
Solar Fuels. Photocatalytic Hydrogen Generation

The necessity for developing clean energy technology has
led to the surge in renewable energy research. A major

effort is in discovering new approaches for producing
transportable fuels. Hydrogen, which possesses the highest
energy density (120 MJ/kg) known for any fuel and no carbon
footprint, is regarded as the leading contender for meeting
future fuel needs. The term Hydrogen Economy is often referred
collectively to the topics of production, storage, and transport
of hydrogen.1 The grand challenge is to design a catalyst system
that can effectively use sunlight and water to generate hydrogen
and oxygen. During recent years many efforts have been made
to develop new light harvesting assemblies, elucidate charge-
transfer processes, and improve the efficiency of the water-
splitting process. This Virtual Issue (http://pubs.acs.org/page/
jpclcd/vi/solarfuels.html) presents a few selected publications
to highlight recent physical chemistry advances (Table 1). The
readers should refer to recent reviews/perspectives for detailed
developments in the area.2−5

Photocatalytic redox reactions with semiconductor nano-
structures were first realized in the 1970s. The recent
rejuvenation of this field has led to further exploration of
new materials and hybrid assemblies. Theoretically, it requires
an energy equivalent of 1.23 eV to split water into H2 and O2
(Reactions 1 and 2).
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However, additional energy (the overpotential) is required to
drive the photogenerated electrons and holes across the
interface and to promote reduction and oxidation reactions.
Cocatalysts such as Pt and IrO2 are commonly employed to
promote H2 and O2 generation in photoirradiated semi-
conductor systems (Figure 1).3,6 Achieving greater efficiency

with oxygen-evolving catalysts to mediate the proton coupled
electron transfer (reaction 2) remains a major challenge in the
water-splitting process. The use of cobalt phosphate as a
cocatalyst to boost the oxidative process of photocatalyst
systems has drawn some attention.7 Mimicking natural
photosynthesis, recent efforts have also provided insights into
Mn-based catalyst systems for oxygen generation.8,9

Wide bandgap semiconductors such as TiO2, which show
good photostability, respond only to the UV region of the

spectrum. Efforts to dope these semiconductors with N or S to
extend the photoresponse into the visible have produced
limited success. Other efforts to couple such semiconductors
with sensitizing dyes extend the concepts of dye-sensitized solar
cells into photoelectrolysis systems. Such an approach assists in
extending the photocatalyst response into the visible, though
the dye regeneration remains a limiting factor. Another
approach to harvesting visible photons is through the design
of new materials. Recent efforts to develop tantalates, vanadates,
and oxinitrides have gained significant attention because of the
ability of these ternary semiconductors to respond to visible
photons.7,10,11 Earth-abundant hematite (α-Fe2O3) remains another
popular photocatalysis material, but its conduction band is too low
to drive H2 production. An electrochemical bias potential needs to
be applied to drive the oxidation reaction.12,13 Intrinsic
imperfections due to electronic structure and ultrashort lifetime
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Figure 1. Illustration of semiconductor-assisted water-splitting reaction
aided by Pt and IrO2 cocatalysts. (Reproduced from reference 3).

Figure 2. Electron energy scheme of (a) S2 PEC water splitting using
a photoanode and (b) D4 PEC water splitting using a photoanode and
photocathode in tandem. The absorption of a photon (hν) by the
semiconductor with a band gap of Eg creates an electron−hole pair
that can be separated by the space charge layer, W, to generate a free
energy of Δμex. This free energy must be greater than the energy
needed for water splitting (1.23 eV) plus the overpotential losses at
both the anode and cathode, ηox and ηred, for the water-splitting
reaction to occur. Two photons must be absorbed in the S2
mechanism to produce one H2, while four are needed for the D4
approach. (Reproduced from reference 5).
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of the charge separated state are cited as major limiting factors in
attaining efficiencies comparable to other semiconductor materials.
As pointed out by Braun and co-workers, a basic understanding of

the role of surface states in interfacial charge transfer as well as
charge recombination are key to developing hematite-based photo-
catalyst assemblies.13

