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Trap-limited mobility in space-charge limited current in organic layers
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a b s t r a c t

Space-charge limited current transport in organic devices, relevant to the operation of a
range of organic optoelectronic devices, is analyzed in the frequency domain. The classical
multiple trapping picture with one transport state and one trap level is used as the basis for
the descriptions. By varying the energetic and kinetic properties of the traps, we show that
the admittance and the capacitance spectra are considerably modified depending on the
interplay between the trap-limited mobility and the trap kinetics. We point out that capac-
itance steps at low-frequency, usually found in experiments, are observed only for slow
traps.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of electroluminescence in organic materi-
als [1] launched a vast research effort for improving the
performance and stability of organic semiconductors ap-
plied in optoelectronic devices such as organic light-emit-
ting diodes (OLEDs) [2]. Polymer-based OLEDs are quite
appealing for their easy processability by spin coating
and ink-jet printing techniques [3]. However, further
understanding of the physical behavior of such materials
is needed. For instance, the description of the charge trans-
port in organic layers by space-charge limited current
(SCLC) model requires to include field [4–6] or density-
dependent [7] mobility according to the percolation mod-
els [8]. Experimentally, the determination of transit times
in single-carrier devices has been widely used to measure
the mobility by time-of-flight (TOF) [9] and impedance
spectroscopy techniques [10,11], among others [12]. It
has also been recognized that the role of energetic disorder
is crucial for an adequate knowledge and control of the

properties of organic transport layers. Transport in a sin-
gle-carrier device has been often rationalized in terms of
an extended state and a distribution of traps in the band-
gap [13–15]. In this approach, the traps produce a decrease
of the transport rate in the extended states [16]. However,
in general the dynamics of traps is far more complex, since
the traps relaxation intersects with the transport features
throughout the layer [17]. While the trapping-diffusion
dynamics can be solved completely in homogeneous situa-
tions [18], the typical carrier distribution at high injection
currents in an organic layer in the SCLC regime is highly
inhomogeneous [19].

The aim of this paper is to go beyond a quasistatic
approximation to the trap-limited mobility (in which free
and trapped charge remain in local equilibrium [13,20])
and to treat rather generally an apparently simple prob-
lem, a two level system composed of a transport state
and a single trap level. The advantage of this model is that
we can fully classify the different dynamic regimes of the
system by the interplay of the relevant kinetic constants.
This gives us physical insight in the interpretation of more
general systems with a distribution of localized levels
(e.g., exponential or Gaussian) which can be calculated
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numerically, a method also applied to dual-carrier devices
[10,21,22]. However, the latter systems are beyond the
scope of this paper.

The problem treated in this paper has been already con-
sidered some decades ago by Dascalu [23,24] and Kassing
[25,26], for the particular case of a slow-shallow trap
(i.e., when the transit time is shorter than trapping time)
and this case is also solved numerically in the present pa-
per. In addition, we consider the dynamic results in the fre-
quency domain for fast traps, and also for deep traps. By
formulating a general analytical model valid for a fast-shal-
low trap, we find a delay in the transit time (and thus, a
mobility decrease) due to multiple trapping, as measured
by means of impedance techniques [27].

The paper has the following structure. Firstly, a mathe-
matical description is presented of the single-trap model,
secondly, physical implications according to the applica-
tions of the model are discussed, and finally, we provide
the main conclusions.

2. Single-trap model

The SCLC for single-carrier transport (neglecting diffu-
sion) of electrons in a transport level with density nc that
drift in the electric field F, a trap level of occupancy ft

and total density Nt, is described by: the continuity equa-
tion, the drift–current equation, Poisson equation and the
trap dynamics equation, respectively [9,18]

dJ
dx
¼ 0 ð1Þ

J ¼ ql0ncF þ ere0
@F
@t

ð2Þ

dF
dx
¼ q

ere0
ðnc þ NtftÞ ð3Þ

@ft

@t
¼ cnc½1� ft� � eft ð4Þ

Here q is the elementary charge, l0 is the mobility, ere0 the
dielectric constant, and c and e are the coefficients for elec-
tron capture and release, respectively. The potential can be
calculated by integrating the electrical field along the
thickness L

