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Introduction 

Standard dye-sensitized solar cells (DSC)
1
 are composed of three main elements, as 

indicated in Fig. 1(a): the electron transport material (ETM), the hole transport material 

(HTM) and the light absorber. The ETM is a mesoporous structured wide band gap metal 

oxide semiconductor that provides a high internal area framework to maintain the light 

absorber rigidly anchored or sticked to the surface. We will refer to mesoporous anatase TiO2 

as the archetypal ETM. Conventionally the light absorber is a monolayer of metal-organic dye 

such as the well known N719 ruthenium bypyridil dye. In recent years an enormous variety of 

dyes have been investigated, and particularly porphyrin dyes have shown very powerful 

results, elevating power conversion efficiency to 12%.
2
 In addition, solid light absorbers of 

different classes, either colloidal quantum dots, or uniform nanometer-thick light absorbing 

layer, have become increasingly investigated.
3-5

 Finally, the preferred HTM was a liquid 

electrolyte containing redox couple --

3 I/I  and a number of coadsorbents to control the surface 

conditioning of the TiO2 metal oxide. Recently, rather effective redox shuttles based on 

transition metal complexes were applied to high performance devices.
6
 Fully solid hole 

conductors have been widely used as well. In general the selection of the HTM depends 

critically on the type of absorber, and these choices also determine the counterelectrode.
7
 

Device modeling can serve different finalities. It may be used to gain detailed scientific 

insight into a range of phenomena occurring in the DSC. Or it may be aimed at technical 

characterization to support the quality of fabrication of devices. Among the two extremes, a 

widely used type of application of the methods is to compare a set of DSC prepared with some 

variation of materials or procedures, in order to extract information about the internal 

mechanisms. Therefore modeling DSC and solar cells in general may have a wide variety of 

purposes.  

The following overview aims to present a reasonably short summary of the state of the art 

and recent exciting developments with a view to broad possible applications of these methods. 

We aim to cover a series of fundamental factors that have appeared crucial to the operation of 

the DSC over many years of research: causes of fundamental electron transfer rate that govern 

recombination; energy disorder affecting electronic states in electron conductor; and the 

general modeling approach incorporating such fundamental properties to small perturbation 

techniques, that have provided outstanding control over the internal state of the device and the 

mechanisms lying behind the photovoltaic performance. We will be concerned by description 

of the basis of impedance spectroscopy results, the causes and measurements of the electron 
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lifetime, and how these understandings establish properties of current-voltage curves. 

 

1. The electron subsystem 

In cells, in which the absorber is a molecular dye, and the HTM is a liquid conductor with 

low viscosity, the injection of photogenerated electrons into TiO2 is very fast, in the ps 

domain, and main modelling issues are referred to the electron subsystem. Provided that dye 

regeneration is sufficiently fast, the HTM can be viewed simply as an homogeneous medium 

that regenerates the oxidized dye and therefore provides (the oxidized) species that may accept 

electrons from TiO2. It is therefore assumed in a starting approach that the Fermi level of the 

hole species is flat and stable and any kind of kinetics in the absorber or HTM can be safely 

neglected.  In contrast, for thin inorganic absorber of quantum dot absorber, a number of 

additional issues occur, because the carrier dynamics in the absorber cannot be neglected.
7-9

 

Furthermore, for viscous electrolytes, or solid HTM, it is necessary to describe the transport of 

the ionic or electronic species.
10

 

Let us for the moment set aside the problems of dynamics in the absorber and HTM and we 

consider the description of electrons in ETM, which is a central problem to the modelling of 

dye solar cells.  

From the point of view of energetics the basic modelling uses two main levels, indicated in 

Fig. 1(b): a transport level usually identified with a conduction band level, cE , and the 

electrochemical potential of electrons that is usually called the Fermi level, FnE . The energy 

level cE  is significant for issues of charge transfer as in injection from the dye and 

recombination,
11

 while the Fermi level determines the photovoltage in the DSC and 

establishes how electron transport is driven by diffusion.
12

 Normally the TiO2 nanoparticles 

(or wires, tubes, etc.) provide a well connected structure and the energy level is defined 

globally in the nanostructured film as shown in Fig. 1(b). Electron density in the transport 

level cn  is defined as 

TkEE
cc

BcFneNn
/)( 

  (1) 

where TkB  is thermal energy and cN  is an effective total density of states. The Fermi level in 

the absence of bias voltage 0FE  is called the “equilibrium Fermi level”. The electron density 

at equilibrium is 

TkEE
cc

BcFeNn
/)(

0
0  (2) 

and we may write 
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TkEE
cc

BFFnenn
/)(

0
0

  (3) 

Consider for the sake of clarity a pulse of electrons injected from the substrate into the 

metal oxide nanostructure. The electrons diffuse into the ETM, and the electron motion can be 

viewed as a random walk process,
13

 in which a carrier at each step has a chance to either 

continue random walk or recombine with  the acceptor ionic species, or holes in the HTM. 

The probability to move away from the injection point is governed by the diffusion length nL , 

as suggested in Fig. 1(b). This parameter plays a key role in the modelling of DSC
14

 since the 

size of nL  compared to film thickness L  critically determines the collection efficiency
15

 of 

the solar cell. In addition a large LLn   implies that carrier gradients are small in most 

conditions. This feature greatly simplifies modelling, as said above, because one considers 

homogeneous distribution of carriers and may focus exclusively on the time dependence of the 

processes. This case will be developed in the next section to formulate an important 

description of the performance of a DSC.  

 

2. The fundamental diode model 

According to a fundamental conservation argument, in a film where electrons can be 

generated, diffuse, and recombine, as in Fig. 1(b), electron density at position x  is controlled 

by the equation,  

)()( xUxG
x

J

t

n
n

nc 








 (4) 

where nJ  is the electron flux, related to the free electron diffusion coefficient, 0D , by Fick’s 

law 

x

n
DJ c

n



 0  (5) 

G  is a local generation rate, and nU  is a recombination rate. At the extraction contact the 

carrier density is controlled by the voltage. The voltage is given by the rise of the electrons 

Fermi level, with respect to the redox level, as indicated in Fig. 1(b) 

redoxFn ExEqV  )0(  (6) 

Note that we use a positive voltage for raising the Fermi level of electrons. This convention 

has an opposite sign with respect to the voltage in electrochemistry, but it is convenient for the 

description of the DSC, where the active contact is that of electrons and provides a negative 

voltage. The convention of Eq. (6) makes the normal photovoltage positive.  
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At initial equilibrium we have redoxF EE 0 , and we assume here that the redox level 

remains stationary even though the electron density may increase. Therefore we have the 

following expression for the voltage in the device 

0FFn EEqV   (7) 

where q  is the elementary charge, and therefore 

TkqV
cc

Benxn
/

0)0(   (8) 

The selective boundary at Lx   imposes the condition  

0)( LJn  (9) 

Let us assume reasonably homogeneous carrier distribution in the mesoporous TiO2 film. 

This model with fast transport and Fermi levels is shown in Fig. 2. By spatial integration of 

Eq. (4)  along the thickness of the device, we obtain 

 
n

L

n
c LUdxxGJ
t

Ln






0

)()0(  (10) 

Variations of the total carrier number Lnc  correspond to the sum of three effects: electrons 

going out and into the device through the contact, in the flux )0(nJ ; generation, and finally, 

recombination. We start by considering steady state condition, in which 0/  tnc . From 

Eq. (10) 

n

L

n LUdxxGJ  
0

)()0(  (11) 

 There is a full balance of the three terms of Eq. (10) as suggested in Fig. 2(a). The steady 

state regime is the true domain of operation of a solar cell for electrical power production 

under sunlight. On the other hand, most characterization techniques involve time dependence 

in order to provide detailed kinetic information about the system, and these conditions will be 

described later on. 

Working at steady state we have to describe simply two variables: the electrical current 

density in the outer circuit 

)0(nqJj   (12) 

as a function of the voltage. V  is related to concentration by Eq. (8). The concentration enters 

the balance equation (11) via the recombination term. A phenomenological model that gives 

good results in many cases is the following 
14,16
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 
0ccrecn nnkU   (13) 

Eq. (13) consists on a power   of the free carrier density and is called the  -

recombination model. This parameter usually has experimental values 0.6-0.75. The 

recombination rate in Eq. (13) is composed of two terms: a dark generation rate, that we 

express as a current density 


00 crecnqLkj   (14) 

and the recombination current 


crecrec nqLkj   (15) 

The latter term can also be expressed 

TkVq
rec

Bejj
/

0


  (16) 

Finally photogeneration in Eq. (11) gives the photocurrent as follows 

 

d

ph dxGqj

0

 (17) 

In summary we have that 

0jjjj recph   (18) 

recj , as discussed before, is the recombination current that we have described in Eq. (16) 

as 0j  (the recombination current at thermal equilibrium) enhanced by the applied voltage. 

Therefore we may write Eq. (18) as 

 1/
0 

TmkqV
ph

Bejjj  (19) 

We observe that the diode quality factor relates to the recombination exponent as 

/1m .
17

 

 

3. Features of current-voltage curves: photocurrent and photovoltage 

The simple model of Fig. 2 and Eq. (19) appears deceptively primitive at first sight but in 

fact it has important applications as it contains the main features for the description of the 

current voltage ( jV ) curve of the DSC. There are two main assumptions to this model, (a) the 

first is a total decoupling of photocurrent and recombination; these two features are viewed as 

independent phenomena. The second feature is (b) carrier density is independent of position. 

Both assumptions are a good approximation so far as the diffusion length is very large. But 

how well are they realized?  
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If the carrier collection efficiency is very good, then photocurrent, phj , is determined by 

the light absorption and charge injection features that are measured by Incident Photon to 

Current conversion efficiency (IPCE), also known as the External Quantum Efficiency 

(EQE).
18

 Examples of the absorption spectra of efficient dyes are shown in Fig. 3,
19

  and the 

corresponding IPCE is shown below in the Figure together with the final photovoltaic 

performance. In this type of highly efficient DSC, the measured current can indeed be viewed 

as completely decoupled from recombination, as in the model of Eq. (19). The convolution of 

IPCE with the solar spectrum describes very well the actual value of phj . However in cells 

with low collection efficiency one should be careful to calculate correctly the collection 

efficiency starting from diffusion lengths.
20

 Another important consideration to describe 

photocurrent is optical modeling, including features as glass reflection, scatter layers, and 

photonic crystal light absorption.
21-26

  

Next main feature is recombination of electrons, which is described in this simple model by 

recj  in Eq. (16). Now recombination describes the shape of the jV  curve apart from the 

additive phj  term. Therefore recombination determines the fill factor and open-circuit voltage 

ocV  of the solar cell. A vast number of papers and studies have been devoted to obtaining 

comparative information of DSCs with varying characteristics and we will review here a 

number of features. As example we consider the data in Fig. 4(a) that correspond to a series of 

DSC with different electrolytes but otherwise identical conditions of film thickness, dye 

(N719) and so on.27
   

We should first of all remark that experimentally it is usually not possible to obtain recj  

from the jV  due to complications such as the series resistance that is always present and 

affects the voltage. The voltage associated to separation of Fermi levels is called FV , and it is 

obtained from the measured voltage appV  by correction of the voltage drop at series 

resistance. In Fig. 4(b) the jV  curve is shown with respect to FV . In this case the downward 

bending of the curve towards high voltages must be due to recombination and the curves 

correspond to Eq. (19). 

To avoid the sempiternal problem of uncertainty of jV  curve modeling, it has become 

widely accepted in the DSC area to use the technique of impedance spectroscopy (IS), that 

separates different resistive components
28,29

 by means of an equivalent circuit analysis that 

takes into account the spectral shapes. One key point about IS applied to DSC is that it 

provides a direct probe of recombination via the recombination resistance, recR ,  
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1















F

rec
rec

V

j
R

 (20) 

Obviously recR  consists on a derivative of the recombination flux.  