Table 1. Selected Readings of Physical Chemistry Advances in Photocatalytic Hydrogen Production
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Significant advances have been made towards understanding
of photoinduced charge separation and interfacial charge-transfer
processes in semiconductor photocatalyst assemblies.3,14,15 Both
thermodynamic and kinetic aspects dictate the efficiency of
electron and hole transfer in semiconductor systems. The
existence of surface traps and the nature of the surrounding
medium dictate the net charge-transfer yield. A kinetic model has
been developed to discriminate between trap-assisted recombi-
nation and charge-transfer processes. This makes it possible to
formulate the results for the interpretation of the current−
potential curve under photogeneration.16

The nature of electronic states, the accumulation of
photogeneration carriers, and the modification of charge-
transfer kinetics by surface treatment or catalyst layers have
been examined using different experimental methods.5,13,17 One
example is transient absorption spectroscopy that enables direct
monitoring of the reactivity of photogenerated electrons and
holes. Pesci et al. have probed the reactivity of holes toward
water oxidation using a commonly employed semiconductor
photocatalyst WO3 and identified limitations through the
charge recombination process.15 Unfortunately the conduction
band of WO3 is not energetic enough to induce H+ reduction.
As a result of this limitation researchers have invoked a
Z-scheme in which two different semiconductors are assembled
in a hybrid configuration to carry out reduction and oxidation
on two separate semiconductor particles.10 Since both particles
absorb light it opens up new opportunities to modulate the
two-photon process and thus overcome many of the energetic
barriers (Figure 3). Designing hybrid assemblies that can utilize

the multiphoton process to induce the water-splitting reaction
will be a major challenge that needs to be tackled in the future.
There have also been significant efforts to utilize narrow bandgap

semiconductors such as metal chalcogenides. Because of facile
anodic corrosion these semiconductors cannot generate oxygen. A
sacrificial donor to evolve hydrogen must be used in order to
overcome this adverse problem. Hence, photocatalytic evolution of
hydrogen using short bandgap semiconductors only provides partial
information related to the reduction process.18,19

New approaches in designing different shapes of nanostructures
or creating hybrid assemblies have also dominated photocatalysis
research.20−23 Such hybrid assemblies enable better charge
separation as well as extension of the photoresponse into the
visible. By careful design and selection of nanoparticles it is possible
to improve the efficiency and selectivity of the photocatalytic
process. Graphene oxide based carbon support offers the
opportunity to improve charge separation and spatially segregate

reduction and oxidation processes.20,21 The enhanced electric field
produced by photoexcitation of the localized surface plasmon
resonance (LSPR) peak of Au particles has been shown to improve
the photocatalytic activity as seen by increased H2 production
rate.22,23 The optimal distance between Au and the semiconductor
core, viz., CdS, remains an important factor in achieving plasmon-
induced enhancement of the photocatalytic process.
In parallel, theoretical efforts have emerged to evaluate the

energetics and predict the water-splitting ability of different
semiconductor systems.24−27 In particular, DFT studies are
useful in identifying the properties of doped semiconductors as
well as in the design of new semiconductor photocatalysts.
Theoretical28 and experimental efforts29,30 are currently leading
the way in designing codoped semiconductor nanostructures.
The enhanced photoconversion efficiency in TiO2 nanowires
codoped with N and Ta was attributed to fewer recombination
centers from charge compensation effects.30

The discussion of a few representative papers in this Virtual
Issue provides recent physical chemistry advances in photo-
catalytic generation of hydrogen. Finding new approaches to
overcome some of the energetic and kinetic barriers will be key
to developing new photocatalysts and to tackling the renewable
energy challenge effectively.
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Figure 3. Two-photon excitation of semiconductors to induce photo-
catalytic evolution of H2 and O2. (Reproduced from reference 10).
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