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The paper investigates the bosonic aspects of exciton statistics in non-equilibrium situations. A kinetic
model is formulated treating the excitons in different states as chemical species, using a master equation
consistent with Bose–Einstein statistics. The model reveals that in two-state model for singlet–triplet
generation–recombination, the chemical potential of the lower state becomes pinned at high concentra-
tion. Analysis of exciton diffusion shows that the chemical diffusion coefficient is independent of the con-
centration, while the single particle (tracer) diffusion coefficient increases strongly due to the attractive
statistical force.
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1. Introduction

In semiconductors with low dielectric constant, photogenerated
or injected electrons and holes form excitons bound by the Cou-
lomb attraction, with energies�1 eV, and with a Bohr radius aBohr

of the order of nm. Exciton dynamics is governed by the kinetics of
transformation between the different excitonic states, i.e. orthoex-
citons (angular momentum triplet) and paraexcitons (angular
momentum singlet), and by the recombination lifetimes of such
states. Dynamical properties of the excitons are interesting in
many applications of inorganic semiconductors, such as room tem-
perature lasing in wide bandgap semiconductors like ZnO, either in
bulk [1] or nanoscale systems [2], and the observation of Bose–Ein-
stein condensates in Cu2O [3–6], as well as for many experimental
results on exciton–polariton dynamics [7,8]. In organic materials,
exciton diffusion and annihilation is a limiting step in the function-
ing of organic solar cells [9] and photosynthesis [10], and the ratio
of singlets to triplets is critical to the efficiency of organic light
emitting devices (OLEDs) [11].

An important tool for the analysis of solar cells is monitoring
the quasi-Fermi levels of photogenerated electrons and holes, since
their separation amounts to the photovoltage [12]. Photogenerated
excitons have a chemical potential too, l, and the aim of this paper
is to provide a picture of singlet–triplet occupation and exciton dif-
fusion coefficient as a function of the chemical potential. Our re-
sults have especial relevance for the recent studies of exciton
migration in self-organized molecular solids and nanocrystal
superlattices [13,14].

If the density of excitons n is such that n�1=3 > aBohr, the screen-
ing of the electron–hole interaction can be neglected and the exci-
ll rights reserved.
tons can be treated as pointlike particles that behave as bosons
[15,16]. The occupancy of a state of energy E relates to l as

f ðE;lÞ ¼ 1
eðE�lÞ=kBT � 1

ð1Þ

where kB is Boltzmann’s constant and T is the absolute temperature.
At l� E, Eq. (1) is characterized by a classical Boltzmann tail
f ¼ e�ðE�lÞ=kBT . In addition, when l � E the Bose–Einstein condensa-
tion occurs in the ground state above a critical concentration nc

(lower than the Mott density) and below a critical temperature
Tc ¼ 2pf�2=3ð3=2Þð�h2

=mÞn2=3
c [3–5].

Here, we discuss the circumstance in which the excitons densi-
ties depart from Boltzmann statistics as l approaches E. Peculiar
effects of the Bose–Einstein distribution occur, in comparison with
the more familiar Fermi–Dirac statistical features of electrons in
semiconductors, when we consider the occupation of different en-
ergy states (e.g. singlet–triplet), even without entering the quan-
tum condensation value nc .
2. Chemical kinetic models for excitons

As a motivating example, the thermalized occupation of an expo-
nential distribution in the bandgap, that forms the basis of the anal-
ysis of amorphous semiconductors, is shown in Fig. 1. Well above the
energy of the (electro-)chemical potential, both fermions and bo-
sons occupy the available states in a Boltzmann tail. The striking dif-
ferences occur at and below the energy of the chemical potential.
Electrons fill completely the states at E < EF, while excitons cannot
exist in states of energy <l. Furthermore, the exciton occupation
at E = l is larger than 1, so that excitons agglomerate at the lowest
energy state. In addition, in the thermalized situation the chemical
potential of excitons cannot rise higher than the lowest energy state.
Therefore the lowest energy state imposes an upper bound on l.
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Fig. 1. Energy diagrams showing the thermal occupation at temperature T = 300 K of an exponential DOS (tail parameter T0 = 800 K, total density Nt = 1020 cm�3). EF is the
Fermi level of electrons, l is chemical potential of excitons and E0 is the conduction band energy. The clear (green) shaded region indicates the bandgap states that are occupied,
and the dark (blue) shaded region indicates empty levels, as determined by (a) the Fermi–Dirac distribution and (b) the Bose–Einstein distribution functions (dashed line).
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Fig. 1b, though illustrative, is not particularly realistic, since
repulsion of the excitons in localized states makes them follow
the Fermi–Dirac statistics usually used in amorphous semiconduc-
tors [17]. However, excitons in semiconductors such as Cu2O exist
in different quantum states according to the angular momentum,
and the distribution of excitons and their chemical potentials in
the separate states is extracted by fitting the phonon-assisted
recombination lines to Bose–Einstein distributions [3–5]. It makes
sense, therefore, to consider the occupations of excitons in a model
of two states S and T separated by the energy e ¼ ET � Es.

