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ABSTRACT: Semiconductor photovoltaic devices currently investigated, such as hybrid organic−
inorganic lead halide perovskite based solar cells, have shown a high dielectric polarization
combined with ambipolar carrier transport. In this work, we present a new model that takes into
account both features by combining the classical drift-diffusion equation with a generalized
Poisson equation that involves a density and frequency dependent dielectric constant that accounts
for the polarization of the medium. We derive the corresponding transmission line (TL) and
analyze the associated complex plane impedance spectroscopy (IS) and capacitance spectra. The
standard dielectric constant is replaced by the dielectric relaxation element that depends on the
frequency, which provides a dielectric relaxation subcircuit in the middle rail of the TL. After
simplification of the TL, three arcs can be observed: the first one, at low frequency, is associated
with the dielectric relaxation process, the second one, at intermediate frequency, is the drift-
diffusion/recombination arc, and the last one, at high frequency, corresponds to the geometric capacitance in parallel with
transport resistances for both electrons and holes. In the case in which only two semicircles are observed, the parameters that can
be extracted are the recombination and dielectric relaxation resistances along with the chemical and dielectric relaxation
capacitances. The density dependent static dielectric constant gives rise to current generators that produce exotic impedance
spectra associated with inductive behavior. These results provide a major tool for the determination of physical characteristics of
lead halide perovskite solar cells.

1. INTRODUCTION

Impedance spectroscopy (IS) is a widely used method in the
study of the operational mechanisms of different types of solar
cells: dye-sensitized solar cells (DSC), organic solar cells, and
also in silicon solar cell devices.1−3 The analysis of solar cells by
IS has often been based on a model in which diffusion-
recombination of a minority carrier is the dominant
phenomenon.4,5 The solution of this model with the boundary
conditions that represent selective contacts gives rise to the
popular transmission line (TL) models in which the chemical
capacitance plays a central role.6,7 Especially in DSC it has been
often possible to detect a number of distinct features using the
TL model: the electron conductivity, chemical capacitance,
recombination resistance,8 as well as the contact effects and
conductivity of the electrolyte.9 The measurement of the
equivalent circuit (EC) elements, and their connection to
fundamental models of electronic dynamics,10 has provided a
wealth of information about device characteristics and materials
operation.
Recently, a new type of organic−inorganic solar cell based on

halide perovskite structure has been discovered.11−14 IS
measurement showed that this material displays new properties
with respect to the former class of hybrid organic−inorganic
materials.15,16 The hybrid perovskite shows transport of both

electrons and holes in the absorber and a very large dielectric
polarization that is due to ferroic properties of the perovskite
framework.17,18 This last effect produces a giant dielectric
constant that exerts an important influence of the overall
dynamic behavior of the cell in the slow time domain and hence
dominates the low frequency range of the impedance spectra.19

Dielectric polarization introduces a new capacitance in the
model that is distinct to the chemical capacitance. This feature
has been described many years ago in ac circuits in solid-state
electronics20 as well as in electrochemistry models.21−23 Both
types of approaches have led to the same conclusion that high
frequency dielectric polarization is described through a TL EC
that includes an additional middle rail containing dielectric
capacitors, associated with the geometric capacitance of the
material.
So far, however, models have only considered the inclusion

of the high frequency polarization through a geometric
dielectric constant, ε∞, that represents orientational polar-
ization and determines the local spatial charge separation
through Poisson equation. According to recent findings we
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need to treat the more general case where dielectric relaxation
consists on frequency (ω) dependent polarization.19 Then it is
well-known24,25 that the complex dielectric constant varies from
the low frequency (static) value εs to the high frequency
(geometric) value ε∞. A simple type of relaxation is given by
the Cole−Cole relaxation peak that takes the form:
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ε ε
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where τdr is a constant relaxation time and α is a parameter that
takes into account the dispersion of relaxation times. For α = 0,
eq 1 reduces to the case of the Debye relaxation peak for a
single relaxation time. Equation 1 is represented as an EC in
Figure 1a for the general case of the Cole−Cole dielectric
relaxation and in Figure 1b for the case of the Debye relaxation
(α = 0).
Obviously the presence of the dielectric relaxation introduces

