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ABSTRACT: The analysis of recombination in solar cells suggests in many cases the pres-
ence of trap-mediated recombination in the absorber. We present a theory of the recombina-
tion of electrons and holes, the Shockley−Read−Hall model, using the impedance spec-
troscopy technique. We derive the impedance functions and the corresponding equivalent
circuit model. After examining some cases of interest, we show that two semicircles can be
obtained in the recombination circuit only if the chemical capacitance associated with traps is
substantially larger than the chemical capacitances of free electrons and holes in the absorber
bands, while in the other cases the normal behavior of one recombination arc will be obtained.

■ INTRODUCTION

In the fundamental operation of a solar cell, the carriers generated
in the absorber are transported to distinct selective contacts for
electrons and holes.1 Ambipolar transport refers to the situation in
which electrons and holes of similar number and mobilities govern
the carrier transport in the semiconductor.2 A minority carrier
governs the behavior of most classes of solar cells, such as
crystalline silicon solar cells and dye-sensitized solar cells, while the
majority carrier is a spectator whose background density is not
altered by illumination or voltage injection except in very
extreme circumstances. However, recently some solar cells that
display acute ambipolar characteristics have come to the
forefront of research. These are the quantum dot film solar
cells3 and organometal halide perovskite solar cells.4,5 In both
classes of cells, it is likely that similar number of electrons and
holes are transported simultaneously in the same medium (the
absorber) toward macroscopic selective contacts. These
mechanisms are currently a matter of investigation. Given the
fact that the materials are prepared by low-temperature
processing methods, it is likely that the semiconductor absorber
contains abundant traps that will act as recombination centers
for electrons and holes.
Impedance spectroscopy (IS) is a method that has become

widely popular for the understanding of electronic processes
and technical characterization of solar cells.6 The theory of
diffusion-recombination impedance7 describes well the ac
dynamics of solar cells dominated by single carrier transport.
This technique has been extended to include the retarding
effects of disordered localized levels in the bandgap as well as
nonlinear recombination.8 This model has been widely used

for the description of dye-sensitized solar cells and organic
solar cells.6

In this paper, we develop the theory of impedance
spectroscopy of Shockley−Read−Hall (SRH) recombination
in ambipolar semiconductors. The general small perturbation
equivalent circuit model, leading to a transmission line, was first
calculated by Shockley9 and perfected by Sah10 but to our
knowledge the application to solar cells of the full impedance
model has not been derived in the previous literature. Here
we provide a schematic formulation of the main results and the
application of the general ac model to solar cells with explicit
derivation of the impedance function and a general analysis of
spectral characteristics.

■ THEORY

We formulate a model semiconductor solar cell as shown in
Figure 1. In this paper, we are mainly interested in disclosing
the recombination dynamics of electrons and holes that include
spectral characteristics of the separate carriers. Therefore here
we simplify all transport features and we assume that carrier
densities are homogeneous in the semiconductor layer of thick-
ness L. If only direct recombination of electrons and holes is
considered, the ac equivalent circuit (EC) consists on a single
arc with mixed parameters of both species.11 In order to ob-
tain more structured spectra, it is important to consider the
recombination via inner band gap traps in the SRH model, as
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shown in Figure 1. The circuit obtained in this work will be-
come part of a transmission line in the case in which transport
is considered explicitly.
In the present model, the conduction band lower edge with

effective density of states Nc is at the energy Ec. The upper edge
of the valence band with effective density of states Nv is at
energy Ev. The recombination center is at the energy Et with
density Nt. The density of electrons n can be related to the
electron Fermi level EFn according to the Boltzmann statistics
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where kBT is thermal energy and ni and Ei are respectively the
density and energy of the intrinsic level. Similarly for the hole
density p
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For the fractional occupancy of the trap, f, using a trap Fermi
level EFt, we obtain

=
+

=
+

−

+ −ε

f
e

e

1
1

1
1

E E k T

qV E E k T

( )/

( )/

t Ft B

i Ft B (3)

where qVε = Et − Ei, being q the positive elementary charge. It
is convenient to define the following voltages
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Therefore we can write the carrier densities as
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The carriers dynamics are determined by continuity
equations for the three species
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Here G is a generation rate and βk and εk are the capture and
release coefficients, respectively, between the trap and the
bands. jn and jp are the local electric current density of electrons
and holes, respectively. The detailed balance condition12

implies that
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The boundary conditions associated to ideal selective con-
tacts are