Assuming that recR  is measured, as in Fig. 4, we wish to obtain the parameters for 

recombination in the DSC. For example from the model of Eq. (16) we obtain the explicit 

dependence 











Tk

Vq
RR

B

F
rec


exp0  (21) 

where 

0
0

qj

Tk
R B


   (22) 

Therefore from the measurement of impedance spectroscopy the recombination parameters 

0j  and   can be derived. In general, as it may be observed in Fig. 4(b), recR  approaches 

quite well the single exponential behaviour given in Eq. (21). Another example of the 

recombination resistance in a family of similar DSCs is shown in Fig. 5(b). These results 

provide strong support to the recombination model of Eq. (13). Therefore we may aim at a 

more fundamental discussion of the parameters 0j  and   in terms of electron transfer, 

depending on surface conditions, TiO2 properties, etc.
30-34

  

Fig. 4(c) shows that the variation of electrolyte conditions produces a very large impact on 

recombination parameters. This is due to two different factors: the shift of the conduction 

band, and the change of interfacial kinetics, induced by the specific properties of the 

electrolyte. These questions will be treated in more detail in a later section, after we have 

introduced the disordered DOS in TiO2. In all the cells of Fig. 4 the redox couple is the same, 

but other redox couples based on cobalt or copper can be used and the variations are 

investigated using similar methods.
35-39

  

It has been therefore established that we are able to measure recombination with great 

accuracy, and it is a challenge of great significance both from fundamental and applied 

stances, to be able to describe by a comprehensive theory these observations. We will carry 

out this discussion below, but first we need to develop a number of points concerning the 

disorder in the electron subsystem. It should be pointed out, however, that the exponential 

dependence of the recombination resistance on voltage, which is characteristic in high 

performance liquid electrolyte DSC, is not universal, and different types of behaviour have 
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been occasionally reported.
40,41

 

Another important method of application of the recombination resistance is that by 

integration of (20) we can recover recj . In addition, for the simple model of Eq. (16) 

integration is not even needed as the following expression27
  can be used 

)(

1
0

Frec

B
ph

VRq

Tk
jjj


   (23) 

Therefore from the impedance data it is possible to reconstruct the jV  curve, as shown in 

Fig. 4(a), with a great control over the elements that intervene in the curve. A similar method 

has been derived for organic solar cells.
42

 

We must also discuss the second assumption of the fundamental diode model of Fig. 2, 

which is a homogeneous carrier density. Clearly this assumption is better realized close to 

open circuit than in short circuit conditions, as in latter case the electron Fermi level must 

come to the equilibrium value, at the contact, while the carrier density is still high in the rest 

of the device, see Fig. 6.
43

 However, the region of jV  curve close to open circuit is the most 

significant one, in cells in which the collection efficiency is high, as it is in this voltage region 

where we wish to measure recombination, in order to obtain an understanding of the factors 

controlling fill factor and ocV . It is therefore important to check that homogeneous 

distribution is a good hypothesis, and this has been done in the data shown in Fig. 5, that 

indicate that the distributed transmission line elements
44

 (measured at open circuit conditions), 

that will be discussed in Section 12, are independent of the TiO2 film thickness in the DSC, 

for a significant variation of film sizes.
45

 This result shows that local impedances in the film 

are independent of thickness, indicating nearly homogeneous carrier distribution. 

 

4. Interfaces and mass transport 

Let us consider a more detailed modelling of the device operation beyond the homogeneous 

model discussed in the previous section. Modelling the DSC and in general any complex 

nanostructured device requires to consider four main aspects.  

(1) The number of types of transport species: charged and neutral, ionic and electronic.  

(2) The spatial distribution of the charge carriers, that relates to important properties such 

as shielding, macroscopic electrical fields and the main transport mechanisms.  

(3) The structure of interfaces, particularly at the contacts, including a description of 

interfacial capacitances.  

(4)  The energy axis, governed by disorder at each material,
17

 and by energy level 
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alignment at interfaces.
46

  

The device is therefore formed by some geometry and morphology that sets the first 

constraint in establishing regions where the carriers can be distributed, either in motion or 

stationary. Such regions have boundaries that are described by suitable boundary conditions, 

and in particular the contacts, in which electronic carriers communicate with the external 

circuit, are critically important for the operation of solar cells.
47

  

Having set morphologies and boundaries, there are two different dimensionalities, namely 

the spatial space which can be described with one or more dimensions, and the energy space. 

At each point an energy diagram gives the allowed energy levels for a type of carriers, or their 

combination, as indicated in Fig. 1(a) and in quantitative detail in Fig. 7. Energy levels for 

electronic carriers may be stationary states, also called localized states or traps, or extended 

states that allow fast transport. Transport may also proceed by hopping between localized 

states,
48

 but this formalism is not usually adopted in DSC, in which the transport of electrons 

is well described by the multiple trapping model.
49

 The relative energy alignment at interfaces 

provides essential constraints for the kinetics of charge or energy transfer. 

Based on these general properties that allow to describe the model, one formulates a series 

of macroscopic equations and boundary conditions that provide, as a result, carrier densities 

and carrier dynamics, expressed as output current densities, either for steady state or any 

desired transient condition. In this paper we focus our attention on phenomenological 

modeling using macroscopic equations. A first model, presented in the previous section, 

contains only one kind of carriers (electrons in TiO2) and no spatial dimension at all (once the 

photocurrent is calculated by an integration of generation term), since all the points are 

considered at the same density. This model is fairly useful, as discussed above, however, for a 

deeper understanding of the microscopic electronic phenomena it is necessary to include the 

energy axis, distinguishing free and trapped electrons, which makes a very large effect for all 

measured kinetic parameters of the DSC. This description is discussed below.
49-52

  

Instead of the phenomenological transport and conservation equations one may adopt a 

more fundamental point of viewin which electronic states are modelled individually and the 

transfer rates between states allow us to analyze the global dynamics by Monte Carlo 

simulation.
13

 These methods have been also applied widely, they permit to establish arbitrary 

morphologies and to investigate complex effects such as percolation and nonthermalized 

electron transport.
53-57

 Still a more fundamental approach consists in a simulation of the 

molecular details of the components of the system. This approach can produce very valuable 
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knowledge about the structure of interfaces and the origin of the observed energy distribution 

features, and the nature of excited or intermediate states for charge transfer phenomena.
58-60

 

Microscopic simulation methods have been widely explored in the field of organic materials, 

and they have important applications for the investigation of carrier and energy transport in 

organic solids.
61-63

 

A very important aspect of the modeling of a DSC, beyond the zero-dimensional 

homogeneous model, is to consider a 1 dimensional model, adapted to the standard sandwich 

–type cell, where  equation (4)  allows the consideration of gradients like those shown in Fig. 

6 to calculate photocurrents and other quantities. In the steady state we have 

0)()( 



 xUxG

x

J
n

n  (24) 

This type of model, generally denoted diffusion-recombination model, has been very 

widely used, with many extensions and variants.
43,64-72

 It is interesting to recall that Eq. (24), 

and its many extensions, are based on a macrohomogeneous approach
73-75

 in which the 

mixture of nanoporous ETM and the HTM inside the pores is viewed as a unique medium that 

hosts both species, with certain probabilities of carrier exchanges between ETM and HTM, 

corresponding to electron injection, regeneration, electron-hole recombination, etc. In a highly 

concentrated electrolyte, the Debye length is very short, and shielding by electroneutrality 

prevents the formation of long range electrical fields in the semiconductor nanostructure. 

When the electrons are injected into a nanostructured metal oxide, positive ions move to the 

surface of the charged nanoparticles and neutralize long range electrical fields. Therefore 

electron transport is driven by concentration gradient, i.e. by diffusion.
15

 This property is quite 

general for a number of photovoltaic and electrochemical cells, such as inorganic composite 

solar cells formed by nanoscale elements,
76

 classical electrochemical systems when a 

supporting electrolyte is used,
77

 and also crystalline p-silicon solar cells, in which injected 

electrons are much less than the majority carrier holes.
78,79

 

The crucial mechanism of shielding of electrical fields simplifies considerably the 

modeling tasks, is illustrated in Fig. 8. There the increase of electron Fermi level in the 

nanostructure is easily allowed by the large quantity of compensating charges in the HTM, so 

that the holes in the latter medium (or ions) effectively play the role of a majority carrier. If 

the shielding is effective, then the cell voltage is readily explained by the change of the Fermi 

level at the left contact, see Fig. 8. It should be emphasized that the voltage is the amount of 

work necessary to carry an electron from one plate of the device to the other. This work 
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involves the measurement of an electrical current with an electrometer and is given by the 

difference of electron Fermi levels between the two plates,
80,81

 which is the rationale for Eq. (6 

). It is also true that a change of voltage between the contacts, requires that somewhere, in the 

device, occurs as well a modification of electrostatic potentials (reflected by a change of the 

vacuum level diagram). There is a widespread tendency to look for a change of band bending 

as a source of photovoltage in a solar cell. In the area of DSC the question of potential barriers 

was a matter of concern that promoted many discussions.
82-84

 It is now well established that 

the origin of photovoltage is a kinetic balance of excess carriers as expressed by Eq. (4), a 

result that was conclusively demonstrated by Gregg et al.
83

 Monitoring the Fermi level 

variation is a definitive explanation of photovoltage but still begs the question about the 

location of the electrical field, and this can be reasoned as shown in Fig. 9. The figure 

suggests that the change of electrostatic potential, reflected in a change of the vacuum level 

associated with the photovoltage, i.e. the difference of electrostatic potentials between dark 

and light, is absorbed at the interface between the SnO2 transparent conducting oxide (TCO) 

and the TiO2. This interface has been repeatedly discussed in the literature.
85-91

 Due to 

effective shielding as mentioned above, the electrical field at the surface of the substrate does 

not penetrate deeply into the mesostructure.  

In principle the diagrams of Figs. 8 and 9 do not seem consistent with the fact that the 

conduction band of TiO2 and SnO2, is normally reported at -4.3 and -4.8 eV, respectively, 

with respect to the vacuum level. At acidic pH, corresponding to the DSC electrolytes, the 

TCO conduction band should be higher, but it achieves equilibrium with the redox level, 

which is about -4.8 eV vs. vacuum for --

3 I/I , see Fig. 7, and deeper for other redox couples, 

that consequently are able to produce a higher photovoltage.
92

 The remarkable point is the 

high position of the TiO2 conduction band,
84

 that is facilitated by specific coadsorbents, which 

allow a large photovoltage to be achieved.
93

 It must be remarked, therefore, that the overall 

picture in Fig. 9 considers the equilibration by interfacial charging at several interfaces: the 

TCO/electrolyte, and TiO2/electrolyte. As a result of these properties the Fermi level in the 

TCO finally raises under illumination, pulled up by the electrons in TiO2 so that the 

TCO/TiO2 junction forms an excellent selective contact to electrons that is responsible to a 

large extent for the good operational properties of the DSC. For comparison, the operation of 

the cathode in bulk heterojunction solar cell seems more problematic, as the initial offset of 

work functions is shared by both a surface dipole and band bending entering the bulk of the 

blend.
94
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The previous model erases all electrical fields and interfacial barriers in the mesostructure, 

which is viewed in effect as a homogeneous medium. However, in semiconductor 

mesostructures, filled with a HTM, one can also allow for the presence of electrical field and 

semiconductor barrier at the internal interface ETM/HTM. The prevalence of one approach or 

the other one, i.e., a macrohomogeneous model that only contemplates the Fermi level, or the 

explicit presence of internal interface barriers, depends on doping densities, size of 

semiconductor particles or wires, and Debye length both in the semiconductor nanostructure 

and in the HTM. 
95-97

 

The diffusion-recombination model has been developed largely for the liquid electrolyte 

containing iodide/triodide, that has a very high conductivity, and generally introduces no 

problem for transport. It was shown that improving the conditions of shielding in liquid 

electrolyte enhances the observed electron diffusion coefficient.
98

  A high concentration 

electrolyte provides excellent shielding and a flat reference redoxE . However, energetically 

the I/I-
3  redox level is too high, see Fig. 7, for example measurement of  tris(1,10-

phenanthroline)cobalt(II/III) redox couple is 230 mV deeper (more positive redox potential) 

than iodide electrolyte.
37

 In consequence cobalt electrolytes, and also solid organic hole 

conductors, have been widely explored. It should be noticed in Fig. 7 that Co(II/III) redox 

couple stands too deep to regenerate oxidized standard ruthenium bypyridill dye. Therefore 

both the dye and the redox couple have been simultaneously optimized for high 

performance
99,100

 and this approach has provided large rewards in terms of power conversion 

efficiency.
2
 

A number of solid electrolytes have been amply investigated, OMETAD being the most 

well known
101-103

 but also other materials such as CuSCN
104

 and P3HT
3,105

 showed promising 

results. In such solid conductors the free carrier density is not so high as in the liquid one, and 

easy shielding and electroneutrality is not warranted but need to be carefully investigated. IS 

studies of these DSC with solid hole conductor using either organic or inorganic absorber 

have shown that the transport of holes in these HTM is usually an issue that introduces a large 

additional resistance  affecting the fill factor of the solar cell.
104-106

 Using high extinction solid 

absorbers such as Sb2S3 sensitizer, it was reported that in planar, thin layer configurations, the 

solid cells provide a sizable photocurrent, but a poor fill factor.
105

 It is concluded that the role 

of mesostructure is not only to provide a large internal area for carrier generation. Charge 

compensation to satisfy electroneutrality is also a central property of mesoporous DSC. The 

questions will very likely be more intensively investigated with perovskite absorbers, which 
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very likely are genuine ambipolar transport materials that do not strictly need fast separation 

of carriers into different phases.
4,5,107

  

The one dimensional diffusion-recombination model neglects the transport in the 

electrolyte and shielding conditions. A standard, more general approach to multiple carrier 

transport problems
77

 is solved using a set of equations that comprises: 

-Diffusion-drift equation for each carrier 

-Poisson equation that determines the macroscopic electrical fields 

-The boundary conditions 

These equations must be combined with statements on energy distributions and charge 

transfer rates. Early models applied the idea of ambipolar diffusion,
108

 which is based on the 

coupling of just two types of carriers by electroneutrality.
109,110

 There have been many 

attempts to develop a general set of equations able to model the DSC behavior especially with 

reference to mass transport limitations in liquid electrolytes.
111-117

 It is tempting to aim at a 

simulation tool that will provide a “total” description of the DSC, but one should evaluate 

very carefully if this goal is feasible, recognizing the complexity of the system. Many aspects 

of the DSC need to be separately studied on their own, and simulation by a number of 

phenomenological equations cannot be a substitute for detailed physical understanding. For 

example the structure of the three- phase contact at the base of the substrate, mentioned above, 

or the detailed rates of charge transfer dependence on energy and density, as well as the 

interactions at semiconductor/dye/hole conductor interface, are issues that have to be properly 

controlled when describing the system. New solar cell configurations and absorbers are bound 

to pose their own subtleties. 