additional processes in the solar cell ac impedance behavior, in

addition to the classical resistances for transport and
recombination, as well as the chemical and contact
capacitances.
In this paper, we formulate the theory for electrons and holes

transport coupled with recombination and the generalized
Poisson equation that takes into account a density and
frequency dependent dielectric relaxation. We derive the
small perturbation equations in terms of local electrochemical
potentials and potential of the intrinsic level and recover the
general transmission line model. We show that dielectric
relaxation represented by eq 1 introduces a number of totally
new aspects to the TL response of solar cells. We present an
analysis of the main features that can be expected in the IS
spectra under the influence of these phenomena. We also
highlight the cases in which distinct new features of the model
have been already observed and reported in the literature. A
comprehensive experimental analysis of perovskite solar cells by
application of the model will be presented in future work.

2. THE MODEL EQUATIONS
To develop our IS model, we start from a standard model for a
semiconductor that contains electrons and holes as shown in
Figure 1c. In the following, we formulate the equations that
describe transport, recombination, and polarization at any point
in the bulk material. In the next section, we will derive the
expression for ac modulated small perturbations.
We assume a density of electrons n in the conduction band at

the energy Ec and effective density of states (DOS), Nc. n
depends on the Fermi level, EFn, position in the band gap.
Similarly, we consider a density of holes p in the valence band
at the energy Ev, with effective DOS Nv and Fermi level EFp. For
a nondegenerated semiconductor, the densities of electrons and
holes can be written in terms of the Fermi levels through
Boltzmann statistics:

= −n n e E E k T
i

( )/iFn B (2)

= − −p p e E E k T
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Here Ei is the intrinsic level defined below, the energy gap is
Eg = Ec − Ev and kBT is the thermal energy.
The carrier densities are modulated by the local electric field

F through the Poisson equation:

ρ∂
∂

=D
x

q
(5)

where D is the electric displacement field given by D = εF, q is
the elementary charge, and ρ is the local charge density. The
static value of the dielectric constant depends on the carrier
concentration19 and takes the form εs = εs(n, p).We assume a p-
doped semiconductor (in which holes are majority carriers)
with constant density of negatively ionized acceptor centers NA.
The situation of n-doped material is trivially obtained by a
change of notation. Thus, we have

ρ = − −p n NA (6)

On the one hand, the local electric field F varies with the
electric (Galvani) potential φ as

Figure 1. (a) Equivalent circuit representation of the Cole−Cole
dielectric relaxation corresponding to eq 1. cg (cg = ε∞) is the
geometric capacitance, cdr (cdr = εs − ε∞) is the capacitance associated
with the dielectric relaxation, and sdr (sdr = rdr

α − 1cdr
α ) is the constant

phase element (CPE) associated with the Cole−Cole dielectric
relaxation, with the impedance zα = sdr(iω)

−α. (b) Case where α = 0 in
eq 1, in which the Cole−Cole relaxation time reduces to a single
Debye relaxation time and the CPE, sdr, reduces to the dielectric
relaxation resistance, rdr. (c) Energy diagram for a semiconductor with
transport of electrons in the conduction band with energy Ec and
Fermi level EFn, and transport of holes in the valence band with energy
Ev and Fermi level EFp. The central line corresponds to the intrinsic
level Ei that is parallel to the local vacuum level (VL) and represents
the bands tilting that arises from the local electrical field. (d)
Transmission line (TL) representation of the overall electrical
behavior of the semiconductor material in ac mode. The transport
lines take conduction current for electrons and holes (jn, jp), and the
central line takes the displacement current jd. These lines contain
transport resistances rtr for both carriers and local potentials vn, vp, and
vi. The vertical lines in the TL contain a recombination resistance rrec
and the usual chemical capacitances cμ for electrons and holes in
parallel with the current sources i0,n for electrons and i0,p for holes. The
central line contains Zdr, the general Cole−Cole dielectric relaxation
EC shown in (a).
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On the other hand, φ can be described by the local intrinsic
level Ei, defined by the relation ni = pi
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In terms of electron affinity χn, we have