Chemical equilibrium between a species in different states is
determined by a general equation that formulates the loss–gain
for the probabilities f of the separate states A and B, and is usually
denoted a master equation [18]:

dfA

dt
¼ �fACABhðfBÞ þ fBCBAhðfAÞ ð2Þ

Eq. (2) describes the rate of loss from state A proportional to: the
occupation fA, the transition rate CAB, and another (so far undeter-
mined) function h of the occupancy fB of the receptor state, plus a
symmetrical term for the gain of A species. The form of the transition
rates CAB depends on microscopic details of the process, but in any
case the transition rates must obey the detailed balance condition,
that imposes the constraint that the distribution of probabilities
governed by the master equation must reduce to the equilibrium
distribution in an unbiased steady state. This condition requires that
the rates of forward and backward transitions between a pair of
states balance in detail, i.e. they should be equal in equilibrium

fA

hðfAÞ
¼ CBA

CAB

fB

hðfBÞ
ð3Þ

The equilibrium statistics Eq. (1) at a common chemical poten-
tial [19] for states S and T requires lS ¼ lT, where

li ¼ Ei þ kBT ln
fi

1þ fi
ði ¼ S;TÞ ð4Þ

The simplest way that Eq. (3) becomes consistent with (4) re-
quires that

hðf Þ ¼ 1þ f ð5Þ
Similarly, for electrons hopping between localized states, one

uses the hðf Þ ¼ 1� f term in Eq. (2) [20,21], that becomes relevant
at high occupation, since this term forbids further hops to the
localized state as f � 1. In strong contrast to this, we appreciate
in Eq. (5) that for bosons, a large occupation of the receptor state
strongly increases the rate of transitions into that state. Therefore,
the well-known fermionic repulsion at large occupation becomes
an attraction ‘force’ in the case of bosons.

In addition, Eq. (3) requires that the ratio of rates for a transition
and its time reverse, CBA=CAB, is given by the Boltzmann factor of
the energy cost [22]. The individual transition rates usually take
the form CAB ¼ m0/ðEA; EBÞ, where m0 is a constant frequency that
indicates the timescale of the transitions, and u is a function of
the energies that states the probability of transitions in each direc-
tion and satisfies

/ðEA; EBÞ ¼ e�ðEB�EAÞ=kBT/ðEB; EAÞ ð6Þ

in order to obey detailed balance.
There is a fundamental assumption that allows one to formulate

the required equation for non-equilibrium transitions from the de-
tailed balance prescription: it is commonly assumed that the same
rates should be used for the dynamics of local transitions in non-
equilibrium situations.

Many papers in the literature of excitons dynamics [3,23,24]
use a master equation of the type

dfS

dt
¼ �kSTfS þ akTSfT � cSfS þ GS

dfT

dt
¼ a�1kSTfS � kTSfT � cTfT þ GT

ð7Þ

where kST and kTS are the kinetic constants for exciton exchange be-
tween S and T states, cS and cT are the reciprocal recombination life-
times of the separate states, a is the number of T-sites per S-site
(e.g., a = 3 for singlet–triplet) and GS (GT) is the rate of photogener-
ation per S (T) site. Eq. (7) is correct at f� 1 but is not well suited to
describe the bosonic aspects of excitons, since it clearly fails to sat-
isfy the criterion of Eqs. (3) and (4).

