion-recombination model for electrons injected by 
bias voltage at the left boundary with concentration ns in excess of the equilibrium concentra-
tion n0. Curve (1) represents the case Ln >> L, where Ln is the diffusion length and L the thick-
ness of the layer, for refl ecting boundary conditions at the back contact. Curve (2) is the case of 
a short diffusion length, Ln << L, as indicated. Curve 3 corresponds to a long diffusion length 
with strong recombination at the back contact, or symmetric contacts.
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presented.
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Figure 12.29 (b)-(c), corresponds to the carrier profi le (1) shown in Figure 12.28. This 
is the desired case for an effi cient DSC at moderate forward bias [12.65]. The oppo-
site case, for strong recombination, i.e., for Rt > Rr, is shown in Figure 12.29(e), and 
relates to case (2) in Figure 12.28. The intermediate spectrum for Rt ≈ Rr is given in 
Figure 12.29(d).

The spectrum of Figure 12.29(b) has two features. At low frequency, there is a 
recombination arc, which is the parallel connection of Rr and Cm. The impedance at 
low frequency is given by the expression:
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The other feature is the diffusion Warburg, which is a small feature in the 
high frequency part of Figure 12.29(a), clearly visible in the enlarged plot of 
Figure 12.29(b), where we can see the start of the curvature of the capacitive part 
of Figure 12.27 due to recombination. As indicated in Eq. (12.155), we can in the 
spectrum of Figure 12.29(b) determine the electronic conductivity from Rt/3, i.e., the 
resistance at the turnover. This method has been effectively applied in various experi-
ments [12.52, 12.65].

On the other hand, in the case of a strong recombination (vrec >> vd or Ln << L), 
the extent of penetration of the injected carriers in the layer, as well as the boundary 
condition, is irrelevant. The spectrum adopts the form of the Gerischer impedance,
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shown in Figure 12.29(e). When the carrier distribution is strongly inhomogene-
ous, the chemical capacitance and recombination resistance depend on the position. 
Furthermore, additional current generators are required to correctly describe the 
impedance function [12.130].

12.6.4 Parameters of the diffusion-recombination model

Equation (12.153) is one way to express the diffusion-recombination impedance, but 
one can naturally also use other sets of parameters: the chemical capacitance, the 
chemical diffusion coeffi cient, etc. This may eventually lead to some confusion [12.64] 
and it is therefore important to establish very clearly what is the primary information 
that can be obtained from the impedance spectra. We recall that the recombination arc 
in Figure 12.29(b), is a fundamental requirement of a solar cell impedance model, as 
discussed before in Figure 12.13. However, the Warburg part in Figure 12.29(b) may 
or may not be observed. There are thus two basic situations.

The fi rst involves the case where the Warburg part is clearly observed at high fre-
quency, in addition to the recombination arc. By “observed,” we mean that there is strong 
evidence that the spectra display this feature, although it may be hidden by other elements 
[12.137]. However, if the diffusion part is indeed detected, the impedance model provides 
three basic parameters: the recombination resistance Rr, the chemical capacitance Cm, and 
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the transport resistance Rt. If the semiconductor shows a wide distribution of traps, the 
quasi-static approximation Eq. (12.153) is also valid. What we measure is however the 
total chemical capacitance that is dominated by Cm

traps , as discussed in Sec. 12.5.2. In any 
case, three independent impedance  parameters can be derived from the model.

From these parameters we can additionally obtain:

(a) the electron conductivity, as discussed in Eqs. (12.144) and (12.145);

(b) the chemical diffusion coeffi cient, Dn,
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 This last equation corresponds to the generalized Einstein relation, s mn n
traps= D c , 

that was given in Eq. (12.120).

(c) the electron lifetime, given in Eq. (12.126), and which can be obtained as follows:

 
t mn r rec= = −R C v

1  (12.158)

We should further mention that for a “long” diffusion length, one can assume 
that transmission line elements are basically uniform. The macroscopic resistances 
and capacitance are thus simply related to the respective distributed TL elements by 
the fi lm dimensions. In the case of a strong recombination, on the other hand, simula-
tion with spatially variable elements is generally required [12.130].

If, in addition, we have independent information regarding the position of the 
conduction band, we can also derive the free carrier diffusion coeffi cient and lifetime, 
using Eqs. (12.119) and (12.126).

Suppose now that the diffusion, i.e., the Warburg part of Figure 12.29(b), is not 
observed. We then have two independent impedance parameters: the recombination 
resistance Rr, and the trap-dominated chemical capacitance, Cm. There is no informa-
tion at all regarding electron transport. In fact, the main reason why the Warburg part 
is undetected is that the conductivity is very high and transport resistance becomes 
extremely low. Consequently, the conductivity and chemical diffusion coeffi cient 
simply cannot be derived from the data in this case.

12.6.5 Effect of boundaries on the transmission line

So far, we have treated the impedance of diffusion with coupled processes, and with 
the condition of the refl ecting boundary at the end of the diffusion zone. Case (3) in 
Figure 12.28 shows a different situation. There occurs a strong recombination at the 
fi nal boundary, and the carriers must remain at the equilibrium level. The corresponding 
TL has a short-circuit at the end of the transport channel, as indicated in Figure 12.30. 
The impedance can be obtained from (12.140) with ZB = 0, and the result becomes:

 
Z R= ( ) ( )⎡

⎣
⎤
⎦

−
t d di tanh iv v v v/ /

/ /1 2 1 2
 (12.159)



 Impedance spectroscopy 65

The impedance spectrum is shown in Figure 12.30. There is a diffusion Warburg 
part at high frequencies, but at low frequencies the impedance is obviously conductive 
through the transport channel. Eq. (12.159) also corresponds to diffusion between 
symmetric electrodes, and this renders it possible to determine the diffusion coef-
fi cient of ions in viscous electrolytes for DSCs [12.66].