There has nevertheless been important progress in the formulation of simulation tools that 

can bring useful results. The first important question is that two or three dimensional modeling 

118
 is able to deal with effects that are certainly beyond reach of the simple one dimensional 

modeling, such as the properties of exotic configurations of the solar cell
119

 or important 

practical features such as the distribution of the measured quantities in the solar cell plane due 

to edge effects.
120,121

 The second relevant line of progress is that the main defect of old 

approaches, which was to compare a model with dozens of parameters, with a measured jV  

curve that may be described with just two or three, has been corrected. More sophisticated 

approaches incorporate the physics that has been learned about DSC, such as nonlinear 

recombination model.
14,116,122,123

 An example of realistic modeling including all carriers 

present in the DSC, as well as free and trapped electrons, is shown in Fig. 10.
123

 In addition 
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researchers have recognized that different experimental techniques have to be combined in 

order to provide a meaningful and reliable characterization for the solar cell performance.
124-

127
 In particular the coupling of multidimensional modeling with impedance spectroscopy 

analysis has become a powerful method in order to establish sound results and interpretation 

of DSC devices.
121,124

  

 

5. Energy disorder in the semiconductor: combined description of free 

and trapped electrons 

In previous sections we have commented the good success of the fundamental diode model, 

based on electron density in the conduction band, cn , and phenomenological  -

recombination model in Eq. (13), for a first understanding of current voltage curves of high 

quality DSC. However, it has been well established that electron density restricted to a single 

level poses important limitations for the description of measurements of DSC, such as 

recombination resistance, diffusion coefficient, electron lifetime, diffusion length, etc., due to 

the fact that the localized states in the bandgap produce strong dynamic effects.
17,128-133

 A 

model that is successful to account for most observed properties, is indicated in Fig. 11(a). It 

is composed of the transport level that was already discussed above, at energy cE , and a 

density of states (DOS) in the bandgap, )(Eg . A key feature is that an electron in the transport 

level can be trapped in a localized state in the bandgap and later be thermally ejected to the 

conduction band. By thermalization the carrier density in the localized states is found as 






 dEEEfEgn FnL )()(  (25) 

where )( FEEf   is the Fermi-Dirac function. The total carrier density is 

Lc nnn   (26) 

In the DSC as well as in similar devices, the carrier density is measured in steps at different 

voltages, or by small perturbation methods. It is important to characterize the differential of 

the carrier density, which is known as the chemical capacitance.
134

 

In general the differential capacitance, that is measured by small perturbation, has the 

expression 

dV

dQ
C 

 (27) 

The textbook example is a dielectric capacitor, in which the charge separation creates an 
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electrical field between the plates. The capacitance, per unit area, is given by 

d
C 0


 (28) 

We obtain a chemical capacitance when the Fermi level in a semiconductor is displaced 

with respect to the conduction band edge, because in this case we only change the chemical 

potential of the electrons, and not their electrostatic potential. A structure of selective contacts 

is also necessary so that the Fermi level variation translates into a voltage as follows 

qdEdV Fn /  (29) 

This structure is presented in Figs. 2 and 11, in which the change of voltage implies that the 

Fermi level of electrons moves toward the conduction band, as stated before in Eq. (6). If L  is 

the thickness of the layer, and A  is the area, the charge accumulated in the semiconductor, is 

LAnqQ  . Hence we obtain the chemical capacitance
134,135

 per unit area, that is defined as 

follows 

FndE

dn
LAqC 2  (30) 

A specific chemical capacitance per unit volume is defined as 

FndE

dn
qc 2  (31) 

For conduction band carriers the chemical capacitance is 

Tk

nq
c

B

ccb
2

  (32) 

It was first calculated by Shockley for crystalline semiconductors.136  The concept is very 

useful in the characterization of disordered materials.
12,137

 In the DSC the contribution of 

trapped electrons is dominant. The calculation of the chemical capacitance for a broad DOS is 






 dEEE
dE

df
Egqc Fn

Fn

)()(2
  (33) 

Using the approximation of the zero-temperature limit of the Fermi function, i.e. a step 

function at FnEE   separating occupied from unoccupied states, as suggested in Fig. 11(a), it 

can be shown that Eq. (33) reduces to
12

 

)(2
Fn

L Egqc   (34) 

In this approximation, the Fermi-Dirac function is a unity step function at the Fermi level. 
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Therefore, displacing the Fermi level by FdE  simply fills with carriers a slice of the DOS: 

FF dEEgdn )( . c  is also denoted a thermodynamic density of states.
138

  

Measurements of chemical capacitance of nanostructured TiO2 have shown that the 

localized states are distributed as an exponential distribution that enters the gap of the 

semiconductor from the conduction band, as suggested in Fig. 11 and indicated by the 

expression 

 0

0

/)(exp)( TkEE
Tk

N
Eg BC

B

L   (35) 

Here LN  is the total density of localized states and 0T  is a parameter with temperature 

units that determines the depth of the distribution, which can be alternatively expressed as a 

coefficient 0/TT . The DOS of nanostructured TiO2 has been well characterized 

experimentally.
139

 The exponential distribution is observed in measurements of chemical 

capacitance shown in Fig. 4(d) and 5(c). The DOS resulting from such measurements is 

indicated in Fig. 7.  

An important feature of the DOS of the nanostructured metal oxide is that cE  can be 

displaced with respect to the redox level, and this method is frequently used to improve the 

photovoltage, as mentioned before.
93

 The change of position of the conduction band is 

obvious in Fig. 4(d), where a shift cE  is marked, with respect to a reference sample. Note 

that the shift changes the equilibrium density, 0cn , by Eq. (2), and this affects the dark reverse 

current, 0j . These variations are more generally discussed in the next section. Therefore a 

control of the DOS of electrons in titania is essential for the meaningful discussion of 

recombination and any other electronic parameter of the DSC. 

In most conditions of measurement we can assume that Lnn  . The equilibrium value of 

the carrier density is given by  

00 /)(
0

TkEE
LL

BcFeNn


  (36) 

Again using zero-temperature approximation the total electron carrier density is given by 

the integration of DOS up to the Fermi level, Eq. (25) 

0

0

/
0

/)(

0

 )( 

TkqV
L

TkEE
L

E

BF

BcFn

Fn

en

eN

dEEgn











  (37) 

Therefore the chemical capacitance of the localized carriers in the exponential distribution 
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can be written 

0

2

Tk

nq
c

B

L   (38) 

It should be remarked that now we have two density parameters n  and cn  to describe 

equations modeling the DSC. We have assumed so far that both densities relate to a single 

Fermi level. Eq. (1) and (37) provide the following condition: 















00

 
c

c

L n

n

n

n
  (39) 

In fact in steady state conditions, such as in the calculation of current voltage curves, one 

could formulate equations in terms of either three parameters: n , cn , or V  (or more 

appropriately, FV , to discount any series and shunt resistance).
122

 Which is the best choice? 

There is not a single answer, but as shown in Fig. 4, modeling work in DSC often refers to 

explaining the components of current-density voltage curves, therefore the voltage is a very 

good choice for the x  axis  representation of different parameters. If different samples have a 

similar DOS it is also useful to compare quantities plotted vs. n . But if the DOS is variable 

then FV  should be preferred, since a value of the Fermi level is stipulated at each voltage. The 

special feature of the carriers at the transport level, or free electrons, cn , is that carrier density 

relates simply to the voltage FV  as (see Eq. (8)) 

TkqV
cc

BFenn
/

0   (40) 

Therefore actual measurements of carrier density via chemical capacitance or any related 

stepped technique, will provide the total carrier density n , but since actual measurements are 

often performed as function of voltage, the free carrier density (and not total carrier density) 

is a useful index of the voltage FV . This is the advantage of expressing  -recombination 

model in terms of free carriers as Eq. (15),
14

 as then the exponent   immediately translates 

into the diode quality factor of Eq. (19). Since one can convert from free to total carrier 

density by the expression (39), recombination of excess carriers can be phenomenologically 

modeled as a power-law dependence of the total carrier density 

 
0rec nnqLBj   (41) 

Comparing Eq. (15) we obviously have the relationship  / . Using (15) or (41) are 

equivalent expressions that do not speak about the origin of the recombination mechanism, 

which  will be discussed later on. 
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In summary for the modeling of steady state quantities, one can switch between n  and cn  

by using Eq. (39). When plotting different measured quantities, one has de choice to use or 

V or n . The carrier density n  is convenient to remove the shift of the conduction band, but in 

general it is important to present the voltage as the main parameter that changes in the solar 

cell. For the description of time depending measurements the effects of traps is significant, it 

is then important to maintain the distinction between n  and cn . Dynamic effects of traps will 

be discussed below. 

 

6. Shift of conduction band and change of redox level 

We have already mentioned that modification of electrolytes and other factors produce a 

shift of the position of the TiO2 conduction band, which is an important property of the DSC. 

cE  affects charge injection from the dye. In addition, the change of the position of the 

conduction band, produces a strong variation of the recombination resistance, because the 

parameter 0j  is modified. Indeed note that by Eqs. (2) and (14) 

TkEE
crec

BcFeNqLkj
/)(

0
0


 (42) 

In consequence the change of cE  produces a change of 0R , according to Eq. (22). It is 

important to introduce additional kinetic parameters that specify the properties of 0j . The 

following expression generalize the suggestions in 
28,30

 in order to include also the change of 

redox level.
32

 Let us define a kinetic constant kj0  that determines the recombination rate, 

independently of the conduction band position 


creck NqLkj 0  (43) 

Therefore 

TkEE
k

BcFejj
/)(

00
0


 (44) 

so that Eq. (19) becomes 

 1//)(
0

0 
 TkVqTkEE

ksc
BFBcF eejjj


 (45) 

Equation (44) simplifies the treatment of empirical data by separation in the conventional 

“dark current” parameter ( 0j ), of two effects that frequently have an important influence on 

the behaviour of DSC: cE , that tracks possible changes of the position of the conduction band 

of the n-semiconductor, and kj0  (or equivalently kU0
32

) that represents changes in the charge 

transfer rate, e.g. by blocking of the TiO2 surface.  The  photovoltage writes: 
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k

phBFc
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j

j

q

Tk

q

EE
V

0

0 ln





  (46) 

These variations are well illustrated in Fig. 4(c), in which a part of the shift of the 

recombination resistance is due to the change of the conduction band position that is visible in 

the chemical capacitance of Fig. 4(d). An important tool to correctly evaluate the 

recombination rate is therefore to plot the recombination resistances of different devices at the 

same equivalent value of the position of the conduction band. Therefore we define a suitable 

potential, 

qEqEVV FcFecb // 0  (47) 

Here “ecb” stands for “common equivalent conduction band”, cE  is the shift of the 

conduction band, and 0FE  is the change of the redox potential of the hole conductor (for 

example when comparing different electrolytes), both with respect to a reference sample  

refccc EEE ,  (48) 

refFFF EEE ,000   (49) 

We obtain the following expression for the recombination resistance: 

  TkEEqV

k

B
rec

BrefFrefcecbe
jq

Tk
r

/

0

,0, 





 (50) 

Therefore, when plotted with respect to ecbV , as shown in Fig. 4(e), differences in the 

recombination resistance correspond exactly to the variation of the reciprocal of the kinetic 

parameter kj0 , removing the influence of change conduction band position. The analysis is 

more complicated if the samples present different values of the DOS parameter   or 

recombination exponent  . 

 

7. Electron lifetime 

In general the quantities characterizing the recombination flux cannot be obtained from 

analysis of steady state measurement, which supplies very limited information. 