χ φ= − −E qc n (9)
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Let us now focus on the distribution of local electrical
current. The total current has three components, as shown in
Figure 1d: conduction currents of electrons and holes and the
displacement current:

= + +j j j jn p d (12)

The conduction currents follow from the drift-diffusion
approach:

= + ∂
∂

j qnu F qD
n
xn n n (13)

= −
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p
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Here uk is the mobility and Dk (k = n,p) is the carrier
diffusion coefficient. These two last equations can also be
expressed in terms of the carrier conductivities, σk, using the
classical Einstein relation Dk = ukkBT/q:
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By introducing the transport resistance for each carrier, rtr
k =

σk
−1, these two equations can be written as
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These currents are connected to the generation (G) and
recombination [Ur = Ur(n,p)] processes through the continuity
equations:
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Moreover, the displacement current is

= ∂
∂

j
D
td (21)

3. SMALL SIGNAL AC PERTURBATION
Let us introduce a small perturbation of the Fermi levels and
intrinsic level (modulated by the external voltage):

̂ = −E qvFn n (22)

̂ = −E qvFp p (23)

̂ = −E qvi i (24)

Then, the small perturbation of the carrier densities are
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These equations describe the modulation of the carrier
densities by a change of both chemical potentials and the
position of the conduction/valence band (by an electric field).
In the previous equations, we used the chemical capacitances of
free carriers defined by26
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and the recombination resistance, for a band to band
recombination rate, is given by
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A more general recombination model via an intermediate
defect level has been previously discussed.26

The continuity eqs 19−20, combined with eqs 17−18, for
small perturbations in the Laplace space, become:
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The previous two equations provide the top and bottom
transport rails in the TL as shown in Figure 1d. In addition, we
get:
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and the displacement current small perturbation is obtained
through eq 21:
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where zd = (iωε(ω))−1 and
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These two parameters are associated with the density
dependent static dielectric constant, εs = εs(n, p), that has
been observed in a giant dielectric constant phenomenon in
perovskite solar cells.19 Note that the two last terms of the
right-hand side of eq 34 only depend on the voltage applied to
the chemical capacitances in the vertical branches but not on
the voltage applied to the impedance zd. These terms are
therefore associated with current sources, see Figure 1d. Also
note that current sources should appear in parallel with the
transport resistances,27 but we have neglected it here in order
to focus on the main purpose of this article: relating
polarization with ambipolar transport.
The equivalent circuit, which takes the form of a TL, can

hence be recovered through eqs 30−34. The general equivalent
circuit for this type of system is given in Figure 1d. Note that
for clarity of the scheme, we have used the notations i0,n and i0,p
that, respectively, stand for the quantities γn/zd(vn −vi) and γp/
zd(vp −vi). The total impedance of this EC is obtained by
solving eqs 30−34:

ω
ν ν

=
−

Z
L

i
( )

(0) ( )n p

tot (37)

The procedure that has been applied to solve these equations is
explained in Supporting Information.

4. DISCUSSION
The determination of ac response of our model provides some
significant new points with respect to the standard circuit that is
given in previous works.20,23,28 Here the standard dielectric
constant is replaced by the dielectric relaxation element that
depends on the frequency (eq 1). Therefore, the standard
geometric capacitance in the middle rail of the TL is replaced
by the relaxation subcircuit of parts a or b of Figure 1,
depending on the distribution of relaxation times. This feature
is described here for the first time (Figure 1d). In the vertical
lines of Figure 1d, we also find classical features of chemical
capacitances, cμ

n and cμ
p, and recombination resistance rrec. The

other new feature is the presence of the current sources in
parallel with the chemical capacitances. These components
depend on the derivative of the dielectric constant and the local
electric field and are only significant in regions where space
charge is large. To simplify the discussion, we will consider first
the case of a homogeneous distribution of carriers implying a
weak electric field and therefore neglect the influence of these
current sources. Later on, current sources will be considered
and their effect analyzed. The general TL without these
elements is given in Figure 2a. Note that this model just
describes the active layer, and it does not include additional
circuit elements that could be expected in a real device as series
resistance or charge transfer at the interface with selective
contacts coupled with the interfacial capacitance.29