In Figure 12.13(c), we have presented a general comment of the effect of 
recombination at one boundary of the solar cell. We can now provide a more quan-
titative picture of this effect by utilizing the TL model with a general boundary con-
dition of Figure 12.25(b), described in Eq. (12.140). As an example, Figure 12.31 
represents a DSC with a solid hole conductor, in which the more resistive transport 
channel is the organic conductor, so that the resistance of nanostructured TiO2 is set 
to 0. In the contact of the organic conductor with the substrate, there is a resistive/
capacitive interface, describing the direct charge transfer through the substrate. This 
type of short-circuit must be avoided in DSCs, where the only transfer path should 
be the distributed interface of the TiO2/organic conductor. Figure 12.31(a) and (b) 
present simulations of the spectra with a variation of the charge transfer resistance 
at the substrate. In fact, the “shunt” resistance, RBL, at the substrate can be highly 
variable, since the potential in the substrate changes and one can expect a Butler-
Volmer behavior [12.51]. When RBL is large, the substrate plays no role at all, and 
we obtain the spectrum of diffusion-reaction impedance shown in Figure 13.29(b). 
However, when RBL is below the bulk recombination resistance, the current fl ows 
predominantly through the substrate, and the TL model becomes similar to that 
of Figure 12.30. The observation of a transition from one type of spectrum to 
another may be useful in practice to determine the dominant resistance at each bias 
voltage.
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Fig. 12.30 A representation of diffusion impedance of a fi lm of thickness L with an absorbing 
boundary. The characteristic frequency (Hz) of the turnover from the Warburg behavior to the 
low frequency arc (square point), related to the characteristic frequency  vd = 1/RtCm is shown. 
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12.7 APPLICATIONS

In this section, we apply the above-mentioned models and concepts to describe 
the experimental results obtained for IS measurements of several DSC samples. 
First, a description is given of the specifi c equivalent circuit models, which have 
been found useful for fi tting the impedance spectra of DSCs. Subsequently, results 
obtained from these fi ts will be analyzed and contrasted with theoretical predictions. 
Finally, consequences of the IS data analysis on the performance of the DSCs will 
be commented.

The primary objective is to provide the main hints and ideas for a practi-
cal application of the IS technique on devices based on this technology and 
similar ones.

Before starting, we recall the sign criteria for the bias potential used in this 
chapter. A nanostructured TiO2 fi lm always constitutes the working electrode, and 
therefore, illumination of the sample produces a positive current under short-circuiting 
and a negative photopotential. Consistent with the previous sections, the sign of the 
potential is reversed and all the equations are written with consideration taken to this 
change of sign.

12.7.1 Liquid electrolyte cells

The impedance spectra obtained for DSCs with a liquid electrolyte, based both on 
liquid solvents and ionic liquids, as the hole-conductor may be adjusted to the general 
transmission line model of Figure 12.32 [12.51, 12.52, 12.65, 12.66].

In this model, we have used the transmission line of Figure 12.26(c), which 
describes diffusion electrons in the TiO2 together with the recombination with the 
holes in the liquid electrolyte. For a DSC device application, this TL is combined with 
a number of elements accounting for the various interfaces in the device.

In addition to the elements of the TL appearing in Figure 12.26(c), the follow-
ing elements occur in the general equivalent circuit of DSCs (Fig. 12.32):

● The charge-transfer resistance, RPt, and interfacial capacitance, CPt, at the counter 
electrode/electrolyte interface. RPt is the resistance for regenerating I3

− into I− at the 
counter electrode while CPt is the Helmholtz capacitance at the same interface.
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Fig. 12.32 The general transmission-line-equivalent circuit for a liquid electrolyte DSC.
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● The charge-transfer resistance, RBL, and the capacitance, CBL, for electron recom-
bination and charge accumulation at the contact between the part of the substrate 
uncovered by the colloids of TiO2, also known as the back-layer (BL), and the 
electrolyte. RBL represents the charge losses at the BL, while CBL is the capacitance 
of the BL/electrolyte interface, and generally takes on values similar to CPt.

● The resistance RCO and the capacitance CCO at the TCO/TiO2 interface, i.e., at 
the nanoparticles connected to the substrate (not shown in Fig. 12.32) [12.50]. 
These equivalent circuit elements are signifi cant only if the contact between the 
semiconductor and the substrate is not ohmic.

● The resistance RS of the conducting glass (TCO), which is associated to the 
sheet resistance of the TCO and the geometry of the cell.

● Finally, the element Zd accounting for diffusion of the redox species in the 
electrolyte:
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The above equation is equivalent to Eq. (12.159) with Rd = Rt, i.e., the dif-
fusion resistance associated to this process, and vd. The latter parameter is the 
 characteristic  frequency of the diffusion, from which the diffusion coeffi cient of ions 
in the  electrolyte may be calculated through D = l2vd, where l is the effective diffusion 
length (l = L/2) [12.19]. 

In practice, the general model of Figure 12.32 may be simplifi ed, and when 
possible, this is very convenient for reducing the number of parameters used in the 
fi tting process [12.51, 12.66]. A fi rst approach involves taking into consideration that 
the contact between the TCO and the TiO2 is ohmic: RCO and CCO may thus be sup-
pressed. The second and most signifi cant simplifi cation of the model arises from the 
changes produced by the applied potential. The position of the Fermi level at the 
contact between the TCO and the TiO2 is controlled by the external potential. We may 
therefore modulate the conductivity of TiO2, yielding the variety of behaviors found 
for the IS of the DSCs shown in Figure 12.33.

At low forward or reverse potentials, the resistance of the TiO2 tends to infi nite, 
and the contribution from the TiO2 nanoparticles to the IS spectrum is thus expected 
to be negligible. Under such conditions, as plotted in Figure 12.33 (a), the main con-
tribution to the IS spectrum comes from the charge transfer from the uncovered layer 
of the TCO (coated or not) at the bottom of the porous fi lm. In most of the cases, at 
these potentials, only a high resistance arc from the parallel combination of the RBL 
and the CBL may be appreciated while the counter electrode contribution is hidden or 
appears as a small deformation at the high frequency limit of this arc, of the inset in 
Figure 12.33(a). The contribution of diffusion in the electrolyte occurs at such low 
frequencies that it is impossible to observe it.

It should be emphasized that, in a reverse-biased DSC, the measured current 
is due to charge transfer from the exposed substrate or BL to the electrolyte (see 
below, Fig. 12.38) [12.138]. The TiO2, on the other hand, is totally insulating and does 
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not participate in the current. For these reasons, Eq. (12.14), which provides a good 
description of the saturation current in semiconductor diodes, is not useful in DSCs.

At intermediate potentials, Figure 12.33(b), the TiO2 contributes with its full 
resistance and chemical capacitance. The whole transmission-line-equivalent circuit 
is required in order to fi t the IS data. In this case, with Rt < Rr, the diffusion of elec-
trons in the TiO2 may be observed at high frequencies such as the Warburg feature, 
with a slope close to 1, in the inset of Figure 12.33(b). (Often, the observed slope is 
slightly lower than 1, and CPE elements are used for the chemical capacitor in order 
to accurately fi t the data [12.46].) The low frequency semicircle is the result of the 
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Fig. 12.33 Experimental IS spectra of an ionic liquid DSC (left) and simplifi ed equivalent 
circuit models (right) used to fi t them at various potentials in the dark. (a) At low potentials, 
here 0.25 V, a large arc given by the charge recombination and capacitance of the back layer 
dominates the impedance. At high frequencies, the small deformation in the inset of the spec-
trum is due to the CE. No diffusion is observed. (b) At intermediate potentials, here 0.55 V, 
the characteristic spectrum of the transmission line is seen and the complete equivalent circuit 
is needed to fi t the impedance. (c) At high potentials, here 0.7 V, transport resistance becomes 
negligible and three arcs may be observed: one of high frequency associated to the counter 
electrode, a central one corresponding to recombination at the TiO2 surface, and the last one at 
low frequencies representing the diffusion process.
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parallel association of the electron chemical capacitance Cm (or Qm) with the charge-
transfer resistance, Rr, along the TiO2 phase. Zd appears as a small deformation at the 
lowest frequencies and remains negligible. At the lower potentials of this intermedi-
ate region, Rt may be larger than Rr. In this case, the impedance of the semiconductor 
behaves as a Gerischer impedance element, cf. Figure 12.29(e), Eq. (12.156).