Experimentally one uses a method that applies a small perturbation to obtain the 

recombination kinetics at each value of stationary voltage. Here we discuss the electron 

lifetime, n , that is a quantity often used to characterize recombination dynamics in 

DSCs.
50,52,140

 We review the definition of the lifetime as a first illustration of small 

perturbation quantity.
52,140-144

  

We take first the simplest recombination model which is that of linear recombination 
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)( 0nnkU crecn   (51) 

The decay of a population of electrons is governed by the equation 

)( cn
c nU

dt

dn
  (52) 

Excess electrons injected can be written 0nnn  , and their decay is controlled by the 

equation 

crec
c nk

dt

nd


 )(
 (53) 

Therefore the decay with time takes the form 

nt
cc entn

/
)0()(


  (54) 

In general we define the lifetime as the constant in the denominator of the exponential 

decay law. In Eq. (54) the lifetime, n , is given by the prefactor of n  in Eq. (53), that is, 

1
 recn k  (55) 

However, we observe that such decay law depends critically on the fact that our starting 

recombination law in Eq. (51) is linear, while we have emphasized before that nonlinear 

recombination is the general rule in a DSC.  

Let us take a system that is determined by any general recombination law )( cn nU . A 

stationary density is maintained by a photogeneration G  or similar process, so that the 

quasiequilibrium, stable carrier density, is cn . The conservation Eq. (4) can be written 

)( cn
c nUG

dt

dn
   (56) 

which in equilibrium sets the stable carrier density by the equation  

 GnU cn )(  (57) 

Now the small perturbation n̂  that is induced on top of the steady state provides the density 

dependence on time as 

)(ˆ)( tnntn ccc   (58) 

Using an expansion 

c
c

cncn n
n

U
nUnU ˆ)()(




  (59) 

we obtain from Eq. (56) 

c
c

nc n
n

U

dt

nd
ˆ

ˆ




  (60) 
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The result we obtain in Eq. (60) is that the linearization procedure always takes the 

evolution equation to a form of the type (53) that will provide an exponential decay of the 

small perturbation excess density.  

Let us introduce the free carrier lifetime,
52

  

1

















cnc

n
f

n

U
  (61) 

Hence Eq. (60) writes as 

c
f

c n
dt

nd
ˆ

1ˆ


  (62) 

As an example of the small perturbation procedure consider the nonlinear recombination 

law introduced in Eq. (13). Eq. (4) can be written 

  
0ˆ

ˆ
cccrec

c nnnkG
dt

nd
   (63) 

Expanding the sum to first order in n̂  and removing the steady state terms (that cancel out) 

we have 

ccrec
c nnk

dt

nd
ˆ

ˆ 1



  (64) 

Therefore the lifetime is 

  11
)(




 creccf nkn  (65) 

Obviously the result in Eq. (65) can be derived directly by Eq. (61). Note that the lifetime 

is a function of the steady state; this is a general feature of nonlinear systems. 

The decay of a small population that serves as a probe of the kinetics of the system has 

therefore been characterized for any recombination rate law and steady state condition. More 

generally, the decay may require a number of sequential processes coupled to recombination, 

for example when prior detrapping of localized carriers is required, as we discuss later on. The 

free carrier lifetime f  in Eq. (61) does not yet consider the trapping-detrapping dynamics, 

but just the charge transfer kinetics. More generally the electron lifetime is defined in terms of 

the recombination rate )(nU n  and total carrier density as
52
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U
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The relationship with f  is provided below. 
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8. Trapping factors in the kinetic constants 

The main effects of traps in the dynamics of electrons in a DSC are indicated in Fig. 11(b). 

For the long range transport of electrons in the nanostructure, also outlined in Fig. 1(c), we 

distinguish two classes of electronic states: the transport states above the mobility edge (that 

may be associated with extended states in the conduction band), and localized states in the 

bandgap. These assumptions are common in the classical multiple trapping transport,
145-147

  

which describes the effect of trap levels over the rate of displacement through transport states. 

Another important effect of traps, and more specifically surfaces states is to provide a variety 

of pathways in the energy axis for interfacial charge transfer, as indicated in Fig. 12(b). 

Let us consider the retarding effect of traps, and how this effect changes the measured 

kinetic constants.
51

 In the presence of traps, the time-dependent conservation equation for free 

carriers, cn , contains an additional term, due to the net capture and release by traps, which 

results in a modified concentration of localized electrons Ln : 

t
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)()(  (67) 

If we use again the small perturbation approach of Eq. (54), Eq. (67) is split in two parts. 

The first is the steady state equation of Eq. (24). Note that the localized states do not introduce 

any new effect in the steady state conservation equation. Therefore quantities such as the 

electron conductivity are independent of the number and occupation of traps, as further given 

below. 

The second equation is for the small perturbed density 
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 (68) 

where we have included the free carrier lifetime as defined by Eq. (61). Eq (68) may be 

completed by a kinetic equation for the traps that defines the variation tnL  / . However, if 

the trapping kinetics is fast (with respect to time scale of the transient measurement) we may 

assume that the traps follow the equilibrium relation with the free carriers 
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


 (69) 

We have developed before in Eq. (39) the relationship between free and trapped carrier 

density when the system rests at equilibrium. Eq. (69) has a different meaning in that it states 

that equilibrium will be maintained for any time variation during kinetic measurements. Eq. 
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(69) is termed the quasistatic approximation and it was introduced to account for the 

properties of measured time constants in DSC.
51

  

Applying the quasistatic approximation, Eq. (68) becomes 
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We introduce the trapping factor 
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From the previous definition of lifetimes, Eqs. (61) and (66), we note that 

fLn    (72) 

Eq. (72) now gives the measured lifetime n  as a combination of two effects: trapping and 

detrapping effects in the bulk, and subsequent charge transfer, by a nonlinear dependence on 

the free carrier density. More complex theories of the electron lifetime extend this model by a 

combination of mechanisms and will be described later.
50,148,149

 

Furthermore we show later that the measured (chemical) diffusion coefficient is given by 

0

1
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L
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
  (73) 

The trapping factor can also be expressed in terms of the chemical capacitances of the 

separate electronic states 
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We note that, if the trapped electron density dominates, then 
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For an exponential distribution,  
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and we obtain the voltage dependence of the trapping factor as follows 
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Using Fick’s law, Eq. (5),  we convert Eq. (70) to 
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and therefore 
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Eq. (79) implies that the system of Fig. 11 can be treated with the dynamic equations of a 

single level, but with kinetic coefficients (lifetime, diffusion coefficient) that depend on the 

steady state. The essence of the quasistatic approximation is to describe the kinetic factors 

associated to trapping and detrapping in terms of occupation of free and localized states. The 

quasistatic approximation is explained in more detail in Refs. 
51,52,150,151

. It has been widely 

used to describe experimental results of DSCs.  

Fig. 13 shows electron densities and time constants dependence on voltage according to the 

model developed above, for an exponential distribution of traps. These features are often 

observed in experiments.
16,33,43,152,153

 One exception is the free carrier density, that will be 

commented separately later on. It is assumed that 0D , the free electron diffusion coefficient, 

is a constant. The calculation of the chemical diffusion coefficient in Eq. (73) for an 

exponential distribution gives an exponential dependence on the Fermi-level position as 

follows
154
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Therefore the electron diffusion coefficient increases when the Fermi level rises. This is 

because the retarding effect of traps is suppressed when traps become increasingly occupied.  

On the other hand, the free carrier lifetime, given in Eq. (61), depends on the voltage as 

follows 
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and the lifetime has the expression
52
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We observe in Fig. 13 that the lifetime, n , that is measured by the decay of the Fermi 
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level, decreases with increasing potential, but this can be attributed mostly to the trapping 

factor. The change of position of the Fermi level changes the detrapping time in an 

exponential fashion. Characteristic experimental results are shown in Fig. 14.
155

 It should be 

pointed out that the relevant lifetime for steady state conditions is the free carrier lifetime, f , 

which increases with the bias voltage as indicated in Eq. (81).  

Another important quantity is the diffusion length, as mentioned before and indicated in 

Fig. 1.  

nnn DL   (83) 

By Eq. (72) and (73) it is observed that the trapping factors L  compensate in the 

diffusion length.
51

 However if the free carrier lifetime shows some dependence with the 

potential, as implied by Eq. (81), then the diffusion length varies with voltage, and it should 

increase according to
14

 

fn DL 0  (84) 

This feature, indicated in Fig. 13(c), is often observed in experimental results, see Fig. 

5(d).
152,156

 The connection of the diffusion length with the trap dynamics has been also 

investigated by Monte Carlo simulation.
13,157,158

  

 

9. Chemical diffusion coefficient and electron conductivity 

The results for the Fermi level dependence of the diffusion coefficient, summarized in Eq. 

(77), can be obtained in the framework of a more general kinetic-thermodynamic formalism. 

13,49,154,159
 

First the jump diffusion coefficient JD  is introduced, which is proportional to the tracer 

diffusion coefficient, *D ,  that reflects random walks of a particle 
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Consequently JD  can be calculated by Monte Carlo simulation.
13,160,161

 In the multiple 

trapping framework the jump diffusion coefficient is given by
49

 

0D
n

n
D c

J   (86) 

where Lnn   is the total carrier density that coincides with trapped carriers in most 

conditions ( Lc nn  ). The diffusion coefficient measured by small perturbation methods nD  

is the chemical diffusion coefficient and differs of JD  by the quantity n , 
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Jnn DD   (87) 

that is called the thermodynamic factor,  and is defined as follows 
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Combining the general form of the chemical and jump diffusion coefficient, Eqs. (86) and 

(87), we have, for the exponential distribution 
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This is exactly the same result as given above in Eq. (80). Another way to arrive at the 

same conclusion starts from the equation 
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B
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Tk
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that is an statement of the generalized Einstein relation.
49

 In Eq. (90) nu  is the mobility. By 

Eq. (87) we obtain 
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nu  is related to the displacement of carriers in the total DOS, and is therefore proportional 

to the jump diffusion coefficient. Considering both free and trapped carriers, the 

thermodynamic factor can be written as 
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By combining (90), (91) and (92), one gets 
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that coincides with Eq. (73). 

In summary there is a difference between the jump diffusion coefficient, which reflects the 

random walk of a particle in the available DOS and geometry, and the chemical diffusion 

coefficient measured by inducing a gradient by a small step method. The difference is 

expressed in Eq. (87) and consists on the thermodynamic factor that accounts for the 

difference between a gradient in concentration, and a gradient in electrochemical potential, 

thus generalizing Fick’s law.
12
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This connection is a fundamental one and it can be expected to operate more generally for 

other types of quantities. Indeed the same type of relationship can be postulated for the 

electron lifetime, as shown recently by Ansari-Rad et al.
13,56

 On the one hand, the small 

perturbation lifetime n  is related to the decay of the Fermi level after injection of excess 

carriers. On the other hand a “jump lifetime” J  can be calculated by Monte Carlo simulation 

by following the survival time of a specific carrier that undergoes the sequence of events 

indicated in Fig. 11(b), i.e., random walk in the total DOS and charge transfer to acceptor 

species in the electrolyte. J  is different from the free carrier lifetime, f , introduced above, 

in that the latter takes into account the survival time of a free carrier, just by the charge 

transfer mechanism, without counting the prior random walk. In fact f  corresponds to the 

free electrons diffusion coefficient in the diffusion formalism, 0D . The relationship between 

these two lifetime quantities is given by
13
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where r  is a recombination factor that plays a role similar to thermodynamic factor n . 

It can be concluded that a general distinction exists between single particle quantities that 

can be monitored by random walk simulation methods, and collective quantities that are 

measured by small perturbation, involving a modification of the chemical potential of the 

species. Both quantities are related by the classical thermodynamic factor
162

 and its 

generalizations.
13

  

While the measurement of diffusion coefficient requires some type of small perturbation 

methods, the electron conductivity drives dc transport and can be measured in steady state 

conditions, for example by electrochemical gating.
163,164

 The electron conductivity can be 

given in terms of the total number of carriers and the mobility as
49
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Using Eq. (91) we can write 

J
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We can also express the conductivity in terms of the free carrier density as follows 

c
B
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Additionally we may provide a formulation of the generalized Einstein relation (90) that 
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links the conductivity, the chemical diffusion coefficient and the chemical capacitance 
49,165

 

 cDnn   (98) 

It is important to remark that Eq. (97) indicates that the conductivity is determined 

exclusively by the transport level and is completely independent of the presence and 

distribution of traps, in the context of the multiple trapping model that we have used herein. 

The steady-state conduction is not affected by the trapping process, because the traps remain 

in equilibrium. Alternatively, one can view conduction as the result of the displacement of the 

whole electron density, n , with a smaller jump diffusion coefficient, Eq. (96). 

 

10. Delocalized electrons in the conduction band 

We have already commented that measurement of electron density by the chemical 

capacitance invariably reveals the exponential distribution associated to the trap states, or in 

general the shape of the dominant DOS at the Fermi level in the given material. The question 

arises, if the free carrier density, cn , is really accessible or is just a theoretical feature that 

conveniently describes the voltage FV . We have seen that even if the free electron density is 

relatively low, the role of the free carrier density is crucial to provide long range transport. 