V ¼
Z L

0
Fdx ð5Þ

The population of the extended states at the energy le-
vel Ec, for a non-degenerate semiconductor, relates to the
Fermi level EF as

nc ¼ NceðEF�EcÞ=kBT ð6Þ

where Nc is an effective density of states in the transport
level (conduction band). Assuming that the trap level at
energy Et reaches equilibrium with the extended states
(with the same Fermi level), the trap occupancy is given by

ft ¼
1

1þ eðEt�EF Þ=kBT
ð7Þ

In steady state, Eq. (4) gives

ft ¼
1

1þ e=ðcncÞ
ð8Þ

Therefore, the detailed balance condition provides the
following relationship for the trap emission and capture
coefficients:

e ¼ cNceðEt�EcÞ=kBT ð9Þ

Let us denote steady-state by �x and small perturbation
by x̂ applied at a certain angular frequency x. Therefore
every electrical variable can be expressed as x ¼ �xþ x̂ to
linearize the whole system of equations up to the first or-
der [28,29]. As shown in Ref. [17], by solving Eq. (4) for a
small perturbation, we obtain

f̂ t ¼
1
�nc

�f tð1� �f tÞ
1þ ix=xt

n̂c ð10Þ

This term gives the contribution to the spectra of the
capacitance and conductance of the trap. The trap fre-
quency is defined as

xt ¼
e

1� �f t

ð11Þ

This is the maximum frequency that the trap is acting as
such, since at higher frequencies the trap cannot follow the
ac perturbation, as will be described in Section 3. Inserting
Eq. (9) in Eq. (11), we find the dependence of xt on the trap
energy and the occupation, as

xt ¼
cNceðEt�EcÞ=kBT

1� �f t
ð12Þ

It should be remarked that in the SCLC regime, �f t is po-
sition-dependent along the organic layer. The impedance is
defined as the quotient of potential to current density,

ZðxÞ ¼ V̂ðxÞ
ĴðxÞ

ð13Þ

V̂ðxÞ is determined by spatial integration of F̂ðxÞ from the
solution of the above described model. The boundary con-
ditions at the injecting contact used to solve the electrical
variables along the thickness in dc and ac conditions are
[30,31]

�ncðx ¼ 0Þ ¼ Nc and F̂ðx ¼ 0Þ ¼ 0 ð14Þ

Capacitance and conductance are defined as follows:

C 0ðxÞ ¼ Re
1

ixZðxÞ

� �
ð15Þ

gðxÞ ¼ Re
1

ZðxÞ

� �
ð16Þ

3. Results and discussion

In this section we show the results of the calculations of
the capacitance and the conductance spectra for different
trap properties and voltages, compared to the trap-free
case. We first describe the latter case as a reference, and
then discuss variations of energetics (Et), by considering a
shallow and a deep trap level, and the trap kinetics (c),
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for a fast and a slow trap. The different configurations are
given in Table 1.

3.1. Trap-free

The well-known trap free SCLC model with constant
mobility is given by the analytical expression for stationary
and impedance responses as [32]

J¼ 9
8
el0

V2

L3 ð17Þ

ZðxÞ ¼ 6

g0ðixs0Þ3
1� ixs0þ

1
2
ðixs0Þ2� expð�ixs0Þ

� �
ð18Þ

where the transit time, the geometrical capacitance and
the conductance are, respectively,

s0 ¼
4
3

L2

l0V
ð19Þ

Cg ¼
e
L

ð20Þ

g0 ¼
dJ
dV
¼ 3

s0
Cg ð21Þ

For low-frequency, the admittance is

YðxÞ ¼ g0 þ ix
3
4

Cg ð22Þ

and for high-frequency it is

YðxÞ ¼ 2
3

g0 þ ixCg ð23Þ

It is well-known that the capacitance spectrum makes a
step from 3

4 Cg to Cg at around the transit time frequency,
i.e., when the small perturbation of charge carriers injected
by the frequency perturbation voltage is able to arrive at
the collecting contact. However, in experimental data, this
ideal behavior is usually distorted, mainly at low-frequen-
cies, by the trap contribution to capacitance.