At higher potentials, the Fermi level in the TiO2 may come close enough to the 
conduction band to yield a very high concentration of electrons in the semiconductor. 
Consequently, the resistance of TiO2 becomes negligible and the transmission line equiv-
alent circuit is reduced to a single R-C circuit, Figure 12.33(c). In this situation, typically 
observed at potentials near or higher than open circuit, the impedance plots ordinarily 
show three arcs as in Figure 12.33(c). The high frequency arc is due to the counter-elec-
trode charge transfer resistance and Helmholtz capacitance (RPt and CPt) parallel combi-
nation. The second arc is the result of the recombination resistance at the TiO2/electrolyte 
interface and the chemical capacitance of the TiO2. Finally, the third arc, appearing at the 
lower frequencies, is due to the impedance of diffusion in the electrolyte. The width of 1, 
2 and 3 arcs corresponds to RPt, Rct and Rd, respectively, while the initial displacement of 
the arcs from the origin is equivalent to the contribution from RS.

We should remember that the transport resistance normally becomes quite small 
at a high forward bias, though it can still be measured under certain conditions [12.139]. 
In general, a separate technique based on lateral transport between two parallel elec-
trodes is required to measure the electron conductivity in TiO2 at high bias [12.81].

It should be noted that with decent electrolytes (i.e., those based on CH3CN), in 
which the diffusion coeffi cient is high, the third, low-frequency arc may merge with 
the central one, giving rise to a unique deformed arc. If Rd is small enough, the third 
arc becomes negligible.

12.7.2 Experimental IS parameters of DSCs

As mentioned previously, an important tool for the interpretation is the monitoring of 
the variation of impedance parameters under a varying bias voltage. We here discuss 
the basic parameters of DSC, capacitances and resistances. We present an overview of 
the typical behavior that is obtained for DSCs and discuss the experimental results in 
connection with the concepts and models described in previous sections. At the end of 
the section, a practical way of obtaining fundamental physico-chemical parameters, 
such as the diffusion coeffi cient, lifetime and diffusion length, is given.

We should recall that the models for IS parameters on electrons in the metal 
oxide are usually described with respect to the Fermi level as a parameter. Therefore, 
in the representation of these parameters, it is important to identify the part of the 
voltage associated with the rise of the Fermi level by subtraction of other voltage 
drops, such as the series resistance, counter electrode, and electrolyte contributions. 
This practice will be followed in the magnitudes represented in this section, in order 
to obtain a better comparison with the theories.

The chemical capacitance

Typically, the DSC capacitance presents three regimes of behavior, as shown in 
Figure 12.34. At low potentials, the dominating capacitance is the combination of those 
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from CE and BL (whether it is coated with a thin insulating layer or not). Additional 
contributions may be due to CCO if the contact is not ohmic [12.50]. At intermediate 
potentials, the dominating capacitance is the chemical capacitance of TiO2, which 
shows a characteristic exponential variation with the potential. Eventually, at very 
high potentials, the capacitance of the DSC may reach the surface Helmholtz capaci-
tance of the TiO2/electrolyte interface, CH. This value becomes smaller than Cm at 
such high potentials [12.87], cf. Eq. (12.73).

In many cases, a small capacitance peak is observed at the potentials where Cm 
starts to dominate [12.140]. This peak is assigned to sub-bandgap-localized states due 
to defects in the surface (dangling bonds, dislocations, etc.) [12.141-12.143].

According to Eq. (12.70), the chemical capacitance describes the exponential 
trap distribution below the conduction band edge. This g(E) is governed by the char-
acteristic parameter of the distribution T0. As explained in Figure 12.17, the measured 
chemical capacitance is controlled by the DOS at the Fermi level, and this should be 
independent of the temperature (provided that the position of the conduction band 
does not change with the temperature). Experimental data of the capacitance of a 
10 % effi cient DSC taken at various temperatures [12.65], as shown in Figure 12.35, 
agree very well with the theory, providing T0 = 830 ± 30 K.

At potentials close to and higher than Voc (near 1-sun illumination), other con-
tributions to the overall capacitance of the cell may be observed at the lowest frequen-
cies. It is important to identify them as contributions from diffusion in the electrolyte. 
A Bode plot of the real part of the capacitance shown in Figure 12.36, may be of 
aid for determining them. At low applied potentials, the low-frequency limit of the 
capacitance is dominated by the BL and CE contributions. When the bias potential is 
raised, however, the chemical capacitance contribution is the one dominating. At the 
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highest potentials, there appears a contribution from diffusion in the electrolyte. The 
apparent decrease of the capacitance at high frequencies (BL and CE) in the high-
potential plots is associated with the decrease of the charge transfer resistances in the 
cell, as stated in Eq. (12.42).

In other cases, one can observe that, as the applied potential is increased, the 
overall capacitance drops and eventually becomes negative at the lower frequen-
cies. This was commented in Figure 12.11, and an example is shown in Figure 12.37 
[12.76]. Normally, the consequence of such an effect is a limitation in the effi ciency 
of the solar cells due to low frequency inductive contributions.
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The recombination resistance

The behavior of the overall recombination resistance, Rr, typically follows the trends 
shown in Figure 12.38. At low potentials, charge transfer from the BL dominates. The 
BL may present different responses depending on the treatments received: precoating 
with sputterd layers of dense TiO2, TiClO4 treatments, polymeric coatings after fi lm 
formation, etc [12.96, 12.144]. The slope of RBL, generally small, is a function of both 
the presence of coatings and the electrolyte composition. In these cases, RBL is easily 
confused with the constant Rshunt employed in standard semiconductor-based solar 
cells [12.71]. This is due to their effect on the j-V curve being very similar. We must 
however emphasize the electrochemical origin of RBL and the fact that its value is far 
from constant.