We now analyze the equivalent circuit of Figure 2a for a
better understanding of the varied complex plane impedance
spectra. To better apprehend the complex circuit of Figure 2a,
we proceed to a simplification of the TL where the dielectric

relaxation has been decoupled from electronic transport
(Figure 2b), as already done in another work.30 Note that in
Figure 2b, the Zdr element is not connected to any of the
chemical capacitances. In addition, we assume the local
elements of the TL to be constant and position-independent.
Note that the resistances rk and chemical capacitances ck are
local quantities, while Rk and capacitances Ck are their
corresponding integrated quantities for the homogeneous
case: Rk = rkL and Ck = ckL, where L is the length of the
semiconductor layer. A reduced form of such TL is given in
Figure 2c. In the latter circuit, the impedance corresponding to
ambipolar transport without the dielectric relaxation subcircuit
can be reduced to one single impedance Z0 that takes the form:
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Figure 2. (a) General transmission line (TL) model (extension of
Figure 1d) without the current sources. (b) Simplified circuit in which
the dielectric relaxation subcircuit has been decoupled from the rest of
the transmission line of (a). (c) Equivalent circuit of the circuit given
in (b).
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In the following, we will write

=
+
μ μ

μ μ
μC

C C

C C,eq

n p

n p
(40)

The calculation of Z0 is given in Supporting Information. Note
that in the discussion below we assume the chemical
capacitances to have similar values.
We comment on the different physical origin of the

capacitances that are included in this model. The chemical
capacitance of a carrier, Cμ, is due to the displacement of the
Fermi level with respect to the respective band edge, and
describes accumulation of carriers in the absorber.6 It is
proportional to the volume of material, see the specific
capacitance in eq 27, therefore it increases proportionally to
the absorber thickness.
On the other hand, a dielectric capacitance is given by the

expression

ε ε
=C

L
r 0

(41)

where εr is the relative dielectric constant and ε0 is the
permittivity of the vacuum. The dielectric constant depends on
the frequency as stated in eq 1. Thus, at high frequency, the
dielectric constant ε∞ = εr∞ε0 determines the geometric
capacitance Cg. For many inorganic semiconductors, εr∞ ≈ 10.
The low frequency dielectric constant, εs = εr,sε0, in turn,
determines the low frequency capacitance Cdr. For the hybrid
metal halide perovskites, a very large static dielectric constant,
εr,s ≈ 104, dependent on illumination and carrier density, has
been observed.19 Because both Cg and Cdr comply with eq 41,
they must decrease with the thickness of the region that
contains the polarization, in contrast to the chemical
capacitance. These different dependencies are represented in
Figure 2b by the parallel connection of chemical capacitances
and series connection of dielectric capacitances.
We examine the most general case of the impedance spectra,

shown in Figure 3, where three arcs are displayed in the
complex impedance plane (Figure 3b), when Cg < Cμ

n, Cμ
p < Cdr

and assuming a single dielectric relaxation time. The complex
capacitance is defined from the impedance as follows

ω
ω ω

* =C
i Z

( )
1
( ) (42)

It is conventionally separated into real and imaginary part
according to the expression31

ω* = ′ − ″C C iC( ) (43)

Figure 3c shows the real part of the complex capacitance.
The three capacitive features contained in the system are
progressively observed in the representation of capacitance as a
function of frequency, namely, the geometric capacitance at
high frequency, the chemical capacitance at middle frequency,
and the static dielectric capacitance at low frequency. Each of
these capacitances appears as the respective capacitance step
when the correspondent relaxation process is activated in the
frequency domain. The steps of the capacitance have been
previously observed in CH3NH3PbI3 perovskite solar cells.