3.2. Steady-state characteristics of organic layers with
shallow and deep traps

Experimental measurements of J–V curves have been
used to determine the transport properties in organic lay-
ers [33,34]. Simulations of current density–voltage curves
and the Fermi level distributions are displayed in Fig. 1
for two different trap energy levels configurations. These
results are well understood and described in the litera-
ture [35]. For a shallow trap, the trap population is much
less than the population of the transport level, hence the
electric field distribution is not significantly altered, caus-
ing only a slight variation in the Mott–Gourney square
law

J � 9
8
ehl0

V2

L3 ð24Þ

where h is a carrier-density dependent factor of trapped
and free charge defined as [27]

h�1 ¼ 1þ h
�nti
h�nci

� �
ð25Þ

with the brackets denoting an average over the thickness
of the film. For a deep trap, the occupancy of the trap level
increases and the trapped charges play a crucial role in the
current density–voltage curves. At low bias, most carriers
are trapped, thus significantly altering the carrier and elec-
tric field distributions with respect to trap-free case, lead-
ing to an abrupt increase of the current slope, J / Vm with
m P 2. At high bias, the trapping sites are already filled
and all the additional injected carriers are located in the
transport level. This situation bends the curve from a high-
er voltage exponent than 2, towards a square law
dependence.

3.3. Dynamic characterization of shallow traps

Let us now focus our attention on the dynamic
properties of the electrical variables (capacitance and

Fig. 1. Model simulations of shallow (Ec � Et ¼ 0:1 eV) and deep
(Ec � Et ¼ 0:5 eV) trap configurations represented by blue solid lines
and red dashed lines. (a) Current density voltage-characteristics for a
shallow trap and a deep trap are plotted by blue dots and red triangles.
Fittings provide the exponent of the voltage. (b) Fermi level representa-
tions at 6 V along the thickness, for a shallow trap (blue solid line) and a
deep level (red dashed line). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)
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conductance) in the case of the shallow trap. A general out-
line of the simulation results is displayed in Fig. 2. To accu-
rately determine the ac transit times sac , it is worth to
apply the representation of negative differential suscep-

tance ð�DBðxÞ ¼ ImðYðxÞÞ ¼ �xðC0ðxÞ � CgÞÞ, that pro-
vides peaks at certain frequencies fmax such that [36]

sac � 0:72 � f�1
max ð26Þ

Fig. 2a shows the capacitance spectra (normalized to Cg)
for the trap-free case, as a reference, and a shallow trap
with two different trap kinetics, fast and slow (as specified
below). At low-frequencies, the presence of a shallow trap
in the organic layer implies (1) a deviation of the capaci-
tance spectra for the slow case, and (2) of transit time for
the fast one. At high frequencies, all the spectra converge
to Cg with smooth and decaying oscillations as theoreti-
cally expected. In experiments, a slight decrease of the
capacitance occurs due to the dielectric relaxation of the
material [37].

As for conductance, Fig. 2b, the normalized low-fre-
quency value decreases by a factor h and the calculated
ac transit time (normalized to s0) is increased by h,
although only for fast traps, thus in Fig. 2b we obtain for
low-frequencies g ¼ 0:71g0 and for high frequencies,
g ¼ 2hg0=3. All these behaviors will be modeled and ex-
plained in terms of a quasi-equilibrium between the two
states (trapping and transport levels) in the forthcoming
subsections.

3.4. Fast-shallow traps

When the trap kinetics is fast, quasi-equilibrium pre-
vails between carriers in the trap and transport levels. In
this case we expect the standard formula of Rose [27] for
trap limited transport to be valid

l ¼ hl0 ð27Þ

and therefore, the trap-limited transit time is

s ¼ h�1s0 ð28Þ

In order to check Eq. (27), in Fig. 3 changes in the pop-
ulation of the traps were imposed by modifying Nt. The
resulting capacitance spectra are well described by the
trap-free case formulas by using the trap-limited values s
and g instead of s0 and g0. In particular we obtain

g ¼ dJ
dV
¼ 3

s
Cg ¼ hg0 ð29Þ

The inset of Fig. 3 shows that Eq. (28) is indeed satisfied.
The physical interpretation of this situation is given in

terms of the interplay between trapping and detrapping
and the carrier transit time. If fast-shallow traps are pres-
ent in an organic layer, a delay in the transit time is ex-
pected and thereby, a mobility decrease. An experimental
method to corroborate whether this kind of energetic dis-
order exists, consists on the evaluation of the ac transit
time from admittance spectroscopy, Eq. (26), and the dc
transit time, Eq. (19). The possible deviation should be
attributed to the presence of fast-shallow traps.