At higher potentials, electrons injected in to TiO2 activate the transport in this 
medium. The dominant mechanism of charge losses in the DSC is the recombination 
of the electrons from the large TiO2 surface to the HTM. From the Buttler-Volmer 
relationship, the dependence of charge transfer resistance with the potential follows 
Eq. (12.79), yielding a linear dependence of Rr from TiO2 in the semi-logarithmic plot 
of Figure 12.38.

In certain cases, a valley (arrow in Fig. 12.38) in Rr appears at the same potential 
as the peak in the capacitance of Figure 12.34. This indicates recombination through 
the TiO2-surface-localized states described in the capacitance [12.92]. In defective or 
aged cells, this valley may become a dominant element in the cell, and may signifi -
cantly affect the j-V curve [12.145].

In cells where the applied potentials are higher than a certain level, which 
depends on the redox couple used, the more generalized Marcus model is needed 
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to determine the charge transfer resistance described by Eq. (12.87). In terms of the 
potential, Eq. (12.87) may be written as:
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Note that Eq. (12.161) provides the exponential dependence on bias indi-
cated in Eq. (12.79) only if qV << l, while for high enough potentials, Rr deviates 
from the linear behavior, as shown in Figure 12.22. An example of the bending of 
Rr is shown in Figure 12.39. When using Eq. (12.161), a value of l = 2.0 ± 1.2 eV 
was obtained.

If we now focus our attention to the effects of temperature on Rr, it can be 
observed from Figure 12.40 that, as the temperature rises, both the overall value of the 
charge transfer and its slope drop.

These results agree with theoretical predictions given by Eqs. (12.89), (12.161) 
and (12.162). In detail, the smaller value of Rr is the consequence of the temperature 
dependence of R0′, stated in Eq. (12.162). Using the values of R0′ obtained from data in 
Figure 12.40, one can, from the Arrhenius plot of Figure 12.41, obtain a more accu-
rate estimation of the value of l = 2.5 ± 0.2 eV. This high value of l helps determine 
a large value of R0′  that, as we will see later, is very important for obtaining a high 
Voc in a DSC.

The change in the slope of Rr renders it possible to analyze the linearity of 
the dependence of the transfer coeffi cient, b, with the distribution coeffi cient, a, 
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predicted in Eq. (12.92). The fi t of data shown in Figure 12.42 provides the experi-
mental value:
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This result is similar to that stated in Eq. (12.92), but with a prefactor 2/3. The error 
in the dots makes it diffi cult to establish the theory without a more detailed study.

As it will be shown later, the lowering of Rr has a tremendous impact on the j-V 
curve, through the diminution of Voc. Also the slight change in the slope of Rr affects 
the effi ciency of the cell. Most of this effect comes from reducing the fi ll factor.
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One often uses IS measurements to compare modifi cations in the electrolyte, 
dyes, TiO2 surface coating, etc., with the aim of evaluating the performance and prop-
erties of DSC components and preparation routes. In general, the main factor gov-
erning the performance of reasonably effi cient DSCs is Rr. It should nevertheless be 
recognized that Rr is determined by two aspects: the energetics and the kinetics. In 
Eqs. (12.161) and (12.162), these are respectively represented by the position of the 
TiO2 conduction band, Ec, and the charge transfer constant, k0. In order to compare 
DSCs [12.51], it is essential to distinguish both effects, and the main tool for this is 
the capacitance, which immediately reveals a shift of the conduction band [12.87]. 
Fortunately, the two parameters, i.e., capacitance and recombination resistance, can 
be routinely measured with IS, and should be jointly analyzed when various DSC 
parameters are varied. If also the transport resistance can be measured, a change of 
the conduction band readily gives rise to alterations of the conductivity at a given 
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bias. This is discussed in more detail shortly. In this case, we can therefore verify the 
displacement of the conduction band both by transport resistance and capacitance, 
and the results are then very reliable.

The transport resistance

In general, both the electron- and hole-transport media present in the DSC may con-
tribute with their transport resistance to the overall resistance of the cell. The varying 
nature of the materials used for the transport of both the electrons and the holes yields 
different behaviors in their transport properties. Here, the characteristic conducting 
properties of each of the main materials that are currently in use for constructing 
DSCs are described.

The electron conductor

In DSCs made from colloidal TiO2, IS renders it possible to obtain the electron trans-
port resistance in the window of potentials (usually 200 or 300 m V) where the full 
transmission line behavior is observed, i.e., Figure 12.33(b).

As stated in Eq. (12.110), the conductivity of electrons in the TiO2 may be cal-
culated from the electron transport resistance as:
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Assuming that the mobility is constant and according to Eq. (12.84), the con-
ductivity is exclusively dependent on the number of free electrons in the conduction 
band, which yields:
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where s0 is a constant. As a result, the electron transport resistance, taking into 
account Eq. (12.18), may be written as:
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here, Rt0 is a constant.
Therefore, the conductivity (or Rt, if geometrical factors remain unchanged) pro-

vides a reasonable reference for the position of the Fermi level of the electrons (EFn
) 

with respect to the conduction band edge (Ec) in various samples.
As mentioned before, the composition of the electrolyte, the dye used for the 

sensitivization of the cell or the preparation method of the TiO2 may affect the posi-
tion of the conduction band. The conductivity thus constitutes a useful index of the 
changes of the position of the conduction band of TiO2. Figure 12.43 presents the 
changes in the conductivity due to the different composition of the electrolytes. Thus, 
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the addition of 0.5 M MBI to an electrolyte containing 0.5 M LiI leads to a 0.05 M I2 
in 3-MPN producing a ΔEC ≈ 0.2 V. If, in this new electrolyte, Li is substituted by Na, 
a further ΔEC ≈ 0.2 V is produced.

An additional effect of MBI in the DSC used in Figure 12.43 is the increase of 
effi ciency of the cell, which changed from 2 % in a cell without MBI to 5 % in the 
cells with MBI. This increase was attributed to the additional TiO2  surface coating 
provided by the MBI reducing the charge losses (and increasing Rr) [12.51].

One fi nal thing to take into consideration is the fact that the slope of the conduc-
tivity (and Rt), q/kBT, is dependent on the temperature and may change from a value 
near 40 V−1 to 25 V−1 upon illumination [12.65].

The transport resistance in the hole conductor

In liquid electrolytes, the contribution to the resistance of the hole conductor may be 
extracted from the diffusion resistance of the electrolyte observed in the  impedance. 
Normally, the resistance of electrolyte diffusion is decoupled from the general trans-
mission line model. When the diffusion coeffi cient is high enough, the third arc 
associated to this process may overlap with the second one, which is associated to 
recombination. In many cases, for instance, when acetonitrile is used as the electro-
lyte and the cell spacer between the semiconductor fi lm and CE is thin (<40 mm), Rd 
is small and diffusion may be completely hidden by recombination.