17 An
intuitive interpretation of Figure 3c is as follows. The dielectric
capacitance is frequency dependent as stated in eq 1, and it
makes a transition from Cg to Cdr, as the frequency decreases,
due to the polarization and dielectric relaxation properties of
the medium. The accumulation of carriers produces an

additional effect, the chemical capacitance, that contributes in
the medium frequency range, hence the three steps in Figure
3c. However, it must be also noted that the frequency of onset
of the capacitance in the system in the frequency axis depends
on the resistive properties. Figure 3c is therefore not a general
situation. The capacitance and resistive behavior of the system
is finally given by the general EC that has been presented in
Figure 2a. It is observed that different situations can be
expected, and some of them are discussed below. In addition,
the values of capacitance may show different ordering due to
dependencies commented above. For example, for a dielectric
film of L = 0.5 μm, with εr∞ = 10 and εr,s ≈ 104, then Cg = 2 ×
10−8 F cm−2 and Cdr = 2 × 10−5 F cm−2. If the density of
carriers is 1016 cm−3, then Cμ = 2 × 10−6 F cm−2. The sequence
of capacitance steps will be as in Figure 3c. However, a change
of thickness, carrier density, and dielectric constant may
provide very different results.
Furthermore, the solar cell device may show additional

capacitive features, such as depletion layer (associated with
band bending), that modifies the geometrical capacitance,
contact capacitances at interfaces with the electron and hole
transport media, or at current collectors, as mentioned before,
and Schottky barriers at grain boundaries.32

Figure 3. (a) Simplified circuit of Figure 2c calculated for low (1) and
high (2) frequencies, considering a single time for the dielectric
relaxation (Debye relaxation subcircuit of Figure 1b) (b) General
impedance spectra corresponding to the general TL of Figure 2a with
a Debye relaxation subcircuit (blue solid line) and the simplified circuit
of Figure 2c (red dots). The processes associated with these
semicircles are discussed in the main text. (c) Real part of the total
capacitance as a function of frequency: at low frequency, the
capacitance corresponding to the dielectric relaxation (Cdr), at
intermediate frequency, both chemical capacitances in series and at
high frequency the geometric capacitance (Cg). For these simulations,
we used: Cμ

n = Cμ
p = 2 × 10−6 F/cm2, Cdr = 10−3F/cm2, Cg = 10−9F/

cm2, Rtr
n = 20·Ω·cm2, Rtr

p =10Ω·cm2, Rrec = 50Ω·cm2, Rdr = 500 Ω·cm2.
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Even though Figure 2a and the correspondent analytic
expression describe the general behavior of impedance and
capacitance response of the solar cell, for practical purposes it is
very useful to develop simplified models, containing the main
physical ingredients that facilitate rapid analysis of data.
According to Figure 3b, the simplified EC of Figure 2c is a
good approximation to estimate the impedance spectra
corresponding to the general TL of Figure 2a. Consequently,
we can use the simpler EC of Figure 2c to associate each
semicircle with its corresponding physical process.
At low frequency, the impedance associated with the

geometric capacitance is negligible and the EC of Figure 2c is
reduced to the EC (1) of Figure 3a that is responsible for the
two semicircles in the IS spectra observed in the region 1
(Figure 3b). The first arc, at the lowest frequencies,
corresponds to the dielectric relaxation process, while the
second one is identified to the drift-diffusion/recombination
processes. Note that in the example of Figure 3b, the
transmission line behavior, the prolongation of the straight
line that intersects the middle arc,4 can be observed because the
values of the recombination and transport resistances are
chosen such that rrec > rtr

n , rtr
p . If we had chosen rrec < rtr

n , rtr
p (case

of a nonhomogeneous carrier density profile), the IS spectra
would instead display a Gerischer behavior, where the
prolongation of the straight line does not intersect the
recombination arc.5,15 At high frequencies, the geometric
capacitance dominates and Z0 is reduced to

ω
=

+ μ
Z

R

i R C10
hf eq

eq ,eq (44)

where Req is the parallel association of transport resistances:

=
+

R
R R

R Req
tr
n

tr
p

tr
n

tr
p

(45)