3.5. Slow-shallow traps

If the trapped charge is not able to achieve the quasi-
equilibrium with the carrier concentration in the transport

Fig. 2. Simulation spectra for shallow traps at 2 V. Fast traps are plotted
by pink lines, slow traps by orange dashed lines and trap-free spectrum
by black. (a) Capacitance spectra normalized to Cg for fast and slow traps.
Low-frequency increase is displayed for slow traps whereas not for the
fast ones. (b) Conductance spectra normalized to g0 for fast and slow
traps. (c) Negative differential susceptance �DBðxÞ normalized to Cg to
extract transit times. In the case of fast trapping, ac transit time is
sac ¼ 1:36s0 (s0 ¼ 221:6 ls) with h�1 � 1:40, whereas for slow trapping
no deviation from the trap free is observed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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levels, the spectra present a large low-frequency capaci-
tance that increases above the 3Cg=4 value, Fig. 4. When
exceeding the trap frequency xt of Eq. (11), capacitance
rapidly decreases as trapping action ceases for the rest of
the frequency range. In contrast to the previous case, here
carriers are able to cross the organic layer and reach the
collecting contact before being trapped, avoiding any delay
and following the trap-free transit time s0. Dascalu and
Kassing have given the analytical expression for the
impedance in this situation [23–26]

ZðxÞ ¼ 6a
g0

X1
k¼0

Cðhaþ 1Þ
Cðhaþ kþ 2Þ

ð�ixs0Þk

kþ 3
ð30Þ

with a being

aðxÞ ¼ 1þxc

xe

1
1þ ix=xe

ð31Þ

Here xc ¼ cðNt � h�ntiÞ and xe ¼ bðh�nci þ NceðEt�EcÞ=kBTÞ are
the reciprocal lifetimes for electrons in the conduction
band and in the trap level, respectively. For low-frequency
with Nt � h�nti, we have the approximation [26]

YðxÞ ¼ g þ ix
Cg

xes0
ð32Þ

being g ¼ hg0 and for high-frequency

YðxÞ ¼ 2
3

g þ ixCg ð33Þ

The low-frequency capacitance increase is usually found
in experiments for single-carrier devices [11,38,10] and,
according to our model, due to the slow-shallow trap con-
tribution. The model also predicts a coincidence in transit
times by ac and dc techniques unlike the previous case.

In Fig. 5, it is shown that the low-frequency capacitance
dependence with the voltage exhibits a peak when quasi-
Fermi level crosses the trap energy level (Et) corresponding
to a maximum in the trap contribution to the capacitance,
Eq. (10). The low-frequency conductance is similar to the
trap-free value at high voltages since free charges domi-
nate the injected carrier concentration.

3.6. Limit between fast- and slow-shallow traps

In the previous subsection, we have shown two extreme
behaviors dominated either by transit or trapping time. It
is interesting to establish the conditions that determine
which regime prevails. Let us define the trap and transit
time frequencies as

hxtri �
cNceðEt�Ec Þ=kBT

1� h�f ti
ð34Þ

xtt ¼ 2p=s0 ð35Þ

Fig. 4. Model representations of the capacitance spectra for slow-shallow
traps at voltages 6, 4 and 2 V, from top to bottom. The trap-free spectrum
is pictured in black.

Fig. 5. Calculations of the low-frequency capacitance (violet solid line)
and conductance (cyan dashed line) versus voltage at 1 Hz. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 3. Simulated capacitance spectra steps for fast-shallow traps at 6 V
(s0 ¼ 73:8 ls) with varying trap densities, from left to right: Nt = 8 � 1017,
4 � 1017, 2 � 1017, 0 cm�3. Inset shows an identification of the transit
times between the models discussed in the text, and the ac conductance
calculation.
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If the trap frequency is larger than the reciprocal transit
time, the fast trap regime with the multiple trapping tran-
sit time s ¼ h�1s0 is present. In the opposite situation, the
slow trap regime occurs with the trap-free transit time s0

value.
Inserting Eqs. (34) and (35) in hxtri � xtt , it is possible

to quantify a critical capture coefficient cc as

cc �
2p
s0

1� h�f ti
NceðEt�EcÞ=kBT

ð36Þ

According to the parameters of Table 1, this quantity is
estimated as cc � 10�13 cm3=s. If a trap capture coefficient
is lower than this critical value the trap is slow, whereas if
it is higher, the trap is fast. In Fig. 6, normalized transit
times are plotted versus normalized trap frequency and
both transit time regimes are depicted showing a narrow
transition from the trap-free formula to the multiple trap-
ping one.