The simplest master equation that satisfies such requirement is
based on Eq. (5) and takes the form

dfS

dt
¼ �kSTfSð1þ fTÞ þ akTSfTð1þ fSÞ � cSfS þ GS

dfT

dt
¼ a�1kSTfSð1þ fTÞ � kTSfTð1þ fSÞ � cTfT þ GT

ð8Þ

while detailed balance further requires that

kTSa
kST
¼ expðe=kBTÞ ð9Þ



Fig. 2. Occupation (f) and chemical potential (l) of two excitonic states S and T
(a = 1), as a function of generation rate per T-site, GT. Parameters used in the
calculation: ES = 0, ET = 5kBT, T = 70 K.
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For simplicity we have not included Auger recombination terms
in Eq. (8) pertinent to inorganic semiconductors [25], but we re-
mark that Eq. (8) contains non-linear terms of statistical origin. It
should be also recognized that in more complex approaches to
the transition rates, than those used in our model, the non-linear
terms in Eq. (8) will remain, since they are imposed by the funda-
mental requirement of detailed balance. Additionally, it may be re-
quired to include in the model the rate of exciton formation from
precursor polaron pairs in luminescent polymers [11], or the kinet-
ics (governed by the exciton-binding energy) that relates the exci-
tons with the separated electrons and holes in crystalline
semiconductors. For simplicity, here we assume that generation
creates relatively fast the excitons with unity efficiency.

3. Non-equilibrium excitons statistics

In the following we explore the occupation of the two states at
steady generation following this model.

If we denote the total generation rate as G ¼ GS þ aGT, we have

G ¼ cSfS þ acTfT ð10Þ

To solve Eq. (8) in steady state, we define

k1 ¼ kST þ cS

k2 ¼ akTS � kST

B ¼ k1cT þ cSkTS � c�1k2G

C ¼ cTGS þ kTSG

ð11Þ

and we obtain

fS ¼
�Bþ ðB2 þ 4a�1k2cSCÞ1=2

2a�1k2cS
ð12Þ

From Eqs. (10) and (12) we can plot the occupancies of the two
excitonic states as a function of generation rates and the respective
non-equilibrium quasi-chemical potentials, defined in Eq. (4). This
is shown in Fig. 2, for generation in the high energy state, and in
Fig. 3 for the opposite case. Representative cases are shown accord-
ing to the relative values of the kinetic constants for exchange and
recombination.

In all the cases we find a linear regime at low generation rate,
fS / fT / G. The relative occupancies of the two states in this re-
gime can be derived from Eq. (7)

fT

fS
¼ ðkST þ cSÞGT þ a�1kSTGS

akTSGT þ ðkTS þ cTÞGS
ð13Þ

The results for generation in either upper or lower state when
f� 1 are given in Table 1. For generation in the high energy state,
the occupancies maintain the equilibrium ratio fT=fS ¼ e�e=kBT , unless
cS� kST. This last case is shown in Fig. 2d, where it is observed that
the upper state exceeds the population of the lower state, at low con-
centration. For generation in either state, if kST is much larger than
recombination rates the chemical potentials remain equilibrated,
Figs. 2b and 3b, but the chemical potentials split if recombination
is faster than exchange, Fig. 2c and d, and Fig. 3c and d. It should
be noted in Figs. 2 and 3 and Table 1 that when the chemical poten-
tials separate, due to strong recombination, the chemical potential
remains higher in the state where generation occurs. It is also ob-
served in Fig. 3 and Table 1 that for generation in the lower energy
state, we always have fT < fS, and the crossover of the occupations
as that in Fig. 2d is therefore not possible.

In all cases in Fig. 2, the bosonic aspects come into play at high
occupation: the concentration in the low energy state grows
unlimited (eventually entering the quantum degeneracy), while
the concentration in the upper state remains stable by the pinning
of the chemical potential below ET. In Fig. 3d, at increasing GS, there
is an abrupt rise of the concentration, characterized by supralinear
dependence on GS. We find that in all circumstances lS comes clo-
ser to ES than lT does to ET, even for T -generation and very strong
recombination in S, Fig. 2c and d, where we observe that fT achieves
a stationary value. Therefore, one should expect that in two-state
systems only the lower energy state crosses the Tc(nc) critical line to-
wards quantum degeneracy, and this has been reported for ortho-
excitons in Cu2O, which lie lower than paraexcitons by 12 meV [6].

