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We consider a simple model for the geminate electron–hole separation process in organic
photovoltaic cells, in order to illustrate the influence of dimensionality of conducting
channels on the efficiency of the process. The Miller–Abrahams expression for the transition
rates between nearest neighbor sites was used for simulating random walks of the electron
in the Coulomb field of the hole. The non-equilibrium kinetic Monte Carlo simulation results
qualitatively confirm the equilibrium estimations, although quantitatively the efficiency of
the higher dimensional systems is less pronounced. The lifetime of the electron prior to
recombination is approximately equal to the lifetime prior to dissociation. Their values
indicate that electrons perform long stochastic walks before they are captured by the
collector or recombined. The non-equilibrium free energy considerably differs from
the equilibrium one. The efficiency of the separation process decreases with increasing
the distance to the collector, and this decrease is considerably less pronounced for the three
dimensional system. The simulation results are in good agreement with the extension of the
continuum Onsager theory that accounts for the finite recombination rate at nonzero
reaction radius and non-exponential kinetics of the charge separation process.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Photovoltaic cells utilizing organic semiconductors have
attracted much attention due to their promising electronic
properties, low cost, thin film flexibility, and high function-
ality. Although their present efficiency is not high enough,
widespread interest in both the academic and, increasingly,
the commercial communities promises fast progress in this
direction [1,2]. Many attempts have been undertaken to
understand the dissociation and recombination processes
starting with the theoretical works of Onsager [3,4], Frenkel
[5] and Eigen [6], where models of these processes
were suggested and investigated. Later, these models
were refined with using proper boundary conditions
for more adequate description of different stages of
recombination/dissociation [7–10]. In these models it is as-
sumed that continuum phenomenological diffusion equa-
tions are applicable on molecular space and time scales.
On the other hand, discrete models were developed and
their computer simulations were performed [11–15].

The models of charge separation were widely used to
find routes for increasing the efficiency of the organic solar
cells whose internal structure is characterized by a variety
of characteristics, e.g. the charge transfer routs can be of
different space dimensionality. For example, discotic
liquid–crystal porphyrins conduct almost exclusively along
one-dimensional backbones, most p-conjugated polymers
have quasi-two-dimensional character, while C60 and their
derivatives are truly three-dimensional organic semicon-
ductors [16].

The effect of space dimensionality on recombination/
dissociation was discussed earlier [17]. It was shown that
in the absence of interaction potential between two
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dissociating particles the escape probability (the
probability that the particles can go away to infinity) is
zero if the space dimension is smaller than or equal to
two and increases with increasing space dimensionality.

Recently the entropy contribution with respect to the
dimensionality of the organic semiconductor into charge
separation after sunlight exciton production has been
extensively discussed [1,16]. The equilibrium free energy
of the electron–hole pair was used for estimating the
charge separation efficiency in systems of different dimen-
sionality. It was shown that the efficiency of three dimen-
sional (3D) systems can be up to four orders of magnitude
higher, as compared to a one dimensional (1D) system.

However, the equilibrium consideration does not take
into account important features of the charge separation
process as it was mentioned in Ref. [16] and is in more
detail discussed below. Thus, we suggest a simple non-
equilibrium model of geminate recombination/dissociation
of electron–hole pairs and quantitatively investigate the
electron yield on the collector depending on the system
dimensionality with accounting of interparticle Coulomb
interaction. The main focus of our work is the influence
of the space dimensionality on the electron yield in zero
electric field. The simulation results are compared with
the extension of the Onsager continuum model [9,10].
Characteristic times of the processes are considered as
well.

2. Model description

To make the model as simple as possible we consider an
electron that moves in a regular lattice and in the Coulomb
field of the immobile hole [1,16]. Then, the electron can be
considered as moving in the external Coulomb field of the
hole and in the approximation of uniformly distributed
lattice sites, its equilibrium distribution function can be
written as

f ðrÞ ¼ Q�1nr exp½�buðrÞ�

¼ Q�1 exp½�b½uðrÞ � kBTSðrÞ��; ð1Þ

where Q is a normalization constant; nr ¼ 1; 2pr; 4pr2 for
one, two and three dimensional systems, respectively, and
it determines the density of the number of lattice sites as a
function of r that can be occupied by the electron
with equal probability; r is the electron–hole distance; T
is the absolute temperature; kB Boltzmann constant;
b ¼ 1=ðkBTÞ is the inverse temperature. The energy of
Coulomb interaction for the electron on a cubic lattice
with the lattice parameter a is inversely proportional to
electron–hole distance