= = = =j x L j x( ) ( 0) 0n p (14)

Under the assumption that the active layer is homogeneous,
we can integrate eqs 10 and 11 as follows
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where jn = jn(x = 0) and jp = jp(x = L) are the injection (or
extraction) currents. Because the current at the boundaries is
taken by either carrier, we must have

= =j j jn p (17)

In steady state (indicated by overbar), all the quantities are
time independent (i.e., ∂yk̅/∂t = 0) and we find that the occupa-
tion of the trap is given by
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Thus the current can be stated as

̅ = ̅ − ̅j qL G U( )SRH (20)

where

β β
β β ε ε

̅ = ̅ ̅ −

̅ + ̅ + +
U N

np n p

n pSRH t n p
i i

n p n p (21)

is the standard SRH recombination rate.

Figure 1. Ambipolar solar cell model with two selective contacts that
allow injection and extraction of electrons and holes at either side and
SRH recombination via a trap state in the bandgap.
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By the structure of the solar cell device, the applied voltage or
photovoltage is related to the above-defined voltages as

= −V V Vapp n p (22)

The determination of the separate voltages as a function of
the applied voltage, Vapp, requires stating a relationship between
the number of electrons and holes. In a homogeneous medium
we have the condition of electroneutrality. Then, with a net
background of doping of positive ionic charge Nion

+ we obtain

− − =+n p N 0ion (23)

Equations 20−23 allow determining all steady state character-
istics such as the current−voltage curve. In particular, eqs 22
and 23 allow one to express the densities of free electrons and
holes (previously expressed according to eqs 7 and 8) as a
function of the applied voltage Vapp in the presence of a net
density of positively charged dopant
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Note that for an n-type semiconductor, the previous
equations can be simplified at first order into

≈ +n Nion (26)
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These last equations are valid as long as n(Vapp) ≫
p(Vapp).
In the calculation of the impedance, we use a small sinusoidal

perturbation of voltage imposed over a steady state. The small
signal is modulated with angular frequency ω so that we can use
the substitution ∂/∂t→ iω to solve the equations in the Laplace
domain. We can split all quantities as follows
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The definition of the impedance is the ratio of modulated
voltage to current, that is
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where itot = in = ip. The equations for the modulated quantities
are obtained by linear expansion of eqs 12, 15, and 16 with the
following result
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We introduce the equilibrium chemical capacitances13
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then we can write the following expressions for the modulated
densities
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We define the following resistances14−16
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It is also convenient to introduce admittances and con-
ductances as follows

ω=μ μY i Ck k
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Then eqs 32−34 can be expressed in the form
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These three equations state the conservation of current and
can be represented as an EC, shown in Figure 2.
This EC was derived by Shockley for the equilibrium

situation and by Sah for the general case that we show here.9,10

The left vertical branch is indicated as a current generator
because the current depends on the voltage drop at the
capacitor associated to the traps.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp411004e | J. Phys. Chem. C XXXX, XXX, XXX−XXXC



Solving the linear system of eqs 47−49 we obtain the imped-
ance as follows
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■ DISCUSSION

Before entering into the details of the practical application of
the EC of Figure 2, it is useful to examine when it can be
reduced to well-known reference cases.
The first case we discuss here is the impedance of the

equilibrium steady state in which electrons and holes remain
in dark equilibrium (n̅ = n0, p ̅ = p0). This situation cor-
responds to the case depicted by Shockley.9 The correspond-
ing EC is given in Figure 3a. According to eqs 43 and 44, we
have Grec

n = Grec
p = 0 and the current sources can be removed

from the EC. Note that the conductance Gtn and Gtp can be
simplified into
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2
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The total impedance is given by

Figure 2. Equivalent circuit for the SRH recombination model. The
electrical components of the EC are indicated along with the chemical
potentials: vn for electrons in the CB, vp for holes in the VB, and vt for
traps. vi is the intrinsic chemical potential.