Hence, the last semicircle at high frequency, region 2 in
Figure 3b, can be associated with the geometric capacitance in
parallel with the transport resistances (EC (2) of Figure 3a).
Note that if one of the carriers has a high conductivity, the
associated transport resistance tends to zero and this last arc is
not visible in the impedance spectra.
For the sake of practical applications, we shall now discuss

the cases of Figure 4 where only two semicircles can be
observed. In a high conductivity case, in which either one of the
transport resistances for electrons or holes is negligible, the
geometric arc will not appear in the IS spectra at high
frequency, region 2, Figure 3b. If both transport resistances are
small, as in Figure 4, the straight line feature also disappears.
We mainly focus on this last case where the Warburg behavior
is not visible in the IS spectra. The corresponding simplified EC
is depicted in Figure 4a. As expected, this EC can give rise to
two arcs, as shown by parts b and c of Figure 4. In both cases,
the low frequency arc is the one associated with the dielectric
relaxation and the second one to the drift-diffusion/
recombination processes. The only difference between parts b
and c of Figure 4 is the value of the resistance Rdr, which is
smaller in Figure 4b than in Figure 4c. Thus, Rdr regulates the
relative size of both arcs. Note that Z0(ω = 0) = Rrec, as the
lower branch of Figure 4a, vanishes at low frequency. Thereby,
it is possible to directly extract the resistance Rrec from the value
of the impedance at zero frequency. An alternative way of
obtaining Rrec, especially useful when additional features are
observed in the complex impedance plot, is to obtain it from

the sum of the resistances of the two arcs. Note that these
resistances individually have no direct physical meaning, only
their sum (Rrec), and the ratio between both, are controlled by
Rdr. The other parameters Rdr, Cμ,eq, and Cdr can be obtained
through the values R∥, τ1, and τ2, indicated in Figure 4b,c.
Indeed, in the Supporting Information, we show that if Cdr ≫
Cμ,eq:

=
+

R
R R

R R
rec dr

rec dr (46)

τ = +R R C( )1 rec dr dr (47)

τ =
+ μ

R R
R R

C
( )2

rec dr

rec dr
,eq

(48)

The analysis of the ac behavior in the frequency domain, can
be applied for the interpretation of time transients in the time
domain. This topic is beyond the scope of this paper, but we
note that the characteristic times given in eqs 47 and 48 largely
determine the decay time observed in the time domain. Large
capacitances imply long decays when a step perturbation is
applied, and this feature has been recently observed.17 It was
also suggested that the capacitive transients introduce
significant hysteresis features in current−voltage curves. It is
also important to realize that these time constants are
influenced by characteristics of the dielectric relaxation process,
as Cdr and Rdr, so that the attribution of recombination times
(lifetime) is not straightforward.
So far, we have discussed the case of a single dielectric

relaxation time and have adopted the Debye model for the
dielectric relaxation (Figure 1b). We shall now discuss the effect
of a distribution of relaxation times in the framework of the

Figure 4. (a) Simplified EC of Figure 2c in the absence of transport
resistance (Rtr

n = Rtr
p = 10−3Ω·cm2) and with a single dielectric

relaxation time in the framework of the Debye model (Figure 1b). IS
spectra for the general TL of Figure 2a for two different cases, small
and high dielectric relaxation resistance: (b) Rdr = 5Ω·cm2 and (c) Rdr
= 500Ω·cm2. The other parameters take the same values as the ones of
Figure 3. The processes associated with each arc as well as the meaning
of R∥, τ1, and τ2 are discussed in the main text.
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Cole−Cole approximation (Figure 1a), mentioned earlier in
this paper. This situation corresponds to positive, nonzero
values of the parameter α in eq 1. In Figure 5, we present the

evolution of the IS spectra for three different values of α
(Figure 5a) and the evolution of the respective capacitance. As
α increases, the distribution of dielectric relaxation lifetimes is
broader and the dielectric relaxation occurs at a wider range of
frequencies, as displayed by Figure 5b. The chemical
capacitance will therefore be observed at higher frequencies,
where the impedance tends to zero. Hence at larger values of
the parameter α (for the example of Figure 5b, it corresponds
to the case α = 0.4), the IS spectra display a single elliptic arc
which is associated with the polarization with a broad
distribution of relaxation lifetimes. Note that in the case of
transport limitations, the transmission line behavior could be
concealed by the Cole−Cole feature at high frequency.
The last distinctive behavior in the new model that we