uðrÞ ¼ �e0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2 þ k2

q ; e0 ¼
e2

4pe0ea
; ð2Þ

where e is the medium dielectric constant; e electron
charge; e0 electric constant; i; j; k are integers that deter-
mine lattice sites positions. For 1D and 2D systems the
expression for the interaction energy has to be modified
correspondingly. The second part of Eq. (1) is rewritten in
such a way that the configuration entropy SðrÞ ¼ ln nr
appears in a natural way. The expression in the square
brackets determines the Helmholtz free energy

DGðrÞ ¼ uðrÞ � kBTSðrÞ; ð3Þ

that cumulatively takes into account the equal probability
of occupying a number of equivalent lattice sites (with the
same distance r) and the attractive electron–hole interac-
tion that makes smaller r distances much more preferable.
Of course, this expression for DG is the same as given in
[1,16]. The distribution function is normalized to unity
and the normalization constant

Q ¼
X
i;j;k

expð�uði; j; kÞ=kBTÞ; ð4Þ

where the sum runs over all sites between the source and
the collector.

We used kinetic Monte Carlo method with the Metrop-
olis algorithm [18] to perform simulations of the equilib-
rium distribution functions. The parameters were taken
from paper [16]: e ¼ 4; a ¼ 1 nm, T ¼ 300 K. Then, the
characteristic energy e0=kBT ffi 13:9 and the normalization
constants are Q ffi ð1:0882; 4:4448; 6:8888Þ � 106 for 1D,
2D and 3D cases, respectively. In the equilibrium simula-
tion the electron can jump from the initial site to any other
site inside of the collector ði2 þ j2 þ k2

6 N2 þ NÞ except
zero site (i2 þ j2 þ k2 ¼ 0 where the hole is situated). The
lattice sites are prescribed to the distance r if (in 3D case
with the corresponding changes in 2D and 1D cases)
r2 � r < i2 þ j2 þ k2

6 r2 þ r; i; j; k; r and N are integers
and the collector is on the distance ðN þ 0:5Þa from the
hole. The configuration entropy in Monte Carlo simulation
is taken into account indirectly through the interrogation
of the lattice sites.

The electron energy difference Du between the destina-
tion and the initial state was used for calculating the prob-
ability of the electron transition between these two sites.
The transition probability was taken equal to
expð�Du=kBTÞ if Du > 0 or 1 if Du � 0. The free energy
was calculated from the probabilities for the electron to oc-
cupy the lattice sites in accordance with Eq. (1)

DGðrÞ ¼ �kBT½ln f ðrÞ þ ln Q � ln nr�: ð5Þ

Definitely, in a true geminate recombination/dissociation
process the electron cannot be in equilibrium with the
hole. However, if the recombination rate is very small
and can be neglected then the equilibrium model can be
used for crude estimation of the electron spatial distribu-
tion around the hole.

3. Results and discussion

3.1. Equilibrium results

The results are shown in Fig. 1a for N ¼ 30 (for the sake
of uniformity in distribution of the lattice sites over dis-
tance r, the distance to the collector was taken equal to
30:5a) and they confirm the equilibrium distribution func-
tion (1) and the conclusion of papers [1,16] about higher
efficiency of 3D systems. Small fluctuations of the Monte
Carlo simulation results around the analytical curves are
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Fig. 1. The free energy versus the electron–hole distance for one, two, and
three dimensional systems of size (a) 30a; (b) 500a. The lines reproduce
the analytic expressions of Eq. (3); the dots are the Monte Carlo
simulation results.
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explained by nonhomogeneous distribution of lattice sites
over r distances. The efficiency of charge separation in the
equilibrium consideration was defined [1,16] as the ratio of
the probabilities for the electron to be on a certain distance
R from the hole and at its ground state that for Boltzmann
statistics is proportional to expð�DE=kBTÞ, where DE is the
free energy difference between these electron positions.