The increase in temperature leads to a reduction of the viscosity of the electro-
lytes, causing an increase in the diffusion coeffi cient and a decrease in the diffusion 
resistance favoring the performance of the DSCs. As may be seen in Figure 12.44, 
this effect also occurs when the illumination intensity increases as illumination heats 
up the solar cells.

The minimum of Rd in Figure 12.44 for measurements under illumination 
occurs at Voc, where the current fl owing through the cell is 0 [12.66].
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In solid state cells with spiro-OMeTAD as the hole conductor, the resistance 
of the latter is higher than in the case of liquid electrolytes. At the same time, the 
capacitance of the spiro-OMeTAD is not very high. As a consequence, the character-
istic frequencies of the transport of electrons and holes are comparable and it is not 
possible to simplify the transmission line model in the way that can be done for liquid 
electrolytes. Now, the resistance of the hole conductor needs to be added in the path 
of the holes as shown in Figure 12.45.

To be able to compare the transport resistances obtained for the various hole 
transport media, it is fi rst essential to normalize all of them to the geometric area. 
Data in Figure 12.46 shows that RHTM in the widely used HTM spiro-OMeTAD is 
approximately one order of magnitude higher than in the the liquid electrolyte. This 
provides signifi cant losses decreasing the performance, due to the contribution of this 
resistance to the Rseries and its strong effect on the FF.
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Figure 12.46 also shows that the diffusion resistance of the liquid electrolytes 
presents a minimum value at Voc, as remarked before. Raising the current increases 
the resistance to higher values as the saturation current is approached. In the case of 
spiro-OMeTAD, the conductivity is augmented as the population of holes increases 
due to a slight displacement of the EFp

with the applied potential.

Time constants and diffusion length

As stated in Eqs. (12.157), (12.158) and (12.142), with the parameters obtained from 
impedance spectra, Rt, Rr and Cm, we can calculate the basic electron transport and 
recombination parameters: Dn, tn and Ln. This last set of parameters is frequently used 
in the literature, due to several reasons.

The chemical diffusion coeffi cient, Dn, can be related to fundamental models 
for transport in disordered materials [12.61, 12.139, 12.146]. Further, the main time 
constants of the DSC [12.40] i.e., the transit time, td = L2/Dn, and the electron life-
time, tn, can be calculated through several independent methods (as explained in the 
chapter by Peter). These include IMPS [12.56], IMVS [12.28, 12.147], Voc decays 
[12.54, 12.57], and are useful for validating the results obtained by any of the other  
methods. Finally, a comparison of td and tn, or of Ln and L, is a useful tool for evaluat-
ing the collection effi ciency of the DSC [12.148-12.150].

Before we describe the characteristic behavior of these parameters, we remark, 
as in Eq. (12.47), that the use of constant phase elements (given by Qm, n) instead 
of Cm in the fi ts of IS data, requires a more general defi nition of the kinetic con-
stants derived from the basic impedance parameters. The diffusion coeffi cient of Eq. 
(12.157) has to be calculated using:
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and Eq. (12.158) given for the lifetime of electrons in TiO2 has to be re-written as:
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Equating this expression to Eq. (12.64) renders it possible to calculate an equiv-
alent capacitance as:
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Finally, the diffusion length of Eq. (12.154), can now be given by:

 Ln = L(Rr/Rt)1/2n (12.170)

Note that all these expressions take the form derived previously when n = 1. 
Similar corrections may be used to calculate the characteristic regeneration time or 
interfacial capacitance at the counter electrode.

Diffusion coeffi cient data measured at different temperatures and calculated 
using Eq. (12.167) are shown in Figure 12.47 [12.65]. A very good agreement with 
Eq. (12.124) is found when the slope of the plot is [1 − a]/kBT. A similar variation 
of the chemical diffusion coeffi cient with the temperature has been reported in other 
studies with high effi ciency DSCs [12.151].

These result support the idea that the transport mechanism in the nanostructured 
TiO2 is dominated by the multiple trapping of electrons from the conduction band in 
the localized available states below this band [12.40, 12.65, 12.119]. This theory has 
been confi rmed by several methods [12.124, 12.152-12.154] and is currently the one 
most accepted.

Time constants are frequently used to compare the characteristics and qual-
ity of various solar cells [12.155]. The following data employs the values of Dn, 

Potential (V)

D
n (

cm
2  S

–1
)

0.5 0.6 0.70.40.3
10–7

10–6

10–5

10–4

10–3

0oC
15oC
30oC
45oC
60oC

Fig. 12.47 The temperature dependence of the diffusion coeffi cient of electrons in TiO2 in a 
10 % effi cient solar cell.
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tn and Ln obtained from IS with this purpose. However, we must again remark that 
factors such as the method of preparation of the materials or the electrolyte com-
position alter the position of the conduction band of the metal oxide with respect to 
the Fermi level or redox potential of the hole conductor. This fact implies that the 
potential is not always a good reference for comparing the response of the various 
cells. It is more convenient to represent the varying data with respect to the relative 
position between the Fermi level and the conduction band, EFn − EC. The rationale 
for this is that the kinetic parameters should be compared under conditions of an 
equivalent number of electrons in the various solar cells. One way to correct this 
change is to displace the applied potential by the amount ΔEC produced in each 
sample, although this quantity is not always available. As given by Eq. (12.165), 
it is reasonable to take the electron conductivity as a reference of the energy dif-
ference between EFn and EC. The characteristics of the samples may thus be com-
pared when the conduction band is fi lled with the same amount of electrons (i.e., 
EFn − EC = constant).

Using this procedure, Figure 12.48 presents the diffusion coeffi cient, lifetime 
and diffusion length of several DSCs. Three of them, fabricated with different liquid 
electrolytes, were named L5Li, L10 and L11, and yielded effi ciencies of 5 %, 10 % 
and 11 %, respectively. The DSC denoted IL7 was a 7 % effi cient cell with an ionic 
liquid electrolyte, whereas the solar cell designated Ometad4 was a solid state spiro-
OMeTAD-based DSC, with a 4 % effi ciency.

Note that the data have been taken from measurements in the dark in order to 
obtain a reasonably suffi cient number of values of the transport resistance. Under high 
illumination intensities, it became very diffi cult to distinguish the contribution of Rt to 
the impedance spectra from other resistive elements.

The diffusion coeffi cients of the fi ve samples, cf. Figure 12.48(a), took on 
very similar values in all cases. Therefore, factors such as the hole conductor com-
position or charge screening ions seemed to have a small effect on the electron 
transport. The situation may be different when a strong forward current fl ows in 
a DSC.

Remarkable differences between samples of high and low effi ciency may be 
observed from the lifetime data shown in Figure 12.48(b). As a consequence, also 
important changes were seen in the diffusion length plot in Figure 12.48(c).