Figure 3. Reduction of the equivalent circuits of Figure 2 at equilibrium (a), for an n-type semiconductor (b) and in the absence of traps (c). In the
latter case, a band-to-band recombination resistance R0 has been introduced.
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The second case that we shall discuss is the presence of a
majority carrier. Let us take the example of an n-type semiconductor.

In this situation, the electron concentration in the CB does not
vary with the applied voltage and n ̅ ≈ Nion

+ , as indicated by
eq 26. A recombination center situated below the equilibrium
Fermi level remains occupied by electrons ( f ≈ 1). In this case
Grec
n ≈ 0 and the total impedance becomes
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This scenario is depicted by the EC of Figure 3b in which the
current source associated to electrons in the conduction band
has been removed. The upper part of the circuit associated to
majority carrier corresponds to the equilibrium situation
depicted by Shockley. Therefore majority carriers behave as if
they were at equilibrium. Obviously this statement is true only
if the applied voltage is such that the electron concentration
remains much higher than the holes concentration.
The last case that we examine hereafter is the absence of

traps (Nt = 0). In this configuration, all the conductances are
zero and only remains the capacitances of electrons (Cμ

n)
and holes (Cμ

p). Since there is no trap assisted recombina-
tion, band to band recombination occurs, as discussed by
Garcia-Belmonte et al.11 It is consequently necessary to introduce
other conductances associated to band to band electrons and holes
recombination as follows
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In eqs 56 and 57, Unp corresponds to the rate of band to
band electron hole recombination. The corresponding EC is
given in Figure 3c and the associated impedance can be written
as follows
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We shall now examine in further details the practical use of
the general equivalent circuit of Figure 2. Two issues of
particular interests will be addressed in the following. The first
one is related to the required conditions for the observation of
two semicircles impedance spectra. It should be pointed out
that in the vast majority of cases of IS measurements of solar
cells only one recombination semicircle is observed. In fact, one
single example where both carriers show a distinct spectral
footprint has been reported to the best of our knowledge.17

The second issue involves the necessity to take into account the
current source of the EC of Figure 2 or whether it can be
omitted to simplify the treatment of experimental data.

We first examine when two semicircles can be observed. To
do so we shall distinguish between two extreme cases: small
and large trap capacitance. Indeed, the trap capacitor actuates as
an interrupter: when the trap capacitance is small, it behaves as
an infinite resistance (open circuit) while if it is large, the trap
capacitance behaves as a wire (short circuit). Note that the trap
chemical capacitance reaches its maximum in the intrinsic
regime, that is, when the population of electrons and holes are
equal, and saturates at this value, contrary to the case of a
unipolar semiconductor where the trap capacitance displays a

Figure 4. (a) Evolution with voltage of the chemical capacitances
associated to the tree storage modes of an n-type semiconductor:
conduction band (Cμ

n) (green plain line), valence band (Cμ
p) (blue plain

line), and traps (Cμ
t ) (red plain line). (b) Evolution of the corresponding

electrochemical potentials: Vn (green plain line), Vp (blue plain line), and
Vt (red plain line). (c) Impedance spectra obtained at 0.4 V, that is, when
Cμ
t ≪ Cμ

n. In this condition, the EC of Figure 5a can be applied to account
for the semicircle observed in this impedance spectrum. (d) Impedance
spectra obtained at 1.1 V, that is, when Cμ

t ≫ Cμ
n, Cμ

p. Under this con-
dition, the EC of Figure 5b can be applied. Parameters of the simulation:
Nt = Nv = Nc = 1020 cm−3, βn = βp = 105 cm−3 s−1, Et = −0.25 eV,
Ev = −1 eV, Ec = 1 eV and Nion = 1015 cm−3.
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peak (see Figure 4a). Also note that the chemical capacitances
follow the evolution of the corresponding electrochemical
potentials, as depicted by Figure 4b. At low voltages, traps are
filled by electrons and the chemical potential of traps follows
the one of electrons. Because we simulated the case of an
n-type semiconductor, the electrochemical potential of
electrons is constant within a given range of voltage (for Vapp
< 1.4 V here). Therefore when voltage is increased, the chem-
ical potential of holes first increases with voltage. When the
latter chemical potential is sufficiently high to fill traps with a
substantial quantity of holes, the chemical potential of traps
starts increasing along with the holes chemical potential (at
around Vapp = 0.5 V). Once voltage is sufficiently high (Vapp >
1.4 V), both the chemical potential of electrons and holes vary
at the same rate (intrinsic regime) and the system becomes
ambipolar. In this case, traps are equally filled by electrons and
holes and the traps electrochemical potential does not vary with
voltage.
In the case of a small trap capacitance, the EC of Figure 2