In Fig. 1b the results for the systems with the distance
of 500a from the source to the collector are shown. It is evi-
dent that the efficiency of the systems estimated from the
equilibrium free energy strongly depends on the distance
between the source and the collector. The longer is this dis-
tance, the larger is the difference by many orders of mag-
nitude in the efficiency of the systems of different
dimensionality. Moreover, for 2D and 3D systems the long-
er is the distance from the source to the collector, the lar-
ger are the absolute values of the charge separation
efficiency. This is counterintuitive to the real situation.
3.2. Nonequilibrium results for the electron yield at the
collector

However, the equilibrium results do not take into
account the finite lifetime of the electron before it arrives
at the collector or recombines with the hole. Thus,
non-equilibrium simulations are in order. Such simulations
have been published earlier [12–14], however they were
mainly focused on the electric field dependence of the elec-
tron yield. Analytical results are available as well [17] and
they indicate that the larger the dimensionality is the lar-
ger survival probability for the electron exists at all dis-
tances. Moreover, D = 2 is the critical dimensionality
below which the electron–hole pair cannot dissociate (in
the sense that the electron–hole distance tends to infinity)
at non-zero recombination rate in the absence of the exter-
nal field.

We have chosen as starting point of the electron the site
close to the hole (on 1 nm distance) and 106—107 electron
trajectories were considered for each particular simulation
to ensure good statistics. The simulations were performed
for the system described above. The hole was fixed at the
coordinate origin and the electron collector was taken at
the distance of 30:5a. Initially the electron was placed on
the nearest neighbor to the origin’s site. The transition rate
for the electron to recombine from this initial site is desig-
nated as w10. The transition rate of the electron to its other
nearest neighbor site was calculated in accordance to
Miller – Abrahams [19] expression

wn!nþ1 ¼ w0 exp½�ðunþ1 � unþ j unþ1 � un jÞ=2kBT�; ð6Þ

w0 ¼ v0 expð�2a=aÞ; ð7Þ

where un and unþ1 are the electron energies at the initial
and destination sites, respectively; a is the electron locali-
zation parameter; m0 the hopping attempt frequency; w0

determines the time scale of the charge separation process
and the simulations were performed at w0 ¼ 1; then all the
other rates are given in units of w0. Thus, our non-equilib-
rium model corresponds to the discrete version of the
Onsager recombination model [4] with accounting of finite
time and non-zero reaction radius of geminate recombina-
tion according to [7–9] at zero electric field.

Although we consider the hole fixed at the origin, the
results can be used for situations when both charges are
moving with the proper definition of the diffusion con-
stants [8,10]. On the other hand, the simulation results
are valid for the system with separated electron subspace
by reflecting boundary conditions for the plane passing
through the immovable hole. This means that if the elec-
tron occupies site i ¼ 0; j j j þ j k j – 0 and the trail is
i ¼ �1 then it has to be taken i ¼ 1.

We can consider three possibilities: (a) the electron of
the just created exciton can immediately or after some
waiting time recombine; (b) the electron can recombine
after random walks over the lattice at the influence of a
quite strong Coulomb electron–hole interaction; (c) the
electron can reach the collector (dissociation). The charac-
teristic time of process (a) is estimated as w�1

10 . However,
the total recombination rate is determined by both (a)
and (b) processes. The distribution of the recombination
and the electron arrival at the collector times can easily
be extracted from Monte Carlo simulation results.

The simulation results are shown in Table 1 and, for vis-
ibility, in Fig. 2a. The recombination rates (the electron
transition to the origin in process (a)) are shown in the first
column. For comparison, the dimensionless transition rate
for an electron from the nearest to the origin site to its
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Fig. 2. The electron yields (a) and their ratios (b) versus recombination rates for the systems of different dimensionality. Straight dashed lines are the linear
fittings, while curves are guides for the eyes.

Table 1
The electron yields and their ratios for systems of different dimensionality.