This feature is emphasized in Fig. 1(c) and in Fig.  11(b). Even though the general picture of 

Fig. 13, is very well supported by measurements of the time constants n  and nD , it should 

be noticed that these parameters depend strongly on the traps in the system.  It should be 

interesting to detect kinetic phenomena that depend exclusively on conduction band carriers. 

Experimentally, such observation is, however, far from straightforward. In principle, the 

method to access the free electrons density seems obvious. One has to apply the potential FV  

large enough for rising FnE  close to cE , see Fig. 11, in which case the large DOS at cE  will 

make the cn  population larger than Ln . However, this method encounters practical problems 

of large charging and band unpinning,
166

 so that increasing appV  does not really change FV , 

as a result of which the conduction band capacitance of Eq. (32) has never been detected, as 

far as we know. (It can be observed, however, in defect-free silicon solar cells
79

.) Connected 

with this question there is also a difficult problem, which is to determine the exact position of 

the conduction band, cE , which has many implications for electron injection from the 

absorber and recombination models. 

A direct method of detection of free electrons is provided by techniques such as 

spectroelectrochemistry and microwave conductivity. The first one is based on the detection 

of the delocalized carrier by the specific absorption features, such as the Burstein shift, which 
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is caused by intraband absorption in the infrared region of the spectrum.
129,151,167,168

 Recently 

Hamann et al. developed a detailed method based on temperature dependence of the free 

carrier density to locate the position of the conduction band. 166 The time-resolved microwave 

conductivity allows for a detection of electron carriers
169,170

 although the distinction between 

free and trapped electrons requires a detailed analysis.
151

 A similar concern arises often in the 

interpretation of absorption data, since there are a number of possible absorption effects and 

these cannot be simply linked to the concentration.
168

  

A very important piece of evidence about the free carrier transport arises from the voltage 

dependence of the electron conductivity in Eq. (97). According to Eq. (1) the conductivity 

dependence on Fermi level voltage must satisfy the Boltzmann exponent Tkq B/ , 

TkqV
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c
n
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2
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 This relationship is often observed to hold almost exactly.
16,34,151,171

 An example of the fit 

is shown in Fig. 5(a),
45

 that displays the transport resistance, trr , that is the reciprocal to the 

electronic conductivity n  

1
 ntrr           (100) 

as further discussed below. Some authors have introduced additional exponents in the carrier 

density related to dc conductivity,
116

 but the accurate measurement of the transport resistance 

by IS
34,151

 shows that Eq. (99) based on the Boltzmann statistics of the free electrons is well 

satisfied in good quality cells. Indeed for obtaining meaningful voltage dependence of 

transport and recombination resistances a number of aspects of the experiment have to be 

carefully balanced, such as the possible bandshifts, or temperature changes of the redox 

potential.
39

 

The good behavior of electron conductivity according to the multiple transport model is, 

however, not conclusive about the dynamic effects of the carriers in extended states. One 

important consequence of the dominance of cn  is that the effect of traps on nD  should be 

removed, since 1L . As a  consequence, at high FV , nD  must saturate to 0D  and exhibit 

a constant value.
154

 Only a few results have been reported about these effects. Archana et al.
172

 

suggest that a band-edge type electron diffusion mechanism is observed in doped anatase 

mesoporous electrodes. Wang and Jennings reported recombination via the conduction 

band,
173

 which follows Eq. (49) by a recombination exponent 1 , as further commented 

below in the sections on recombination. This type of recombination mechanism has also been 
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observed by Hamann et al. for the redox couple [Co(Me2bpy)3]
3+/2+

.
148

 

 

12.  Diffusion-recombination in small signal methods 

We have discussed above how carrier density transport-kinetic equation is reduced to a 

linear form, with density dependent parameters, by the small perturbation method. Such 

approach can be applied also for the measurement of ac current with respect to ac voltage 

analysis at variable frequency  . The resulting impedance spectroscopy models for DSC have 

been presented in several works.
29,44,150,174,175

 In brief, the conservation equation (79) for the 

small perturbation of the carrier density, can be translated to the general expression of the 

diffusion impedance in a film of thickness L  

     2/12/1
)(coth)()( trtr rLrZ    (101)  

In Eq. (101) trr  is the resistivity of the material (or distributed transport impedance, per 

unit length per area)  

LRpAr trtr /)1(    (102) 

where trR  is the macroscopic transport resistance of the film of geometric area A  and p  is 

porosity. trr  is related to electron conductivity as indicated in Eq. (99). The diffusion 

impedance of Eq. (101) can be represented as a distributed equivalent circuit, the transmission 

line of Fig. 15(a), that is closely connected to a class of transmission lines for porous 

electrodes as shown in Fig. 15(b).  

The case of interest for DSC and solar cells in general is the diffusion-recombination 

impedance with a reflecting boundary condition at the end of the electron transport channel. 

The model is shown in Fig. 15(c). Recombination process introduces a recombination 

resistance in parallel with the chemical capacitance in the transmission line.
44

 The transverse 

 -impedance in Eq. (101) in this case is 
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The characteristic frequency of recombination is related to electron lifetime n  as 

1
 nrec   (104) 

The distributed recombination resistance is given by  
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Here C  is the chemical capacitance. recR
 
is the macroscopic recombination resistance of 

the layer, that was introduced in Eq. (20) and will be the object of detailed analysis in the 

remaining sections of this article. The impedance model for diffusion-recombination adopts 

the form
44
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The transmission line circuit and impedance spectra of the model of Eq. (106) are shown in 

Fig. 16. By fitting the spectra to this model we can obtain:  

(a) the electron conductivity, Eq. (99)  

(b) the chemical diffusion coefficient, nD ,  
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This last equation corresponds to the generalized Einstein relation given in Eq. (90). 

(c) the electron lifetime, that is obtained as follows 

 CRrecrecn  1
 (108) 

The impedance model of Eq. (106) produces different types of spectra, as shown in Fig. 16. 

The shape of the impedance spectra is determined by the factor relating the characteristic 

frequencies, which can be expressed in several alternative ways
44
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Note that the diffusion length can be obtained from the measured resistances by the 

expression 
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The spectrum for rectr RR  , is shown in Fig. 16(b)-(c). It corresponds to a long diffusion 

length LLn   and indicates efficient charge collection in a DSC at moderate forward bias.
16

 

The opposite case, for strong recombination, requires rectr RR  , and it is shown in Fig. 

16(e). The intermediate spectrum for rectr RR 
 
is shown in Fig. 16(d). These impedance 

spectra have been widely described and utilized in experiments.
16,34,37,39,43,45,151,156
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13. General picture of recombination in a DSC  

In the discussion of the fundamental diode model, we have already emphasized the 

outstanding importance of recombination of photogenerated electrons for the energy 

conversion properties of the DSC device. In practice, the DSC progress has been very much 

based on the development of better dyes and coadsorbants. Indeed current collection, as 

generated by dye injection, is not generally a major limitation, and charge collection 

efficiencies close to unity are routinely obtained in good quality devices. A major problem of 

the DSC is the loss of voltage, from the dye bandgap about 2 eV to the actual ocV  of less than 

1 V.
92

 Fig. 7 shows the dramatic loss of voltage that occurs due to the deep position of the dye 

ground state with respect to the redox level of the electrolyte. Optimization of DSC requires to 

govern the position of the TiO2 conduction band, as high as possible, while not hindering 

injection from the dye, and most of all, controlling the recombination rate.
11

  

These features occurring at the semiconductor/dye/hole conductor system can be analyzed 

using a variety of methods.
60,176

 We have already commented on how to measure 

recombination properties, via electrons lifetimes and recombination resistance, among a 

variety of available methods.
126,127,155,177-179

 In the final sections of this chapter we aim to 

provide deeper insight into the fundamental mechanisms of recombination in a DSC. 

Starting from our general knowledge of electronic states, and fundamental properties of 

charge transfer at semiconductor-electrolyte interface, reviewed in the next section, a general 

model of recombination by electron transfer from TiO2 to a redox electrolyte has been 

developed,
16,50,180,181

 based on the scheme of Fig. 12; this model has been well validated by 

experimental results, as commented later on. We will focus here in the recombination towards 

a well defined redox species in a redox electrolyte, while other situations, such as the organic 

hole conductor or the solid absorbers, will not be specifically discussed and we refer the 

reader to the literature.
40,102,176

  

 

14. Fundamental factors determining rates of electron transfer 

When an electron is transferred from one reactant in a solution to another, for example, 

from a Ru (NH3)6
2+

 ion in water to a Fe (H2O)6
3+

 ion in the same solvent, the electron cannot 

simply jump from one ion to the other, because the solvent environment, namely, the 

ensemble of orientations of the surrounding solvent molecules after the jump, would not be 

appropriate to the new ionic charges, and so just after the electron transfer, the system would 

have a much higher total energy than before the jump.  The atomic nuclei move so slowly that 
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they do not have time to adapt their positions or velocities to the new charges during the 

electron jump (Franck-Condon principle), and so the transfer would violate the law of 

conversation of energy.  

Instead, as discussed in a 1956 article on the theory of electron transfer reactions,
182

 before 

an electron can jump from one reactant to the other, there first has to be a “reorganization” of 

the solvent molecules around the ions. Similarly, there also has to be a “reorganization” of 

relevant vibrational bond lengths in each reactant, and sometimes in the bond angles.
183,184

 

After a suitable configurational reorganization of the relevant coordinates has been achieved 

such that the total energy of the entire system before and after the electron jump is unchanged, 

energy is conserved in the jump. This energy is the sum of all contributions to the potential 

energy and kinetic energy of the molecules and ions present. The reorganization involves 

suitable changes in the relevant orientations and in the bond lengths and often in the bond 

angles of the species present prior to the electron transfer. There are, thus, fluctuations in all 

coordinates of the reactants and their surroundings, ~10
24

 coordinates for a mole of solvent.    

If the system has N position and momentum coordinates, where N ~10
24

, the transition state 

for an electron transfer reaction occupies an N-1 dimensional “hypersurface” in this N-

dimensional space. Accordingly, in the reacting system when the reacting pair and its 

surroundings cross that N-1 dimensional hypersurface, they  form the reaction products, 

according to transition state theory. We treated this reorganization for electron transfer 

between a pair of reactants in a solvent, 
182

 and subsequently for an electron transfer at metal 

electrodes,
184-188

 electron transfer at semiconductor electrodes,
187,189,190

 and electron transfer 

across liquid-liquid interfaces.
191

 In each case, there is a reorganization of the orientations of 

the solvent molecules, of reactant bond lengths, and sometimes of their bond angles.
183-188,192-

194
  

The theoretical expressions for these different experimentally studied systems are given in 

the following, where  krate denotes the reaction rate constant
185

     

TkG
rate

BAek
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where 
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 (114) 
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and 

i  0  (115) 

In the case where the electron transfer is to or from an electrode, Eq. (114) is replaced by 

184,185,193
 

rp
qR wwqzG  0

 (116) 

In Eq. (114) rw is the “work” (free energy change) required to bring the reactants from a 

large distance (sufficiently large that they do not interact at that distance), to a separation 

distance R, or in the case of an electron transfer with an electrode (Eq. 115), to a distance R 

from its electrostatic image in the electrode (twice the distance between the center of charge of 

the reactant and the electrode surface) and pw  is the corresponding quantity for the products. 

The  0G  in Eq. (114) is the “standard” free energy of reaction in the existing solvent 

medium. The m in Eq. (112) can actually serve as a reaction coordinate, being 0 for the 

reactants and -1 for the products and given  by Eq. (113) for the transition state. 

In Eq. (116) qz  is z  ( z ) for the transfer of z  electrons (holes), q  is positive 

elementary charge, and   is the overpotential of the electrode, that is defined as 0 UU . 

Here U  is the electrode  potential in the electrochemical convention (note that with respect to 

the voltage V  defined in previous sections, VU   ) and 
0U  is the “standard” reduction 

potential of the electrode for the transfer of electron from the electrode to the reactant in the 

prevailing solvent. For example if the metal electrode is biased negatively to promote a one 

electron transfer electrochemical reduction reaction, then 0 , 1z . The “work” 

separating products from reactants is q , so that 00  RG . 