The samples with lower effi ciencies (i.e., Ometad4 and L5Li) presented the 
shortest lifetimes and diffusion lengths. It is in this case clear that the effi ciency was 
limited by the greater losses they presented with respect to the high-effi ciency sam-
ples. In particular, in the case of the spiro-OMeTAD-based solid state DSC, the maxi-
mum diffusion length was limited to 3 mm, which determined the portion of the fi lm 
that could actually effi ciently collect charge.

The samples with effi ciencies between 7 % and 11 % (i.e., IL7, L10 and L11) 
presented very similar characteristics in the dark, and it is not straightforward to deter-
mine the reason behind the difference in their effi ciencies. In the case of the sample 
with 11 % effi ciency, a slightly longer lifetime and diffusion length may be distin-
guished signifying a slightly superior fi lm quality. Assuming a similar behavior of 
these parameters under illumination, the differences of the effi ciencies of the cells 
have their origin in the differences in the dye absorption (K19 in IL7 and N719 in 
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Fig. 12.49 Charge transfer resistances of various DSCs in the dark, compared at the same elec-
tron density in the conduction band.

L10 and L11), and electron injection into the TiO2, which provides higher values of 
current and potential [12.68].

While it is customary to analyze the performance of DSC in terms of the time 
constants mentioned before, and this is convenient in certain respects (especially if 
the diffusion length is short), it should be emphasized that the differences in the char-
acteristics of the DSCs shown in Figure 12.48 have their origin in the values of the 
recombination resistance, as can be seen in Figure 12.49. In order to compare the dif-
ferent cells, it is important to utilize the volumetric recombination resistance. Thus, 
the recombination resistance rises from the Ometad4 sample to L5Li and then to the 
rest of the samples. Consistent with the highest energy conversion effi ciency, L11 is 
the one that has the higher rr.

Therefore, concerning the DSC performance in general, it should be concluded 
that once the dye provides the charge injection level in the cell (and assuming that dye 
regeneration is fast), the charge transfer from TiO2 to the hole conductor is the main 
process determining the potential of a particular cell to perform at a certain effi ciency. 
This aspect will be treated in more detail in the last section.

Particularly, in the case of the spiro-OMeTAD solid state solar cell, any enhance-
ment of the cell has to involve an increase in Rrec or the use of materials with higher 
conductivity rendering it possible to increase the diffusion length of carriers in the 
metal-oxide semiconductor.

12.7.3 Nanotubes

It is believed that an improvement in the structural order of the electron-conduct-
ing metal oxide networks may enhance their electronic transport characteristics, and 
provide improved DSC effi ciencies. A number of structures have been prepared and 
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used, inlcuding nanorods, whiskers, and nanotubes, among which the latter are the 
most promising [12.156-12.161]. This section describes results on carrier transport 
and charge accumulation in TiO2 and ZnO nanotubes.

TiO2 nanotubes

IS measurements have been performed in order to study the behavior of the electrical 
properties in a 10-mm long TiO2 nanotube of 100-nm external diameter and 22-nm 
wall thickness [12.67]. Measurements were performed in an aqueous solution at pH 
11 in order to analyze the transport and accumulation of charge in the nanotubes.

Experimental IS data were adjusted to the model of Figure 12.33(b), without 
counter electrode contribution, giving rise to the values of capacitance and transport 
resistance shown in Figure 12.50. The data presented correspond to two consecutive 
measurements over the same nanotubes. As can be seen from the fi gure, the obtained 
parameters presented very different behaviors, and these results are explained by a 
dissimilar doping level of the nanotubes in the two sets of measurements. The fresh 
sample demonstrated the typical exponential dependence of transport resistance and 
capacitance found and modeled in Eqs. (12.72) and (12.121) for nanocolloidal sam-
ples. However, in the second measurement, the “aged” sample retained the charge 
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Fig. 12.50 The doping effect in a 10-mm long TiO2 nanotube of 22 nm wall thickness. The fresh 
sample presented an exponential behavior with regard to both (a) chemical capacitance and (b) 
transport resistance. Aging dopes the samples which subsequently present a high capacitance 
value. Transport resistance of the doped samples is lower than for its undoped counterpart and 
also relatively constant.
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accumulated in the fi rst one [12.67]. Doping was produced by protons in the electro-
lyte during the fi rst cycle, and as a  consequence, both the capacitance and the resist-
ance tended to be constant for a wide range of potentials.

These data reveal that the nanotubes presented a great tendency to become 
doped. However, transport resistance remained relatively high even after  doping. 
Consequently, the diffusion length for DSCs fabricated from these nanotubes is main-
tained at values around 10 mm, which is low with respect to the original expectations.

ZnO nanotubes

Zinc oxide is a wide bandgap semiconductor often proposed for the fabrication of 
DSCs. Its facility to self-organize, giving rise to a variety of shapes such as nano-
tubes, nanorods, whiskers, etc, renders it very attractive for numerous applications. 
However, in DSCs, certain problems of stability in the ZnO have been reported due 
to its tendency to dissolve. Still, it is a very good candidate for use in solid state 
DSCs [12.162].

In Figure 12.51, the conductivity of 63-mm long nanotubes of ZnO (nt-ZnO) 
with 16-nm wall thicknesses is compared to that of TiO2. The fi rst result involves a 
comparison of the conductivity of the nt-ZnO in an inert electrolyte and in a DSC 
confi guration, the conduction band in the nt-ZnO was displaced towards higher 
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Fig. 12.52 The diffusion length in ZnO-nanotube and nanocolloidal TiO2 DSCs. LD is 10 
to 100 times greater in the case of nt-ZnO as opposed to in a high-effi ciency (10 %) nc-TiO2-
based DSC.

 potentials. The second observation consisted in a much higher conductivity in nt-ZnO 
as opposed to in TiO2, whether in the nanotube or nanocolloidal confi guration. The 
conduction band of ZnO is belived to be at a similar level to that of TiO2 [12.163], 
and the increase in conductivity should therefore be attributed to a higher mobility of 
electrons in the nt-ZnO rather than to a shift in the conduction band.

As a consequence of this improved conductivity, the calculated diffusion length 
of electrons in the nt-ZnO shown in Figure 12.52, is several orders of  magnitude 
greater than in TiO2. This is an important result with respect to the photovoltaic 
performance since it renders the cell tolerant to much faster electron recombination 
kinetics, making it an ideal candidate for solid-state DSCs [12.162].