w10 1D 2D 3D 3D (Eq. (9)) 2D/1D 3D/2D 3D/1D

0.01 7:00� 10�6 2:23� 10�4 3:85� 10�3 3:85� 10�3 31.8 17.3 550

0.005 1:27� 10�5 4:40� 10�4 7:65� 10�3 7:67� 10�3 34.6 17.4 602

0.002 3:45� 10�5 1:13� 10�3 1:89� 10�2 1:90� 10�2 32.8 16.7 548

0.001 6:77� 10�5 2:25� 10�3 3:70� 10�2 3:72� 10�2 33.2 16.4 547

0.0005 1:28� 10�4 4:49� 10�3 7:17� 10�2 7:17� 10�2 35.1 16 560

0.0003 2:22� 10�4 7:45� 10�3 0:114 0:114 33.6 15.3 514

0.0001 6:57� 10�4 2:20� 10�2 0:279 0:278 33.6 12.7 425

0.00005 1:33� 10�3 4:32� 10�2 0:436 0:436 32.5 10.1 328

0.00001 6:62� 10�3 0:184 0:794 0:794 27.8 4.3 120
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Fig. 3. The nonequilibrium free energy (full symbols) versus electron–
hole distance for different recombination rates. Note that all full symbols
contain seven (7) sets of data which all fall on the top of each other in
each case (i.e. the full symbols contain 21 sets of data). Open circles are
for the equilibrium Monte Carlo simulation results, the curves represent
the analytical expression (3) for DG.
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second neighbor in 1D system is equal to w12 ¼ exp
ð�13:9=2Þ ffi 0:00096, while in 2D and 3D systems it is
considerably larger, w13 ¼ expð�13:9ð1� 2�1=2ÞÞ ffi 0:017;
the transition rates grow quickly with increasing the
electron–hole distance. The next three columns in Table 1
contain the electron yields at the collector (the ratios of the
number of electrons reached the collector to the total num-
ber of electrons for each particular value of w10) in 1D, 2D
and 3D systems, respectively. The three last columns con-
tain the ratios of the electron yields for the systems shown
in the column headers. These ratios are almost constant in
wide range of the recombination rates up to the point
where the yield achieves values larger than approximately
0:1. Some fluctuations in the last column are due to poor
statistics of 1D systems at low electron yields.

Thus, it is evident that the competition of the configura-
tion entropy contribution and Coulomb interaction gives
rise to higher efficiency of higher dimensional systems in
the charge recombination/dissociation processes.

Referring to the ergodicity hypothesis it is possible to
say that in equilibrium the electron is moving on the equi-
librium free energy surface and at the same time this sur-
face determine according to Eq. (1) the probability
distribution of the equilibrium ensemble of electrons over
the lattice sites. Thus, we can consider as a mathematical
construction the non-equilibrium free energy calculated by

DGðrÞ ¼ �ðln Q þ ln f ðrÞÞkBT; ð8Þ

where f ðrÞ is the non-equilibrium distribution function
evaluated from the Monte Carlo simulation results and
normalized to unity. On the other hand, the Monte Carlo
simulation procedure can be considered as reproducing
the electron motion over this non-equilibrium free energy
surface.

The equilibrium and non-equilibrium free energies can
be used for comparing the distribution of times spent by
the electron on lattice sites because the distribution func-
tions themselves vary by many orders of magnitude and
are not convenient for comparison. The non-equilibrium
free energy (Fig. 3) considerably differs from the equilibrium
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one. Its prominent feature is that it does not depend on the
recombination rate. This energy strongly increases near the
collector that indicates significant decrease of probability
distribution due to absorption of the electrons by the
collector.

3.3. Comparison with the continuum representation

The current simulation results can be compared with
the extension [9,10] of the continuum Onsager model that
takes into account the finite geminate recombination rate
at nonzero reaction radius and the non-exponential char-
acter of the electron–hole separation process. As we calcu-
lated the electron yield Yðqa=aÞ on a certain distance ðqaÞ
from the hole, starting from the distance a it is possible
to extract the corresponding value from the expression
[9,10] for the yield at infinite distance when starting from
the distances a ðYð1=aÞÞ and qa ðYð1=qaÞÞ using the prob-
ability product rule

Yðqa=aÞ ¼ Yð1=aÞ=Yð1=qaÞ

¼ 1þ pa2

Drc
exp

q� 1
q

rc

a

� �� �� ��1

; ð9Þ

where q ¼ N þ 0:5; p is a reactivity parameter, D the diffu-
sion coefficient, rc ¼ e2=ð4pe0ekBTÞ the Onsager radius; in
our simulation ðrc=aÞ ¼ 13:9 and D ¼ a2 because the fre-
quency factor was taken equal to 1.