The units of A in Eq. (111) depend on the geometry, for example in an electron transfer in 

solution, the units depend on whether or not the reactants are bound together and in the 

electrode case, on whether the reactant is or is not bound to the electrode. In the unbound case, 

A could be written as a relevant “collision frequency” Z multiplied by  , an electronic 

transition probability of electron transfer in the transition state, being about or near unity for 

an “adiabatic” or a “nearly adiabatic” electron transfer, and substantially less than unity for a 

highly “nonadiabatic” electron transfer. In a nonadiabatic electron transfer the electronic 

coupling of the reactant wave functions is small and so the probability of electron transfer 

when the system reaches the intersection of the reactant and the product potential energy 

surfaces is also small. In contrast, in an adiabatic electron transfer the electronic coupling 

element coupling the reactant and the product wave functions near or at the intersection is 



  36 

substantial and essentially every system reaching that intersection region undergoes an 

electron transfer. An approximate expression for the transition probability is given by the 

famous 1932 Landau-Zener expression.
195,196

 A recent survey and analysis of these adiabatic-

nonadiabatic effects is given in ref. 
197

. An example of a nonadiabatic electron transfer to or 

from an electrode is an electron transfer across a layer of parallel long chain of CH2’s bridging 

groups in thioalkanes, each bound via its sulfide atom to a gold electrode and at the other end 

of the chain bound, in a classic experiment, to a ferrocene.
198

  We return to the nonadiabatic 

case later.  

The reorganization effects relate the thermodynamic free energy difference 0G  between 

reactants and products, to the transition state activation free energy *G  that actually 

determines the rate constant in Eq. (111). Combining Eqs. (112)-(114) we obtain the form of 

the rate constant for electron  transfer 
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The rate constant for both the nonadiabatic and adiabatic electron transfers critically 

depends on the reorganization energy   and on a prefactor A  whose value depends on the 

“nonadiabaticity“ of the electron transfer. We describe the properties of both parameters in 

turn. 

The 0  
in Eq. (115) describes the reorganization energy of the dielectric medium (the 

solvent and, in the semiconductor electrode case, also the solid).  The i  in Eq. (115) arises 

from the change in equilibrium values of vibrational coordinates of the reactants, including, in 

the semiconductor case, any of its relevant vibrational coordinates. For example, if the 

reactant(s) undergoes a change iq  in the equilibrium value of some collective coordinate, a 

“normal coordinate” of a reactant, and if r
jk  and 

p
jk  are the “force constants” of that normal 

mode for the reactant and for the product, respectively, then classically
184
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where jq  is the change in the jth normal mode coordinate, normal mode because there are 

no cross-terms between the different js in Eq. (118). Some ions, such as Ru(NH3)6
2+ 

+ 

Ru(NH3)6
3+

 undergoing electron transfer
 
have a small jq  while some others, such as the 

Fe(H2O)6 
2+

 + Fe(H2O)6
3+

 have a larger jq  and hence a larger i . The magnitude of these 

quantities is understood by electronic structure arguments. In the ions cited above the largest 

contributor to jq  comes from the symmetric stretching (“breathing”) coordinate of the 
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coordination shell of a reactant. 

For an electron transfer reaction between two reactants in solution a dielectric continuum 

treatment for the reorganization energy 0  gave 
182
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where e  is the charged transferred, the two ia ’s are the radii of the two reactants, op  is the 

optical dielectric constant (square of the refractive index) of the solvent, and s  is the static 

dielectric constant.   

For electron transfer at a metal electrode, 0  is given, instead, by
184,185
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where R is the distance between the center of charge of the ion and its electrostatic image in 

the electrode. 

For a semiconductor electrode, the expression for 0  is a little more complex, since now 

there is also a reorganization in the semiconductor electrode itself. The 0  
is given by

189,190,199
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The 0  
for electron transfer across the interface of two liquids is more complex, since there 

are now two media and two reactants. The 0  for this case is given in Ref. 
191

, omitted here 

since the present main focus is not on electron transfer across a liquid-liquid interface. 

The simplest type of electron transfer reaction is the self-exchange reaction, for example, 

the transfer of an electron from an Fe(H2O)6 
2+

 to an Fe(H2O)6
3+

. The 0G  in Eq. (114) is 

now zero, rw  and pw  are equal, and 21 aa  . This class of reactions (known in the literature 

as “self exchange” or “isotopic exchange” reactions) is the simplest class of reactions in all of 

chemistry.  In a simple electron transfer, no chemical bonds are broken or are formed.  The m 

in Eqs. (112) and (113) is now -1/2.  Apart from rw  and pw  in Eqs. (114) and (116), the free 

energy barrier to reaction *G  is 4/ . 

One sees from Eq. (119) that the smaller the radii ia  of the reactants the larger is 0 .  

Small ions like Fe
2
 have a larger 0  than large ions such as Ru(bpy)3

2+
. A physical 

interpretation is clear:  the smaller the radii ia  the larger the orientating force of the ionic 

charges on the nearby solvent molecules, and so the greater the difference of the ion-polar 
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solvent interaction before and after electron transfer, and so the larger is the reorganization 

energy 0 . The role of the separation distance R that appears in Eqs. (119) - (121) is also 

clear. When the two ions in solution are close to each other [Eq. (119)], or when an ion 

approaches a metal electrode [Eq. (120)], or a semiconductor electrode [Eq. (121)], that is, 

when R in each case is smaller, the reorganization energy 0  is smaller. This effect is readily 

understood in physical terms: When R is smaller, solvent molecules at every point in the 

system see less of a change in the electric field acting on them, comparing before and after the 

electron transfer. These two different fields are the field created by the reactant charges and 

the field created by product charges. Indeed, when the separation distance R of the reactants is 

small, distant solvent molecules hardly see a change of electric field accompanying the 

electron transfer.  In the case of a charge near an electrode, there is only one ion experiencing 

that change of electric field, and in that case the image charge tends to nullify the field of the 

ionic charge, and the nullifying effect is larger the smaller the R.  

One also sees that when the solvent is nonpolar, that is when ops   , the solvent 

contribution to 0  arising from the orientational and vibrational part of its dielectric 

polarization disappears. So 0  is the smaller the less polar the medium. There may also be 

specific solvent effects, absent in a dielectric continuum treatment but present in a molecular 

treatment of the solvent.   

There are various estimates one can make for A in Eq. (111). For example, if the reaction is 

between two reactants in solution, and if they are linked together or in a precursor complex, 

then A has units of a first-order rate constant sec
-1

. For a nonadiabatic reaction (weak 

electronic coupling element) it can be written as, e.g., 
194

 and references cited therein, 

  2/1

2

4

2

Tk

H
A

B




  (122) 

where H  is the electronic matrix element coupling the two reactants. One approximation for 

the latter for a coupling bridge of length R is, see e.g., 
194

 and references cited therein, 

sec/10132 RbeH


  (123) 

where b  depends on the nature of the bridge between the reactants. It is about 0.1 nm
-1

 for a 

chain of CH2 groups and much smaller for a link of conjugated units. Estimates have been 

made for various systems and are available from interpretations of experimental data. 

For a nonadiabatic electron transfer to or from an electrode, denoting by ε an energy state 

of the electrode, the first-order rate constant krate is given by 
186,187
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where )(* G  is, apart from the work terms (if the reactant is brought from infinity), given 

by 
184

 for the case of transfer from the metal electrode, 

    
 






4
)(*

2

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qz

G
q

     (125) 

)(f  is the Fermi-Dirac distribution function for the probability that a state  k in the electrode 

with an energy )(k  is occupied, and 
2

)(H  is an electron wave number k-weighted 

interaction coupling element,
186,187

 

     )()(
232

kkAHkdH     (126) 

where kAH  is the electronic matrix element coupling the reactant A and a state k of the 

electrode, and δ is the Dirac delta function. 

Often for depicting the energetics of chemical reactions one plots some quantity such as the 

potential energy or free energy along a reaction coordinate. When a reaction involves a 

breaking of one bond and forming another a commonly used reaction coordinate is some 

linear combination of the two bond lengths. In the present case we have an overwhelmingly 

large number of relevant coordinates and even, in a dielectric continuum model, an infinite 

number of relevant coordinates. So in this case a quite different type of reaction coordinate is 

needed. One possibility is to introduce a linear combination of the equilibrium values for the 

reactants and for the products and to plot various quantities as a function of that coordinate. 

For example, for a vibrational coordinate qj one could introduce a reaction coordinate x, via   

qj (x) =  qj
r
 + x(q

p
-qj

r
) and for a vectorial quantity Pu(r) related to the orientation-vibrational 

dielectric polarization of the solvent at each point r of the system and introduced in the 1956 

article,
182

 one would write  Pu(r,n) = Pu
r
(r) + x[Pu

p
(r) - Pu

r 
(r)], where the Pu(r)’s denote the 

equilibrium value of that quantity when the charges are those of the reactants (superscript r) 

and when they are those of the products (superscript p).   

In terms of this reaction coordinate x the free energy of the reactants and surroundings, 

relative to their initial value, )(* xG  is a function of a reaction coordinate x, given by 

2)(* xwxG rr   (127) 

Along this curve for the reactant free energy versus x, x =0 corresponds to the reactants but 
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in surroundings appropriate to the reactant charges, x = 1 correspond to the products but in 

surroundings appropriate to the product charges, and x = -m where m is given by Eq. (113) 

corresponds to the transition state. The free energy for the products relative to their initial 

configuration is given by        

  2
1)(* xwxG

pp   (128) 

A plot of the free energy changes is given in Figure 17. R denotes the free energy curve 

given by Eq. (127) and P denotes the curve given by Eq. (128). The difference in vertical 

heights of the bottoms of the two wells is '0
RG , the “standard” free energy of reaction in the 

prevailing medium at the separation distance R and contains all three terms in Eq. (114). 

Reaction proceeds via fluctuations of all the coordinates, starting from 0x   on the R curve, 

transitioning to the P curve at the intersection, and proceeding on the P curve to the region at x 

= 1. 

When instead one uses a purely statistical mechanical approach, and perhaps with a view to 

also do computer simulations of the free energy curves, a reaction coordinate grounded in 

statistical mechanics is needed. One introduced in 
183

, and later elaborated in 
184

 is an energy 

difference coordinate. The potential energy of all particles in the reacting system U
r
 is a 

function of all the coordinates, whose totality is denoted by Q and written as Ur (Q). 

Similarly, the reaction products and their environment have a potential energy function 

UP (Q) . The potential energy difference )()( QQ
rr UU  , a function of the N coordinates, has 

a fixed value on an N=1 dimensional surface in the N-dimensional space and so can be used 

as a reaction coordinate in a statistical mechanical treatment of the electron transfer, as in 

183,184
. One can calculate a free energy of the system with the reactant charges and a free 

energy of a system with the product charges, as a function of that coordinate. The free energy 

plots for the reactant and for the products would look the same as in Fig. 17. 

Some of the factors discussed earlier in this section can be seen in Fig. 17. When the bond 

length change from reactants to products is less, it corresponds to shifting the two parabolas in 

Fig. 17 closer horizontally, so reducing the height of the intersection. Similarly when the radii 

of the reactants are larger the difference in ion-solvent interaction before and after the electron 

transfer is less and again corresponds to shifting the curves horizontally closer together and so 

reduces the height of the intersection. When because of a more favorable standard free energy 

of reaction, i.e., more negative or more favorable standard potential the P curve in the Figure 

is shifted vertically downward relative to the R curve, the free energy barrier is smaller for the 
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system depicted by the Figure. 

 

15. Carrier transfer at semiconductor/electrolyte interface 

The mechanism of charge transfer that constitutes recombination in a DSC can be 

formulated as a product of three quantities: the electron density, the concentration of the 

acceptor (the oxidized half of the redox electrolyte), oxc , and the probability of single transfer 

event el , that is described by the electron transfer model of the previous section, as shown in 

Fig. 12(a). Due to the disorder in the energy axis of the metal oxide, we have a variety of 

possible electronic channels that constitute parallel recombination mechanisms, as indicated in 

Fig. 12(b).  

For the direct charge transfer of conduction band electrons, we have the recombination rate 

given by 

 0)( ccoxc
cb
elcb nncEU   (129) 

This formula is also expressed as 

  cb
oxcccb ennU 0  (130) 

where 

)( c
cb
elox

cb
ox Ece   (131) 

The model of Eq. (129) leads to a linear recombination rate, as stated in Eq. (51). In 

addition, the charge transfer from the metal oxide may occur via a distribution of surface 

states, as shown in Fig. 12(b), and the recombination rate has the form 

dEEeEfEgEdU ss
oxssssss )()()()(   (132) 

where )(Egss  is the density of surface states, )(Ef ss  is the fractional occupancy, and 

)()( EcEe ss
elox

ss
ox   (133) 

The total rate of recombination via surface states is 


c

redox

E

E

ss
elssssoxss dEEEfEgcU )()()(   (134) 

In the situation of Fig. 12(a), the starting state of the electron in the semiconductor surface 

has energy E , while the free energy of electrons in the electrolyte is redoxE . The probability 

for an elementary electron transfer event is given in Ref. 
186

. For a planar interface 
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EEG redox   (137) 

In Eq. (135) scl (cm
-1

) is the effective coupling length between the oxidized redox ion and 

the electrode, sc (cm
-1

) is the coupling attenuation factor as in Eq. (123), and scd  (cm
-3

) is 

the density of the atoms that contribute to the density of states of either the surface states or 

the band of concern.
200,201

 np (cm) is a volume to area ratio in the nanoparticulate 

semiconductor electrode. 