As pointed out at the end of Section 3.4, to experimen-
tally determine if shallow traps of an organic layer are slow
or fast, the technique consists in comparing the transit
times from ac (Eq. (26)) and dc (Eq. (19)). A coincidence
would give us the slow result whereas a deviation indi-
cates the presence of fast traps.

3.7. Comparison between dynamic and static capacitance

Dynamic capacitance, obtained from admittance spec-
troscopy at low-frequencies, is frequently compared to
the well-known static one [13]. In SCLC, the low-frequency
capacitance has a value of 3Cg=4 [32,39], whereas the static
capacitance is set at 3Cg=2 [13]. This reduced factor of 1/2
in the dynamic capacitance is attributed to the three con-
tributions to the ac current (velocity modulation, density
modulation and displacement term) [26]. In a two level
system with a shallow trap, the static capacitance is calcu-
lated by integrating the charge stored in the device per
voltage unit as [13]

Cst ¼
q
V

Z L

0

�ncðxÞdxþ
Z L

0

�ntðxÞdx
� �

ð37Þ

where V is the bias applied along the organic layer. In
Fig. 7, the static capacitance is plotted versus bias-voltage.
It is observed that the value remains at 3Cg=2 as in the
trap-free case. At low voltages, the capacitance contribu-
tion essentially comes from the majority of the charge
stored in the shallow trapping sites whereas at high volt-
ages the capacitance is mainly due to free charge.

3.8. Dynamic characterization of deep traps

In contrast to the shallow trap energy level, where
occupation is quite low, in the case of a deep trap, the
opposite situation occurs as occupation is approaching
the unity. This deviation strongly determines the contribu-
tion to the impedance from the trap dynamics Eq. (4). The
trap levels are so heavily occupied that the temporal vari-
ation of �f t is governed by the emitting rather than the trap-
ping term. The numerical solution for the capacitance and
the conductance is shown in Fig. 8a and b displaying dis-
tinct features with respect to the trap-free spectrum: a

Table 1
Material parameters used in the simulation of transport in an organic layer.

L (nm) Nc (cm�3) l0 (cm2/(Vs)) Et (eV) Nt (cm�3) c (cm3/s)

125 1019 4.7 � 10�7 1017

Trap properties Shallow �0.1 Fast 10�12

Deep �0.5 Slow 10�14

Fig. 6. Simulations of normalized transit times calculated from the ac
conductance method versus normalized trap frequency at 6 V and
Nt = 3 � 1017 cm�3, describing a step up from the classical transit time
s0 ¼ 73:8 ls to the multiple trapping one, sac ¼ h�1s0 with h�1 � 2.
Classical transit time occurs for normalized trap frequency (xtt ¼ 85 kHz)
hxti=xtt < h and multiple trapping for hxti=xtt > 1 according to dotted
vertical marks.

Fig. 7. Model calculations of the static capacitance versus voltage for a
shallow trap (black squares). Free carrier contribution (solid and empty
triangles) and trap carrier contribution (solid and empty circles) to static
capacitance. Solid and empty symbols are for Nt = 1 � 1017, 5 � 1017 cm�3,
respectively.
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low-frequency capacitance below 3Cg=4, a conductance
spectrum significantly lower, and increased oscillation in
the transition from low to high frequencies. These results
are independent of the traps kinetics, which is another par-
ticularity in comparison to the shallow-trap results.

4. Conclusions

The single-trap model has been described and numeri-
cally solved for SCLC for impedance studies in order to

determine the dynamical properties of carrier transport
and storage depending on energy (shallow and deep) and
kinetics (fast and slow) of the trap. For a fast-shallow trap,
an analytical model is provided and validated by means of
the multiple trapping formula for mobility l ¼ hl0, where
h depends on the steady-state solution (trapped and free
charge). For a slow-shallow trap, the available analytical
model has been revised. Both regimes, fast and slow, have
been characterized depending on the dominance of either
trapping or transit processes and an experimental method
has been also provided by comparing dc and ac transit
times. A deep trap results in a decrease in the low-fre-
quency capacitance (with respect to the trap-free case)
and also in a delay in the transit times.
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