The main problem in comparing our discrete model
results with the continuum theory [9,10] is the evaluation
of the reactivity parameter p. Comparing to the 3D case,
the recombination rate as the flux through the spherical
surface around the hole [10] and the flux from the volume
6a3 where recombination occurs we arrive at the estima-
tion p ¼ ð3=2pÞw10a ffi 0:477w10a and then pa2=Drc ffi
0:0343w10. However, with this value of p the theoretical
results were systematically higher by some 10% of the
simulation results for N ¼ 30. Thus, slightly larger values
p ¼ 0:522w10a were used and the calculation results are
given in the fifth column of the table. As long as the second
term in Eq. (9) is around 10 or larger the yield is inversely
proportional to the recombination rate w10. The non-
equilibrium simulation results qualitatively confirm the
equilibrium estimations, although quantitatively the
higher efficiency of the higher dimensional systems is less
pronounced and depends on the ratio of the recombination
and the transition rates in the vicinity of the hole. In 1D sys-
tem the yield is almost exactly inversely proportional to the
recombination rate, while in 2D and 3D systems the satura-
tion effect causes deviations from such behavior at high val-
ues of the yield.

As it was mentioned above (Fig. 1b) the equilibrium
consideration predicts an increase of the charge separation
efficiency in the 2D and 3D systems with increasing the
distance to the collector, something that is counterintui-
tive because it does not take into account the kinetics of
the process. The non-equilibrium simulations for a larger
system of N ¼ 50 at w10 ¼ 0:0003 have shown that the
absolute values of the electron yields are equal to
9:48� 10�5; 4:8� 10�3, and 9:78� 10�2 for 1D, 2D, and
3D systems, respectively, and they are smaller than the
corresponding values for the system of N ¼ 30 by 2.27,
1.55, and 1.16 times. This means that although the abso-
lute values of the yields decrease with increasing distance
to the collector the relative efficiency of higher dimen-
sional systems increases. Of course, 30 or 50 nm are too
small distances as compared to that electrons have to
move in modern photovoltaic devices. Nevertheless, these
distances correspond respectively to more than 2 and al-
most 4 Onsager radiuses and thus capture the main fea-
tures of the dissociation/recombination process.

To adjust the theoretical value of Eq. (9) for N ¼ 50 with
the simulation result it is necessary to take p ¼ 0:514w10a
which is smaller than that for N ¼ 30 and closer to the the-
oretical value p ¼ 0:477w10a, because at larger scale the
discrepancy between discrete and continuum approaches
becomes less pronounced. Moreover, separation of charges
is an initial value problem and thus memory effects con-
tribute to diffusion on a lattice [20] even when only one
particle is considered [21] while they are not taken into ac-
count by the continuum diffusion equation used in the
Onsager and other such models. The difference in 10% only
between the results of the continuum and discrete models
is surprising in view of application of continuum represen-
tations up to molecular scales.

It is interesting to note that the geminate charge recom-
bination in the 3D heterojunction system with planar
interlayer boundary can be formally described by the sys-
tem of differential equations in four dimensions [22]. On
this basis the increase of the escape probability in systems
with heterojunction following from the dynamic Monte
Carlo simulation [13,15] was explained [22]. Really, if we
consider for simplicity a one-dimensional heterojunction
systems then for a given electron–hole distance in r lattice
spacings there are r energetically equivalent positions that
result in exactly the same equilibrium distribution func-
tion as for the 2D system without heterojunction. How-
ever, the situation is to some extent controversial. In
heterojunction systems the total configuration entropy of
the system decreases because of braking its translational
symmetry. From physical point of view it means that in
systems without heterojunction excitons can be created
in any space position, while in heterojunction systems
the excitons have to be created at the interlayer boundary
or the excitons have to be efficiently transported to this
boundary prior to their recombination.

The theoretical result [9,10] can be easily used for
investigating how the type of the lattice influences the
electron yield. For example, for the face centered cubic lat-
tice for the same nearest neighbor distance a the recombi-
nation volume and the diffusion coefficient [23] are equal
to 6

ffiffiffi
2
p

a3 and 2a2, respectively. Thus, the coefficient
ðpa2=DrcÞ is smaller by a factor of

ffiffiffi
2
p

than the case of the
simple cubic lattice, which in turn results in grater electron
yield. Moreover, in this case the density of lattice sites is
larger by the

ffiffiffi
2
p

factor as well. For equal densities the
nearest neighbor distance has to be

ffiffiffi
26
p

times larger, which
will result in strong increase (approximately by a factor of
4 at accepted conditions) of the electron yield in the face
centered cubic lattice as compared to the simple cubic lat-
tice. The influence of the type of the lattice on the recom-
bination/separation process was considered in Ref. [24] in
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another context in the model involving more complicated
parameterization.
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Fig. 5. The distribution of electron lifetimes before recombining for 1D,
2D and 3D systems for w10 ¼ 0:0005. The exponential fits are given by the
lines. In the insert: the relaxation times of the recombination times
distributions versus the inverse recombination rates for the systems of
different dimensionality; the lines are the results of linear fitting.
3.4. The electron lifetimes