The electron transfer rate is therefore given by the following formula 
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where  3/13/2
0 )/6(/  scnpscsc dlAk   being A that in Eq. (122), so that 0k  is measured 

in units cm
3
 s

-1
. EEredox   is negative in the situation of Fig. 12(a). Eq. (138) applies to each 

of the recombination channels indicated in Fig. 12(b), according to the actual distribution of 

surface states that allow the electron transfer to the oxidized ion at the semiconductor surface.  

It should be remarked that when the energy difference redoxEE   becomes larger than the 

reorganization energy  , as for example for the transference from the conduction band states 

in Fig. 12(b), the rate of charge transfer decreases (the “Marcus inverted region”). This 

reduction of the rate at high energy difference has an outstanding importance in biological 

systems for sunlight energy conversion in order to avoid recombination of spatially separated 

charges. 

We have discussed in section 7 that differences in the parameter kj0   could be attributed to 

changes of surface blocking, catalysis of charge transfer, etc. It should be desirable to pinpoint 

specific causes for the changes of recombination rates. As mentioned before, the usual shape 

of the recombination resistance dependence on voltage FV  is an exponential shape, Eq. (21), 

that relates to the phenomenological nonlinear recombination model of Eq. (13). Usually it is 

observed that 75.06.0  , as mentioned before, but one report
173

 has obtained the value 

1 , from the diode quality factor. This result corresponds to cells in which the conduction 

band edge was extremely low, so that conduction band transfer of Eq. (129), becomes the 
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dominant mechanism. This is an exception, however, and one important task of the model is 

to explain the normal values 75.06.0  , by a combination of charge transfer pathways, as 

indicated in Eq. (134). This result will be demonstrated in section 16. The combined 

measurement of capacitance, recombination resistance, etc., and application of the 

recombination model, has allowed researchers to provide a very detailed picture of energetics 

and kinetics of recombination. 

A number of studies have discussed the Marcus model in DSC.
39,179,201-206

 In general, 

however, detailed insight to the basic charge transfer mechanisms has been prevented by the 

exceedingly complex reaction rate steps of the iodide/triodide redox couple, that shows very 

special characteristics, in which even the nature of the predominant electron acceptor is not 

clear yet, since it could be either via reduction of  -
3I  or free iodine 2I .

207-211
 An example of 

the study of recombination is shown in Fig. 14, in which the electron lifetime is measured for 

a series of DSCs with triphenylamine (TPA) dyes in which the conjugation length is varied.
155

 

Larger dyes showed enhanced electron recombination while reducing the dye size increases 

surface blocking of the dye layer and hence the electron lifetime. It was suggested an 

interaction between the dye molecular structure and -
3I  and/or 2I , that may be correlated to 

the increased polarizability of the larger TPA dyes. It is likely that dye-shuttle interaction
212

 

and a variety of reaction pathways associated to I/I-
3  prevents the successful application of 

outer sphere electron transfer in the Marcus model to this specific redox couple. Nonetheless it 

is also important to explain why this couple works so well in kinetic terms, i.e., why the 

injected electrons do not reduce -
3I  efficiently. Meyer et al.

213
 have applied the Marcus model 

to one electron reduction of -
3I   and conclude that electrons trapped in TiO2 react slowly with 

-
3I . A different and very promising approach, which provides access to specific fundamental 

quantities governing charge transfer rates in a DSC, is the utilization of outer sphere redox 

couples, since these allow the observation of the lifetime features associated to the Marcus 

model.
148,179

 These last results are reviewed in the next section. 

 

16. Recombination resistance and lifetime models 

In this section we aim to obtain the model calculation of the recombination flux, 

recombination resistance, and the electron lifetime, in a DSC, associated to the electron 

transfer by a combination of surface states that form an exponential distribution, with a DOS 

)(Egss , as shown in Fig. 12(b), and considering also the direct transfer from the conduction 

band.
16,50,52,180,181,206,214
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The current per unit macroscopic area of an electrode of thickness L  is 
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The calculation of recj  requires a stipulation of the surface states that are occupied. Since 

surface states exchange electrons both with the conduction band and the electrolyte, the 

statistics is more complex than in a bulk trap. The occupation of the surface states is 

determined by a demarcation level and in general it is not possible to define a Fermi 

level.
180,215

 For simplicity we assume here that the trapping-release rate is sufficiently fast, so 

that the surface state is in equilibrium with the transport states, and the occupancy of both is 

described by Fermi-Dirac distribution, with a single Fermi level. 

The recombination resistance is 

dV

Edj
AER Fnrec

Fn
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Applying the zero temperature limit of the Fermi-Dirac distribution, the following result is 

obtained
16
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Eq. (142) states that the reciprocal charge-transfer resistance is proportional to the product 

of the density of surface states at the Fermi level, and the probability of electron transfer from 

such states. The calculation of the recombination resistance involves a small displacement of 

the Fermi level that fills the surface states precisely at the Fermi level, hence the resistance 

detects only those states. In summary we have 

)()()( 1
Fn

ss
oxFn

ss
Fn

ss
rec EeECER   (143) 

The free carrier lifetime can now be calculated from Eq. (108), by selecting the capacitance 

just of those electron states that participate in charge transfer.
50,52

 Therefore 

ss
recf CR    (144) 

where  

)(2
Fnss

ss EgLAqC   (145) 
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is the chemical capacitance of the surface states. Using Eq. (143) we get 
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The free carrier lifetime is inversely proportional to the fundamental charge transfer rate at 

the Fermi level. If we consider also bulk traps, described by the DOS )(Egb , and a chemical 

capacitance 

)(2
Fnb

b EgLAqC   (147) 

then the measured lifetime contains a trapping factor as shown in Eq. (71), and we obtain the 

expression  
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If both bulk traps and surface states consist on an exponential distribution with a similar 

0T ,  and number density sN  for surface states  and LN  for total number of traps, the trapping 

factor is just a numerical constant that does not influence the voltage dependence of the 

lifetime. Eq. (148) can therefore be stated as function of voltage as follows 
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where 
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oxBs

L
n

kcTkN
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0

1
   (150) 

There is no functional difference between n  and f . The significance of this result must 

be emphasized. In a DSC we measure recombination resistance, chemical capacitance, 

electron lifetime. But when we wish to study fundamental charge transfer questions we really 

want to determine el . Eq. (145) states that we have access to the electron transfer probability. 

The model of Eq. (149) is illustrated in Fig. 18.
50

 First Fig. 18(a) shows the electron 

transfer probability according to Marcus model as stated in Eq. (138). Here qV /  is the 

point of maximum charge transfer rate, where activationless charge transfer occurs, and the 

Marcus inverted region occurs when qV / . In the Fig. 18(b) we observe the reciprocal 

product of chemical capacitance and transfer rate, which is the recombination resistance of Eq. 

(142) that is further discussed below. The lifetime is plotted in Fig. 18(c). Note that the carrier 

transference at the interface through the exponential distribution of surface states corresponds 
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to the curved region at low voltage. The lifetime has a parabolic shape (semilogarithmic), as it 

follows exactly the Marcus rate el  dependence on the Fermi level.
50

 

The expression (148) can be generalized very easily to include additional parallel 

recombination pathways. For example we can incorporate the direct transference from the 

conduction band, that has a recombination resistance 
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 We observe that the denominator of Eq. (148) is the reciprocal of the total recombination 

resistance, Eq. (151), and the numerator is the total chemical capacitance. Since the reciprocal 

parallel resistances are added to obtain a total resistance, we have more generally
50
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Now according to Eq. (152) there are three regions in the lifetime plot of Fig. 18(c). The 

curved region at low voltage corresponds to the combination of the exponential surface state 

distribution, and the curvature of the Marcus transfer model indicated in Fig. 18(a). It should 

be remarked that the minimum of the lifetime occurs at the same point of the maximum 

charge transference. A second region is due to charge transfer via the conduction band, in 

which f  is independent of voltage, and the lifetime decreases at increasing voltage due to 

the trapping factors indicated in Eq. (71). Finally conduction band electrons become dominant 

when the Fermi level approaches the conduction band, and here 1L  in Eq. (71) so that 

fn    is a constant. 

Alternatively we may analyze the recombination resistance dependence on voltage. The 

resistance in Eq. (142) takes the form
16
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where 
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Eq. (153) can also be expressed as 

 












 





0

22

0

)1(

4
exp)(

Tk

EE

Tk

VVq
RER

B

redoxc

B
Fnrec






  (155) 



  47 

where the following constant has been introduced:  
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Fig. 21(a) shows the characteristic probability of electron transfer according to Marcus 

model, for different values of the reorganization energy. According to Eq. (155) the resistance 

dependence on voltage, shown in Fig. 21(b), consists in a Gaussian function, an inverted 

parabola (semilogarithmic), centered at the energy V  indicated in Eq. (156). The minimum 

of the parabola of recR , is shifted positive in the scale of the Fermi level, with respect to the 

point of maximum charge transfer, at the voltage q/ , by an amount 0/22 TT  , as it is 

illustrated in Fig. 21(b). The displacement of the minimum of the resistance with respect to 

that of el   is due to the product of the chemical capacitance of the exponential distribution. 

In previous sections we have remarked that recR  usually shows in DSC an exponential 

dependence on voltage, as stated in Eq. (21). While the result in Eq. (155) produces a 

parabolic shape, we can observe in Fig. 19(b) that for a large  , the shape observed at 

V  is a straight line. Thus the model of Eq. (21) can be obtained as a limit case of Eq. 

(155). Let us write the recombination resistance in the form 
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02
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T
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When V  , Eq. (155) reduces to the exponential dependence that was suggested above 

as a phenomenological approach. Furthermore, based on the microscopic model, the 

parameter   accepts the form (159).
16

  

Summarizing the model results, we obtain that despite many simplifications the model of 

Fig. 12(b) provides a detailed description of the lifetime and recombination resistance, 

quantities that can be measured as a function of the voltage in a DSC. The main feature is that 

the parabola in the exponential of the Marcus model electron transfer rate between the 

semiconductor surface and redox acceptor in the electrolyte, translates in curvatures of n  and 

recR . These quantities have been reported in hundreds of publications, but usually a linear 
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behavior in semilogarithmic plot is observed, as reported in representative measurements of 

Figs. 4, 5 and 14. The absence of curvature could be evidence for a large reorganization 

energy in the DSC with I/I-
3  redox couples, and the value eV 1  is often used.

213
 Simpler 

explanation is that the outer sphere transfer model is not satisfied because this couple causes a 

complex reaction scheme.
207-209

 It is nonetheless deceptive that all the microscopic complexity 

of charge transference between TiO2 and the redox couple, as described in Fig. 12(b), ends up 

in just two parameters for recombination, kj0  and  . It is really highly desirable to obtain 

and explain with theory more structured data sets. Some early results
50

 showed a curvature for 

the lifetime in I/I-
3  redox, however it was suggested that the recombination from the 

substrate would produce such results.
216

 This problem has been, however, controlled by 

employing suitable TiO2 blocking layers on top of the conducting substrate. Recently, very 

promising results have been obtained for the understanding of recombination in a DSC by 

Hamann et al.
148

 They used outer-sphere redox shuttles  [Co(Me2bpy)3]
3+/2+

 and [Ru(bpy) 

2(MeIm)2]
3+/2+

 that should follow well Marcus model and they obtain the results in Fig. 20. 

These results can be explained by a combination of charge transfer mechanisms. The 

remarkable point is that the curved lifetime, devoid of any substrate effects, is well observed 

in the case of [Ru(bpy) 2(MeIm)2]
3+/2+

, while [Co(Me2bpy)3]
3+/2+

 has a much more negative 

redox potential and provides the usual exponential dependence. This observation allows to 

obtain detailed information about the physical characteristics of charge transfer,
179

 such as the 

reorganization energy that has been indicated in Fig. 20(b). 

Further investigation of this type is required, to confirm the validity of the model of Eq. 

(155), getting closer to a microscopic picture of the events occurring at the 

semiconductor/electrolyte interface in a DSC, which  may finally serve also for the 

characterization of more complex mechanisms such as the redox couple  I/I-
3  or the 

recombination in solid absorbers and organic hole conductors.
40,41,102

 

 

17. Conclusion 

Modelling of the dye solar cell has been very much developed in the last decade, until 

establishing very detailed models that allow to extract significant information about the device 

and materials properties and on the operation mechanisms. Modelling the device is quite 

challenging because of the necessity to deal with a large number of features: a combination of 

phases, energy disorder in low temperature processed semiconductor networks, and a 

multiplicity of interfaces. A variety of experimental techniques have been developed that are 
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up to this task, and the convergence of independent techniques speaks about the reality of the 

concepts that have been proposed. Especially important are those techniques that employ 

small perturbation methods, since they allow linearization to quantities that depend on local 

Fermi level, and therefore that are well defined in the framework of a highly nonlinear system. 