can be reduced to the one of Figure 5a and the valence and

conduction band capacitances are in series. In this config-
uration, the IS spectra will be featured by one single semicircle,
as indicated by the example of Figure 4c. In the case of a large
trap capacitance, the equivalent circuit can be reduced to the
one of Figure 5b, which generates two semicircles associated
to the capacitances of electrons and holes as depicted by the
example of Figure 4d. Both semicircles will be distinguishable
if the trapping times associated to electrons and holes are
different enough and the trapping resistances similar. It is worth
remarking that for an intrinsic semiconductor trapping lifetimes
only depend on the position of the traps in the band gap and
are usually very similar. As a result, both semicircles will never
be neatly distinguishable for an intrinsic semiconductor, unlike
for an extrinsic semiconductor where the chemical capacitances
of the majority and minority carriers differ by several orders of
magnitude.
For the sake of the practical analysis of the IS spectra, we

shall now discuss the second point, that is whether the current
sources can be removed from the EC of Figure 2. As mentioned
above, when the trap capacitance is higher than the one of the

valence and conduction bands, the current sources are short
circuited. The role of the current sources should therefore be
discussed when the trap chemical capacitance is inferior to
those of free electrons and holes.
In Figure 6, we give two examples of impedance spectra

corresponding to an intrinsic semiconductor (Figure 6a) and to

an n-type semiconductor (Figure 6b). From these plots, it is
clear that for an intrinsic semiconductor the current sources
can be removed, in contrast to the case of an extrinsic
semiconductor. Indeed, in the case of an intrinsic semi-
conductor the total resistance (i.e., Z(ω = 0)) is independent of
the conductances associated to the current sources (Grec

n and
Grec
p ) and our simulations show that at higher frequencies, the

error committed by omitting the current sources remains
negligible. For the case of an extrinsic semiconductor, the
current sources appear to be of prime interest. Omitting them
is equivalent to short circuit them and consequently impose
that the trap capacitance is much larger than the free carrier
chemical capacitances for any applied voltage, leading to the
presence of two possible semicircles in the IS spectra, as shown
in Figure 6b (red dots).

■ CONCLUSION
We have calculated the complex impedance for an ambipolar
solar cell subject to trap-mediated recombination. We have
recovered the EC already obtained by Shockley in the case of
the perturbation of an equilibrium steady state and by Sah for
a steady state off equilibrium. After reducing the latter circuit
to some well-known cases (presence of a majority carrier,
equilibrium steady state and absence of traps), we have shown
that it is possible to obtain two semicircles if the trap
capacitance is larger than the one of the conduction and valence
bands. Extrinsic semiconductors have been shown to display
neater semicircles than intrinsic semiconductors due to the
large difference between the chemical capacitances of the
minority and majority carriers. The role of the current sources

Figure 5. Reduction of the EC of Figure 2 when the trap capacitance is
much smaller (a) or larger (b) than that of the conduction and valence
bands. In the case of a small trap capacitance, one single semicircle can
be observed in the IS spectra while for a large trap capacitance, the
current sources are short-circuited and two semicircles may be
observed, as detailed in the text.

Figure 6. IS spectra simulated at applied voltage Vapp = 0.4 V with the
impedance given by eqs 50 and 51 (blue plain line) and by taking off
the terms corresponding to the current sources (i.e., Grec

n and Grec
p )

(red dots) in the case of an intrinsic semiconductor (a) and an n-type
semiconductor (b). For the simulation of the intrinsic case (a), we
used Nt = 107cm−3 and βn = βp = 1 cm−3 s−1 in order to impose Cμ

t ≪
Cμ
n, Cμ

p . The rest of the parameters are the same as the one of Figure 4.
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in the general EC has been examined. It has been inferred from
our study that for an intrinsic semiconductor, the current
sources can be removed from the EC, though not for extrinsic
semiconductors.
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