12.7.4 Effects of the impedance parameters on the j-V curves

An important practical application of the parameters obtained from impedance is the 
interpretation of the j-V curves the solar cells. Since solar cells operate at steady state, 
it is essential to determine the cause of the current density-potential response, which 
describes the solar cell performance. It was anticipated in Sec. 12.3, that IS is able to 
discern the separate factors determining stationary operation of a solar cell. Having 
detailedly described the various resistances that are typically found in a DSC, as well 
as their interpretation, this fi nal section discusses the effects that these resistances 
have on the performance of the solar cells [12.67, 12.71]. In previous sections, we 
have amply used ac equivalent circuits, formed by combinations of linear elements, 
since these allow us to interpret the spectral shape of impedance data.

It is also useful to design a single circuit valid for dc conditions, and we here 
show the extension of the circuit in Figure 12.5 for DSC. To this end, we have to 
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take into consideration several electrochemical interfaces that exist in a DSC. As a 
 consequence, the diode in the model of Figure 12.5 is substituted by as many recombin-
ing resistances as there are interfaces present in the device. Two of the interfaces may 
lose their photogenerated charge: the TiO2/electrolyte, described by rr

dc, and the back 
layer at the bottom of the nanoporous matrix, given by rBL

dc, as shown in Figure 12.53. 
To simplify this last model, all the charge transfer losses can be grouped into a single 
recombination resistor representing the parallel association of the two contributions, 
r r rrec

dc
BL
dc

r
dc= || .

Note that the resistances included in Figure 12.53 should be applied under dc 
conditions. In contrast, resistances derived from IS are valid only for a small pertur-
bation of the voltage. As stated by Eq. (12.25), it is necessary to integrate the low 
frequency resistance, Rdc, obtained from impedance spectra at different potentials, in 
order to regenerate the j-V curve [12.66].

In the case of DSC, Rdc is the sum of two contributions: Rrec and Rseries.
Rrec accounts for the overall recombination resistance associated to the cell 

losses with two main contributions: the charge transfer resistance from the colloid 
uncovered substrate and that from the TiO2 surface.

 R R Rrec BL r= || . (12.171)

The series resistance is related to the sum of all the dissipative resistance con-
tributions, thus:

 Rseries = Rs + RPt + Rd + Rt/3 + Rco. (12.172)

In solid state DSCs, Rd may be substituted by RHTM/3.
It should be kept in mind, as amply discussed in previous sections, that Rr, RBL 

and Rseries are not constant values. To obtain their equivalent dc values for Figure 12.53, 
we need to integrate the ac contributions. For a certain current j passing through the 
cell, we therefore have:

 

r
j j

R di
j

j

series
dc

sc
series

sc

=
− ∫1

 (12.173)

Z
load

dc
BLr

dc
seriesr

dc
rr

j
sc

j V

Fig. 12.53 A model adapted to DSCs for the representation of the dc j-V curve. rBL
dc and rr

dc 
describe the charge losses from the back-layer and the TiO2 matrix, respectively. rseries

dc  includes 
all the contributions from transport in electron and hole conducting media, charge transfer at 
the counter electrode and TCO and contact resistances.
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r
j j

R di
j

j

rec
dc

sc
rec

sc

=
− ∫1

 (12.174)

Alternatively, to determine the dc contribution of the resistances at a certain 
applied potential, we can write:

 

r
V

dV

R

V

series
dc

series

= ∫1

0

 (12.175)

 

r
V

dV

R

V

rec
dc

rec

= ∫1

0

 (12.176)

It is convenient to discuss here the existence of a shunt resistance in DSCs. In 
crystalline silicon solar cells, rshunt is a constant resistance accounting for leakage cur-
rents crossing the cell [12.71]. Recent studies have revealed that rshunt may change with 
the measuring conditions, though these variations are not fully understood [12.95]. In 
DSC the closest element to rshunt is rBL, however it has to be taken into consideration 
that rBL is a variable resistor that depends on the potential. It can be obtained from:

 

r
V

dV

R

V

BL
dc

BL

= ∫1

0

 (12.177)

with RBL following a Tafel response as the current losses occur at the back layer/ 
electrolyte interface. In order to apply the dc models used in crystalline silicon solar 
cells in DSCs, we thus have to substitute rshunt in Figure 12.5 by another diode governed 
by an ideality factor given by the transfer coeffi cient characteristic of the back layer. This 
is the two-diode model approach used in other types of solar cells [12.164, 12.165].

Once the contributions of the various parameters are identifi ed, it is possible to 
clarify how they infl uence the j-V curves.

Effect of series resistance

Figure 12.54 presents the effect of the series resistance on the j-V curve. The rise in 
rseries

dc  reduces the FF and, consequently, the effi ciency of the solar cell. If rseries
dc  is too 

large, also jsc becomes affected. The same effect occurs with large photogenerated 
currents: the higher the current crossing the cell, the greater is the drop in potential 
due to the series resistance corrections, and thus also drops in the FF and effi ciency.

The series resistance is a very important limiting factor in solar cells, specially 
if the objective is to scale them up to large area cells or to use dyes with enhanced 
injection properties. In such cases, a correct choice of the geometric design and the 
materials employed for collecting the charge and regenerating the dyes is crucial in 
order to minimize this resistance.

From another point of view, once the cell is fabricated, we may use the integrated 
series resistance to evaluate the improvements that could be obtained by partially or 
completely eliminating rseries

dc . To do so, we simply need to subtract the ohmic drop at 
the series resistance from the applied potential to obtain the corrected potential:

 

V V i r V R di
i

c series
dc

series= − = − ∫
0

 
(12.178)
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Figure 12.55 presents the improvements that could be obtained by eliminating 
different series resistance contributions in a real solar cell. We fi nd that by eliminating 
the diffusion resistance (grey long dashed line), the FF, and thus the effi ciency, would 
increase by 9 %. If we could completely eliminate the total series resistance (light 
grey short dashed line), the improvement would be 28 %. The main contribution to the 
reduction in FF (15 %) has to be attributed to the TCO resistance.

Effects related to recombination resistance

In a DSC, the charge injection is determined by the dye and its interaction with the 
hole and the electron-conducting media, providing the maximum current density 
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attainable by the solar cell. Since the recombination resistance is the element deter-
mining how the generated charge may be lost, this is the parameter that will limit the 
maximum performance attainable for the solar cell. This maximum effi ciency is then 
modulated by the series resistance effect as mentioned above.

Assuming that RBL is large, recombination is dominated by Rr. According to 
Eqs. (12.25), (12.87) and (12.162), there are a number of factors that affect the j-V 
curve through the recombination resistance:

(i) A decrease in the absolute value of R0
′  diminishes the photopotential, as 

shown in Figure 12.56.

(ii) A low transfer factor b diminishes the FF of the DSC and consequently 
the maximum effi ciency that may be obtained from it, as indicated in 
Figure 12.57(a)

(iii) However, partially compensating this loss of FF, lower values of b increase 
the photopotential, as shown in Figure 12.57(b). This increase in Voc arises 
from a lower slope in the dependence of Rr with the potential, Eq. (12.79), 
yielding a lower recombination at higher values of the potential.