This is why we have emphasized quantities such as electron lifetime in their different 

meanings. Any quantity that is well defined physically can be checked by different 

experimental and computational methods and it can also be related to other quantities, if 

necessary. In contrast, a quantity that is linked to one particular measurement may be practical 

in some respects but cannot enter the larger conceptual pool that broadens the knowledge 

about these systems.  

The confirmation that jump and chemical diffusion coefficient concepts can be also 

realized for the lifetimes has closed a general interpretation of transport that implements the 

basic multiple trapping model to a broad set of measurements and stochastic simulation. This 

theory can be considered very advanced now. The main challenge is to obtain a more detailed 

theoretical and experimental understanding of the details of interfacial carrier transfer. So far 

most of the works prefer to study a comparison of several samples that usually show too 

similar behavior. The use of model systems that allow to isolate specific experimental 

behavior concerning charge transfer, should be highly recommended, and can bring new light 

to the implementation of charge transfer in nanostructured systems, and a better control of 

recombination in these solar cells. 
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Fig. 1. Energy diagrams of a DSC, formed by several (spatially mixed) materials that 

function, as the absorber (indicating vibronic levels), the electron (ETM) and hole 

(HTM) transport materials, or redox electrolyte. Carriers relax to the conduction band of 

the ETM, CE , and the valence band ( VE ) of the HTM, producing a splitting of the 

quasi-Fermi levels of electrons ( FnE ) in the ETM and holes ( FpE ) in the HTM, or 

redox level in electrolyte redoxE . FnE  is the Fermi level in the semiconductor when the 

TiO2 photoelectrode is at the potential V . (a) The arrows indicate the following 

processes: (1) absorption of light, generating electrons and holes in the absorber. (2) 

Charge separation: Injection from the absorber to the ETM and HTM. (b) Mesoporous 

structure that forms the ETM in a DSC. It is formed by interconnected particles that 
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allow the transport of electrons via extended states. The potential V  at the substrate 

fixes the electron density at the edge of the nanostructured semiconductor. Injected 

electrons at the contact have a probability to diffuse and recombine by charge transfer to 

the acceptor species in the HTM, so that the effective penetration in the layer is 

governed by the diffusion length nL . (c) In this case transport in the extended level is 

coupled with trapping and release from localized states in the bandgap. The right contact 

is reflecting to electrons. If the diffusion length is long with respect to film thickness 

then the concentration is nearly homogeneous. 

 

 

 

 

 

 

Fig. 2. Energy diagram of semiconductor layer with electron selective contact at the left 

side and hole selective contact at the right side. Under illumination, absorbed photons 

promote excitation of the absorber creating an electron-hole pair. Charge separation 

produces an electron in the ETM conduction band and a hole in the transport level of the 

HTM. (a) The diagram indicates the balance of radiation in the ideal diode. The diode 

receives thermal background radiation, and emits photons by radiative recombination. 

(b) Processes of carrier generation, recombination and extraction that lead to the 

different fluxes indicated in (a). 
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Fig. 3. Absorption coefficient of N719 and two porphyrin dyes, in comparison with the spectral 

photon flux, and the corresponding photovoltaic performance and IPCE. Adapted from 
1
 by 

courtesy of Lu-Lin Li and Eric W. Diau. 
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Fig. 4. (a) Current density-voltage curves of a set of DSCs with different electrolytes. 

Points are obtained from Impedance Spectroscopy measurements and lines by an 

integration procedure. (b) The current density-voltage curves with respect to Fermi level 

voltage FV , in which the voltage drop due to internal series resistance has been corrected. (c) 

Recombination resistance between the semiconductor and the acceptor species in the electrolyte. 

(d) Chemical capacitance of the TiO2. (e) The recombination resistance with respect to 

equivalent conduction band potential ecbV , in which the voltage FV is shifted so that all 

capacitances match to the same line. (f) The current density-voltage curves with respect to 

voltage ecbV . Adapted from 
2
 by courtesy of Sonia R. Raga and Fran Fabregat-Santiago. 
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Figure 5. Plots of distributed transport resistance (a), charge transfer resistance (b), 

electrode capacitance (c), and electron diffusion length (d) versus open-circuit 

photovoltage for a series of cells with average TiO2 layer thicknesses of 4 (circles), 8 

(downward triangles), 14 (squares), 16 (upward triangles), and 18 μm (diamonds). The 

dashed line in (a) is a fit with a slope of Tkq B/ 15.2 V
-1

, while the dashed line in (d) 

is just a guide to the eye. Adapted from 
3
 by courtesy of James Jennings and Qing 

Wang. 
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Fig. 6. Trapped carrier density profiles calculated from the steady-state continuity 

equation for open and short circuit conditions. 0,LN  = 10
19

 cm
−3

, 0T  = 1000 K, 0  = 

10
−5

 s, α = 500 cm−1, L  = 13 μm, diffusion length 0L  = 20 μm. Reproduced with 

permission from 
4
. 
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Figure 7. Energetic scheme of the components of a DSC. The position of the 

conduction band of TiO2 and the density of states (DOS) in the bandgap is indicated. 

Also shown is the photovoltage by difference of the Fermi level of electrons and the 

redox potential in the electrolyte. At the right are shown the redox potential of 

conventional hole conductors. In the center is shown ground and excited state of 

standard dyes. More accurately, the excited and ground state are spread over an energy 

interval. Energy differences are expressed in eV. 
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Fig. 8. Scheme showing electron accumulation in a nanocrystalline semiconductor 

electrode and the compensation by positive charge in the electrolyte to produce local 

electroneutrallity. The electrolyte may contain several species of anions, cations, redox 

molecules, as well molecules that have the role of modifying the surface to produce 

some beneficial effects. The energy diagram shows the change of electrons Fermi level 

that causes a photovoltage. 
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Figure 9. Energy diagram showing the contact of the nanocrystalline semiconductor 

electrode with the transparent conducting oxide (TCO) substrate, and the change of 

Fermi levels and the vacuum level under illumination, with respect to the dark 

equilibrium. cE  is the energy offset between the conduction band of the TiO2 and the 

transparent conducting oxide (TCO). 
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Figure 10. Upper panel: simulation of a current-voltage characteristic for a typical DSC 

(10 m of mesoporous TiO2/electrolyte, 50 m of pure electrolyte) with N719 dye. 

Lower panel: the density distribution (left) and current density (right) within the cell at 

at 737 mV (close to open-circuit condition). The left picture shows all the charged 

species in the system: electrons (free and trapped), iodide and triiodide, positive 

counter-ion. For the current density only the charged species which contribute to the 

total current are shown: free electrons, iodide and triiodide ions. Simulation performed 

using TiberCAD software, courtesy of Alessio Gagliardi and Aldo di Carlo. 
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Fig. 11. The schemes shows the characteristic distribution of electronic states in the 

metal oxide nanoparticulate framework of a DSC, and their role in different electronic 

processes. (a) The electronic states consist on the transport states in the conduction band 

level, cE , the localized states in the bandgap, which form an exponential distribution, 

and the surface states, whose energy distribution depends drastically on surface 

treatment. For an exponential distribution it is a good approximation to assume that 

localized states in the bandgap below the Fermi level are occupied and those above 

nearly empty. The occupation of the transport level is an important consideration as it 

gives rise to dc conductivity. The occupation of surface states depends on their charge 

transfer properties. (b) Electron displacement in transport states is interrupted by 

trapping and release processes. Trapping occurs mainly to unoccupied states above the 

Fermi level. Electrons are trapped in surface states from which charge transfer to 

acceptor species in solution occurs.  
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Fig. 12. Energy diagrams indicating recombination event in a DSC of electrons in TiO2 

semiconductor nanoparticle by transfer to the oxidized acceptor species of the redox 

couple in the electrolyte. On the left we show the bulk and surface of TiO2. cE  is the 

energy of the conduction band, 0FE  is the equilibrium Fermi level in the 

semiconductor, that initially is in equilibrium with the redox level in the electrolyte, 

FnE  is the Fermi level in the semiconductor when the TiO2 photoelectrode is at the 

potential FV . (a) Electron transfer from a surface state at the energy E  to an oxidized 

ion in electrolyte with probability el . (b) Model including the various channels for 

electron transfer between the surface of TiO2 nanoparticles and the oxidized species in 

the electrolyte (or hole conductor) in a DSC, namely, the transfer from extended states 

of the semiconductor conduction band with probability cb
el , and the transfer from a 

distribution of surface states, each with a probability )(Ess
el .
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Fig. 13. (a) Representation of the free and localized carrier density, as a function of 

potential (Fermi level position), for an exponential distribution of localized states 

( K 300T  , K 14000 T  , 71.0/5.0 0  TT ). (b) Electron lifetime, n , and the 

diffusion coefficient, nD , measured by small perturbation. (c) The free carrier lifetime, 

f , and diffusion length fnnn DDL  0 .
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Fig. 14. (Top) a series of triphenylamine (TPA)-based dyes where the linker 

conjugation is systematically increased with vinylene and thiophene units. (left) 

Electron lifetime as function of ocV  for DSCs based on L0 (squares) and L3 (circles) 

using three different I2 concentrations: (open symbols) 10 mM, (solid symbols) 50 mM, 

and (half-filled squares, gray circles in squares) 250 mM in the redox electrolyte. 

Electrolyte: 0.6 M TBAI, 0.1 M LiI, and 0.5 M 4-tert-butylpyridine with different I2 

concentrations in acetonitrile. (Right) Electron lifetimes for DSCs based on L0 (squares) 

and L3 (circles) at ocV = 0.5 V as a function of I2 concentration. Reproduced with 

permission.
5
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Fig. 15. (a) Transmission line model for the generalized diffusion impedance. (b) 

Transmission line model for a porous electrode. (c) Transmission line impedance model 

for diffusion-recombination in a mesoporous TiO2 electrode, including also interfacial 

impedances and mass transport impedance in electrolyte. 
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Fig. 16. Diffusion-recombination transmission line with reflecting boundary conditions 

(a). Simulation of the impedance with parameters    103
recR , F 105 6C  and 

increasing transport resistance, (b,c)   102
trR , (d)   103

trR , (e)   104
trR .  

Shown are the frequencies in Hz at selected points, the characteristic frequency of the 

low frequency arc (square point), related to the angular frequency 

 CRrecnrec /1
1



, and the low frequency resistance. The frequency (Hz) of the 

turnover from Warburg behaviour to low frequency recombination arc (square point), 

related to the characteristic frequency  CRtrd /1  is also shown. 
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Fig. 17. Free energy curves as a function of the reaction coordinate. 
´0

RG  indicates the 

“standard” change of free energy from reactants (R) to products (P) and is negative in 

the illustrated case in the Figure.
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Fig. 18. Recombination in a DSC according to Marcus model of charge transfer in an 

exponential distribution of surface states. Horizontal axis is the voltage or equivalently 

the electron Fermi level. (a) Probability of isoenergetic electron transfer to the 

electronic levels of oxidized species in solution. (b) The inverse of charge transfer rates, 

both for conduction band and surface trap transfer mechanisms, and total charge transfer 

resistance in thick line. These quantities correspond to the recombination resistance. (c) 

The lifetime, indicating the charge transfer mechanism that corresponds to each domain. 

Simulation parameters are: eV 35.0 , K 300T , m 10 L , 

redox  vs.eV 8.0 EEc  , -320 cm 108.6 cN ,  -320 cm 101bN , -318 cm 101sN ,  

K 60000  bs TT , -319 cm 103oxc , -1315)(
0 scm 105 

cb
k ,  

-1316)(
0 scm 105 

ss
k . Reproduced with permission.
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Fig. 19. Recombination in a DSC according to Marcus model of charge transfer in an 

exponential distribution of surface states. Horizontal axis is the voltage or equivalently 

the electron Fermi level. The position of the conduction band, 
CE , is indicated. Plots at 

different values of reorganization energy as indicated. (a) Electron transfer probability. 

(b) Electron recombination resistance. Simulation parameters are:, K 300T , 

K 12000 T , 25.0 , 75.0 , redox  vs.eV 1 EEc  , -1-37
0 scm 101 

ss
k , 

25
0 cm  10  
R . 
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Fig. 20. (a) Current density versus applied potential curves and (b) electron lifetimes in 

DSCs. The two data sets correspond to different redox carriers [Co(Me2bpy)3]
3+/2+

 (◊) 

and [Ru(bpy) 2(MeIm)2]
3+/2+

 (O) with redox potential indicated in (b). The 

reorganization energy   has been determined for the Co-based redox carrier and it is 

indicated in (b). Note that the potential V  is more negative when the Fermi level of 

electrons raises (electrochemical convention). Courtesy of Tom Hamann, adapted from 
7
, reproduced with permission. 
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