The distribution of electron lifetimes before arriving at
the collector is shown in Fig. 4. The total number of elec-
trons was 107, however only a part of them indicated in
the Table arrived at the collector. To make the results more
transparent the total simulation time was split in bins of 50
Monte Carlo steps (MCs) and the electrons were collected in
each bin. A small number of electrons went quickly to the
collector while the majority arrived at the collector after
long stochastic walks over the lattice. Thus, the distribu-
tions of arrival times have maximal values at several thou-
sand of MCs. The decaying parts of the curves were fitted by
exponentially decaying functions and the relaxation times
are inversely proportional to the recombination rates as
shown in the insert of Fig. 4; they increase with the lattice
dimensionality because the larger the dimensionality the
longer electron walks are in order. The same dependence
is observed for the distribution of the recombination times
as is shown in Fig. 5, except that this distribution decays
from the very beginning. It is worth to note that the relax-
ation times are approximately the same for the distribu-
tions of arrival and recombination times. For comparison,
we can calculate the portion of electrons that recombine
according to process (a) as w10=ðw10 þw12Þ for 1D system
and as w10=ðw10 þw12 þ 2w13Þ for 2D system. For the 3D
system a multiplication by 4 in the last expression must
be used instead of 2. For the system with w10 ¼ 0:0003
we get 0.238, 0.0164 and 0.0085 for 1D, 2D and 3D cases,
respectively. Thus, in 1D system a significant part of the
electrons recombine immediately after the exciton creation
and the details of random walks in the vicinity of the hole
that depend on the structure of the lattice strongly
influence the electron yield. The recombination time of
the process (a) w�1

10 ¼ 3333 MCs is the same for all dimensi-
onalities, while for (a) and (b) processes in accordance with
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Fig. 4. The distribution of electron lifetimes before arriving at the
collector for 1D, 2D and 3D systems for w10 ¼ 0:0005. The frequencies
for 1D and 2D systems are multiplied by 10 and 5, respectively. In the
insert: the relaxation times of the arrival times distributions of the
collected electrons versus the inverse recombination rates.
Fig. 5 they are 7000, 13500, and 18500 MCs for 1D, 2D and
3D systems, correspondingly.

Fig. 4 demonstrates that the electron–hole separation
process is strongly non-exponential during the initial per-
iod which is considerably shorter than the subsequent
exponential decay. Thus, although the criticism [10] of
the Onsager–Eigen–Braun type of models is reasonable,
the influence of this non-exponential character of the sep-
aration process can be of minor importance for recombina-
tion/dissociation, and these models can be used for
analyzing experimental results.
4. Conclusion

Summarizing, the non-equilibrium simulation results
show that the efficiency of charge separation in 3D systems
is more than an order of magnitude larger, as compared to
2D systems and almost three orders of magnitude larger
than that in 1D systems at comparable conditions. The ra-
tio of efficiencies does not depend on the recombination
rate if the electron yield is lower than 0.1. Surprisingly,
the lifetimes of the collected and recombined electrons
are approximately equal and their values indicate that
electrons perform long stochastic walks before they are
captured by the collector or recombined. This phenomenon
is explained by the fact that only a small amount of elec-
trons reaches the collector and those ones that are able
to move far from the origin can arrive at the collector or
recombine with comparable probabilities. Just these elec-
trons determine the relaxation times. The simulation re-
sults compare well with the predictions of the continuum
theory [9,10] that accounts for the finite recombination
rate at nonzero reaction radius and non-exponential kinet-
ics of the charge separation process, if the reaction volume
is taken equal to the total volume of primitive cells that are
the nearest neighbors of the cell where the hole is situated.
This agreement validates the correspondence of the con-
tinuum and discrete models as well as the simulation
results.
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