4. Chemical diffusion coefficient of excitons

We now consider how the diffusion of excitons may be affected
by the deviation from Boltzmann statistics. Therefore, we wish to



Fig. 3. Occupation (f) and chemical potential (l) of two excitonic states S and T, as a
function of S-generation rate per S-site, GS. Parameters used in the calculation:
ES = 0, ET = 5kBT, T = 70 K.

Table 1
Relative occupancies with respect to equilibrium and separation of quasi-chemical
potentials in two-state model, at low concentration

fT
fS

ee=kBT lT�lS
kBT

GS ¼ 0 1þ cS
akST

lnð1þ cS
akST
Þ

GT ¼ 0 ð1þ cT
akTS
Þ�1 � lnð1þ cT

akTS
Þ

Fig. 4. Representation of several quantities for accumulation and diffusion of
excitons of energy E0 = 0.5 eV, as a function of chemical potential. (a) Exciton
density. (b) Jump diffusion coefficient and thermodynamic factor. The following
parameters were used in the calculation: T = 300 K, N0 = 1.0 � 1020 cm�3, m0 =
1012 s�1, a ¼ N�1=3

0 .
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parameterize the main transport coefficients in terms of the chem-
ical potential. First, we must determine the diffusion coefficient
that relates the flux of excitons to the gradient of their concentra-
tion (Fick’s law)
Jn ¼ �Dn
@n
@x

ð14Þ

Dn is usually termed the chemical diffusion coefficient [26,27].
Another quantity of interest is the jump (or tracer) diffusion coeffi-
cient, DJ, that describes single particle random walk. Both are re-
lated by the expression [28]

Dn ¼ vnDJ ð15Þ

where vn is called the thermodynamic factor and is defined as
follows

vn ¼
n

kBT
@l
@n

ð16Þ

For the Boltzmann statistics vn = 1, and there is no difference
between jump and chemical diffusion coefficient, but when the
statistics departs from ideality, vn can substantially differ from 1.
We should remark that for electrically charged particles, the mobil-
ity is proportional to DJ according to the generalized Einstein rela-
tion [28,29]. Calculation of the thermodynamic factor gives

vn ¼
1

1þ f
ð17Þ

In order to find Dn, we start from a master equation of the type
of Eq. (8) describing transitions between neighbor exciton sites 1
and 2 of the same energy, separated by a distance a, and we follow
the method previously explained in Ref. [30] for electrons. The flux
of excitons moving from site 1 to site 2 is J1 = m0f1(1 + f2), where m0

is the rate constant for exciton hopping, and the flux in the oppo-
site direction is J2 = m0f2(1 + f1). Therefore, the net flux is

Jn ¼ J1 � J2 ¼ �m0ðf2 � f1Þ ¼ �m0a2 ðn2 � n1Þ
a

ð18Þ

In the last equality of Eq. (18) we have expressed the occupa-
tions in terms of concentrations in the respective sites. By compar-
ison with Eq. (14), it follows from Eq. (18) that the chemical
diffusion coefficient of excitons is a constant Dn = m0a2. This is be-
cause the non-Boltzmann terms in the separate fluxes of forward
and backward jumps between two neighbor sites compensate. Ex-
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actly the same result is found for electrons in single occupancy
sites [28,30]. For the jump diffusion coefficient of excitons, we ob-
tain from Eq. (15)

DJ ¼ ð1þ f Þm0a2 ð19Þ

The calculated quantities are shown in Fig. 4 as a function of l.
The remarkable result is that since the thermodynamic factor de-
creases when f � 1, the jump diffusion coefficient increases with
respect to the value at dilution, see Fig. 4b. A recent survey of elec-
tron transport in disordered materials [28] shows that at high
occupation the exclusion effect always causes a repulsive force that
decreases the mobility (i.e. vn > 1 in all cases). In contrast to this,
the favoured increasing occupation of exciton sites at high chemi-
cal potential causes an attractive force that accelerates the single
particle transport.
5. Conclusion

A simple chemical–physical model of excitons dynamics, based
on the master equation consistent with Bose–Einstein statistics at
high concentration, shows (a) the limitation to the rise of chemical
potential of lower energy state in two-state models; (b) a boost of
the single-particle diffusion coefficient.
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