Effect of increasing the temperature

Increasing the temperature reduces both the charge transfer at the counter electrode 
and the diffusion resistance in the electrolyte, thus reducing the series resistance of 
the cell [12.66]. A similar effect occurs in solid state solar cells as increasing the 
 temperature reduces hole transport resistance in spiro-OMeTAD [12.68]. These 
reductions contribute to raise the FF of the solar cell.

However, according to Eq. (12.162) and as shown in Figure 12.40, a temperature 
rise diminishes R0′, which leads to a decrease of photopotential, cf. Figure 12.56.

The sum of all these contributions produces an increase in solar cell effi ciency 
when raising the temperature, with a smooth decrease above 30 °C. Such data have been 
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presented by Sony Corp. As the slope of Rr with the potential is smaller than in the case of 
semiconductor solar cells, the loss in effi ciency with temperature is also less prominent.

In summary, the advantage of using IS is that it becomes possible to distinguish 
the individual electrical contributions infl uencing the performance of the working 
cells without destroying them. One can thus identify the limiting processes in the 
cells and direct research efforts at enhancing the solar cell effi ciency in the specifi c 
physico-chemical and material properties that need to be improved.

12.8 ACKNOWLEDGMENTS

This work has benefi ted from collaborations with numerous colleagues and friends, 
and we express our gratitude to all of them for the discussions and joint work  having 

0.0
0

5

10

Potential (V)
0.0

0

5

10

0.2

decreasing b

0.4

(a)

(b)

0.6 0.8

0.2
Potential (V)

C
ur

re
nt

 d
en

si
ty

 (
m

A
 c

m
–2

)
C

ur
re

nt
 d

en
si

ty
 (

m
A

 c
m

–2
)

0.4 0.6 0.8

b = 1
b = 0.5
b = 0.3

b = 1
b = 0.5
b = 0.3
b = 0.2

Fig. 12.57 (a) The effect of the transfer factor on the j-V curve on the FF. As b decreases, so does 
FF. Note that in order to adjust Voc at the same point (and thus observe the change in FF), R0′ has 
been varied conveniently. (b) If R0′ is kept constant, the decrease of b yields an increase in Voc.



 Impedance spectroscopy 93

allowed us to progress in the understanding of the properties of DSCs. Special thanks 
pertain to Professors Michael Grätzel, Craig Grimes, Anders Hagfeldt, Joseph T. 
Hupp, Arie Zaban, Shaik M. Zakeeruddin and to Doctors Gerrit Boschloo, Germà 
Garcia-Belmonte, Ivan Mora-Seró and Emilio Palomares.

12.9 APPENDIX: PROPERTIES OF MEASURED DSCS

The measurements presented in this work have been performed with a potentiostat 
PGSTAT-30 equipped with an impedance module FRA from Autolab. Illumination 
in the impedance measurements was provided by a 150 W Xe lamp and a commer-
cial 25 W halogen lamp. The j-V characteristics of the samples were taken under 
1000 W cm−2 1-sun conditions provided by a 150 W Xe lamp with light fi lters to 
adjust the illumination to air mass 1.5 conditions. A 0.16 cm2 mask was also used. 
In the case of solid state cells, the mask had 0.13 cm2. Low light intensity illumina-
tion conditions for impedance measurements were provided by a commercial 50 W 
halogen lamp for liquid electrolyte cells and by a high intensity white LED for solid 
state cells. High-light intensity illumination conditions were obtained by the 150 W 
Xe lamp without air mass fi lters.

The various dyes and hole-conductor media indicated in Table 12.58 had the 
following specifi cations:

The dyes:

● N3, cis-bis(isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato)-ruthenium(II).

● K-19, Ru-(4,4′-dicarboxylic acid-2,2′-bipyridine)(4,4′-bis(p-hexyloxystyryl)- 
2,2′-bipyridine)(NCS)2, coadsorved with phenylproprionic acid (PPA).

● N719, cis-di(thiocyanato)-N,N′-bis(2,2′-bipyridyl-4-carboxylic acid-4′-tetrabuty-
lammonium carboxylate) ruthenium (II).

Q2

Table 12.58 Measurements where performed over samples with the following characteristics.

Sample L2noMBI L5Li L5Na IL7 L10 L11 OMeTAD

n-TiO2 layer (mm)  7.5 8.1 7.0 6.8 12 12 1.8
Scatter layer (mm) 0 0 0 4 2 4 0
Dye  N3 N3 N3 K19 N719 N719 Z907
Electrolyte H10a H10b H10c Z380 Z300 Z300 Solid
Area (cm2) 0.48 0.48 0.48 0.28 0.28 0.28 0.128
Porosity 70 % 70 % 72 % 68 % 68 % 68 % 68 %
Voc (V) 0.31 0.58 0.70 0.71 0.80 0.86 0.86
Jsc (mA cm−2) 12.6 12.3 9.6 14.0 17.5 17.0 9.1
FF 0.52 0.66 0.67 0.71 0.73 0.76 0.51
Effi ciency (%) 2 5 5 7 10 11 4
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● Z907, cis-di(thiocyanato)-(2,2′-bipyridyl-4,4′-dicarboxylic acid)(4,4′-dinonyl-
2,2′-bipyridyl)-ruthenium(II), coadsorbed with GBA.

The hole-or ion-conducting media:

● H10a for 0.5 M lithium iodide (LiI), 0.05 M I2 in 3-methoxypropionitrile 
(3-MPN), H10b the same as H10a plus 0.5 M 1-methylbenzimidazole (MBI) and 
H10c for 0.5 M Sodium iodide (NaI), 0.05 M I2, and 0.5 M MBI in 3-MPN.

● Z380 for N-metylbenzimidazole 0.5 M, guanidinium thiocyanate 0.12 M and 
iodine (I2) 0.2 M in a mixture of 1-methyl-3-propylimidazolium iodide & 1-
methyl-3-ethylimidazolium thiocyanate, 65 %:35 % volume ratio.

● Z300 for 0.6 M butylmethylimidazolium iodide, 0.03 M I2, 0.10 M guanidin-
ium thiocyanate and 0.50 M 4-tert- butylpyridine in a mixture of acetonitrile 
and valeronitrile, 85 %:15 % volume ratio.

● Solid for (2,2′7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9′-spiro- bifl uorene 
(spiro-OMeTAD) hole-conductor dissolved in chlorobenzene at a concentration 
of 170 mM together with 13 mM Li[(CF3SO4)2N], 110 mM 4-tert-butyl-piridine 
and spin-cast for 30 s at 2000 rpm.
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