consider is the presence of current source elements that appear
in the general case of Figure 1d. To describe the spectral
features caused by these elements, they have been included in
the general TL but without transport resistances, and the
results are shown in Figure 6. The model predicts that the
presence of the current sources could produce exotic behaviors
of the impedance spectra. As can be noticed from these plots,
current sources are responsible for an inductive behavior at low
frequencies (Figure 6a) and even at higher frequencies (Figure
6b). The inductive behavior is well-known in a variety of hybrid
organic−inorganic solar cells.33 These kind of features have
been previously reported in perovskite solar cells, an inductive

effect at low frequency,17 as in Figure 6a, and a loop in the
complex impedance plot at intermediate frequencies,29 as in
Figure 6b. It is satisfactory that such widely reported behavior is
well explained by a physical model that does not introduce any
ad hoc negative capacitance. Further analysis is required to
clarify the impact of these features in the cell performance.

5. CONCLUSION
In this work, we have developed a more general transmission
line model that takes into account ambipolar characteristics and
dielectric relaxation in semiconductor devices for photovoltaic
applications. Two new and important features appear in this
model: the presence of the frequency and density dependent
dielectric constant and the current sources in parallel with the
usual chemical capacitance in the vertical branches of the TL.
We have first discussed the different features of the possible IS
spectra without these current sources. We have demonstrated
that, for similar values of the chemical capacitances and in the
framework of the Debye dielectric relaxation, three semicircles
can be observed in the complex plane IS spectra. These
semicircles have been identified by the dielectric relaxation
processes as low frequency, drift-diffusion-recombination at
intermediate frequencies and the geometric capacitance in
parallel with both transport resistances at high frequency. We
then analyzed the case where two arcs can be observed in the IS
spectra, assuming both transport channels to be highly
conductive (no transport resistance). In this case, we have
shown that the first arc at low frequency is always associated
with the dielectric relaxation while the second one is the drift-
diffusion-recombination process and the size of both semicircles
varies relatively with the dielectric relaxation resistance. In this
case, the total resistance at zero frequency is always the
recombination resistance. We have also shown how to extract
the resistance of the dielectric relaxation and both chemical and
dielectric capacitances from such IS spectra. Subsequently, we
have analyzed the effect of a distribution of dielectric relaxation

Figure 5. (a) Simplified EC of Figure 2c in the absence of transport
resistance and a distribution of dielectric relaxation lifetimes in the
framework of the Cole−Cole approximation, Figure 1a. (b) Effect of a
distribution of relaxation lifetimes on the complex plane impedance
spectra for three different values of the parameter α. Note that the case
α = 0 corresponds to the case of a single relaxation time of Figure 4c.
(c) The associated real part of the total capacitance as a function of the
frequency of the small perturbation for the three different values of the
parameter α. For these simulations, the parameters are the same than
in Figure 4c.

Figure 6. Examples of IS spectra with the presence of the current
sources for the general circuit of Figure 1d without transport
resistance. Two cases are shown: (a) γn = 5 and γp = 1 (b) γn = −1
and γp = −10.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp5062144 | J. Phys. Chem. C 2014, 118, 18983−1899118989



lifetimes and have shown that the chemical capacitance can be
shifted at much higher frequencies than for a single relaxation
lifetime. In this configuration, only one elliptic arc can be
observed, which is associated with the dielectric relaxation.
Finally, the consideration of current sources produces some
exotic features in the form of inductive (or negative
capacitance) effect that have been previously observed in
perovskite solar cells.
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Photovoltaic Performance and Impedance Spectroscopy of Dye-
Sensitized Solar Cells based on Ionic Liquids. J. Phys. Chem. C 2007,
111, 6550−6560.
(10) Bisquert, J.; Marcus, R. A. Device Modeling of Dye-Sensitized
Solar Cells. Top. Curr. Chem. 2013, DOI: 10.1007/128_2013_471.

(11) Kim, H.-S.; Im, S. H.; Park, N.-G. Organolead Halide
Perovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C
2014, 118, 5615−5625.
(12) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith,
H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured
Organometal Halide Perovskites. Science 2012, 338, 643−647.
(13) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.;
Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.
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