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A calculation of the chemical diffusion coefficient of electrons,Dn, in dye-sensitized solar cells, is presented,
in the framework of the hopping model, where electron transport occurs by direct transitions between localized
states in an exponential distribution. The Fermi-level dependence ofDn in the transport energy approximation
is exactly the same as that in the multiple trapping model, but there are differences concerning the meaning
of the parameters governing electron transport and the values of relevant energy levels inferred from
experiments. The hopping model appears to describe well the experimental data ofDn from high-efficiency
dye solar cells at various temperatures.

The subject of electron transport in nanostructured semicon-
ductors surrounded by electrolytes has been amply studied,
especially in relation to the characteristics of dye-sensitized solar
cells (DSC).1 The physical quantity of central interest is the
chemical diffusion coefficient of electrons,Dn,2 which is
measured by the common techniques such as intensity modu-
lated photocurrent spectroscopy (IMPS), transient photocurrent
under a small perturbation of the illumination, or impedance
spectroscopy (IS).3,4 Dn has been reported as a function of Fermi
level,EF, in a large number of publications. However, significant
uncertainties remain on the interpretation of the results that have
an important impact on the wider topic of modeling and
characterization of DSC devices.3-7

Motivated by such problems, this paper proposes an alterna-
tive interpretation ofDn(EF) based on the hopping model for
carrier transport in disordered solids,8 where electron displace-
ment occurs by direct transitions via localized states.9-12 This
is contrast to the widely used framework of multiple trapping
(MT) where electron displacement takes place via extended
states at the conduction band edge atE0, with the free electron
diffusion coefficient,D0, being reduced toDn by trapping-
detrapping events.2,13 Here, we calculateDn(EF) directly using
the hopping model by integration of the jump frequency to the
transport energy,Etr.12 The calculation shows thatDn in hopping
transport has a Fermi-level dependenceidentical to that in the
MT model, as expected from the meaning of the transport energy
concept.14-16 However, the interpretation of the microscopic
parameters and temperature dependence inDn(EF) is quite
different. We compare the merits and limitations of both models
using the experimental data of IS from high-efficiency DSC at
different temperatures.5

Let us comment briefly on the main features of the MT model
with localized states exponentially distributed in the energy scale
and randomly distributed spatially.2,4 The distribution has the
expression

wherekB is Boltzmann’s constant,NL is the total density, and
T0 is a parameter with temperature units that determines the
depth of the distribution. We assume that the temperatureT <
T0. The carrier density in the localized states,nL, is found as

wheref(E - EF) is the Fermi-Dirac function

At room temperature, the chemical capacitance of the
localized states is well described by the following expression17

whereq is the positive elementary charge. Alternatively, the
chemical capacitance of the extended states, with effective
densityN0, is

The total capacitance

is shown in Figure 1a. It is observed that the slope is 1/kBT0

when the Fermi level is deep in the band gap and changes to
1/kBT when the Fermi level approaches the conduction band.
The calculation of the chemical diffusion coefficient uses the
equation2* E-mail: bisquert@fca.uji.es.
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Therefore,Dn ≈ D0 (the free electrons diffusion coefficient)
when the Fermi level is close to the conduction band and cancels
the transient effects of the traps. Alternatively, when the Fermi
level is deep we have from eq 7

According to eq 8, the effect of trapping is described by a
Fermi-level dependent prefactor that reduces the chemical
diffusion coeficient with respect toD0. These results are
illustrated in Figure 1b. The conductivity,σn, can be obtained
from the generalized Einstein relation, which gives the expres-
sion4

Equation 9 reduces to

Thus,σn depends only on the parameters of the free electrons,
corresponding to the fact that in the MT model the traps do not
affect the steady-state transport.4 Therefore, the slope ofσn is
1/kBT at all values ofEF, see Figure 1a.

Recently, this model has been applied extensively in DSC
(for the multiple trapping regime in whichnL >> n0, i.e. EF

<< E0).3,4 We show in Figure 2 the experimental results of
chemical capacitance and diffusion conductivity derived from
IS measurement in ref 5 at different temperatures on a high-
performance DSC formed with nanostructured TiO2 and a I-/I3

-

redox electrolyte. First, the chemical capacitance in Figure 2a
shows the characteristic exponential dependence and is inde-
pendent of temperature, confirming that the capacitance mea-
sures the DOS at the Fermi level as indicated in eq 4. In contrast
to this, the conductivity in Figure 2b shows a strong dependence
of temperature. This is because the conductivity is thermally
activated as expected from eq 10, assuming that the free electron
diffusion coefficient,D0, depends weakly on the temperature.
In fact, the fits of Figure 2b to straight lines give values close
to the thermal energies,kBT ) 0.0236 and 0.0288 eV at 273
and 333 K, respectively, in agreement with eq 10. The chemical
diffusion coefficient, evaluated fromCµ andσn with eq 9, and
shown in Figure 2c, obviously follows well the Fermi-level
dependence indicated in eq 8, at the two measured temperatures.

These results show that the multiple trapping model gives a
good description of electron transport in DSC, including the
temperature-dependent features, as is agreed by many in the
literature.13 Nonetheless, it must be remarked that the data in
Figure 2c, and similar data in the literature, only give the raising
part of the model in Figure 1b, and not the saturation toD0.
Furthermore,D0 has not been detected by any of the methods
used in the literature to determineDn(EF). So from the slope of
the lines in Figure 2c, the only parameter that can be determined
is T0. There are, therefore, important model parameters that
cannot be extracted, namely,NL, N0, E0, and D0. These are
lumped in a prefactor in eq 8 and cannot be separated. This is

a very significant problem that pervades the literature of DSC
modeling because such parameters are needed to describe DSC
operation.18,19
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Figure 1. Scheme shows the trajectory for electron transport by
hopping between localized states in the band gap: upward hops
predominantly occur to the transport level (Etr). Below is shown the
representation of several quantities for charge accumulation and
transport in an exponential DOS with the conduction band edge at the
energy E0 ) 1 eV. EF is the Fermi level potential. (a) Chemical
capacitance and conductivity. (b) Chemical diffusion coefficient,
calculated in multiple trapping approximation, and in the hopping model
with the transport energy concept, both with the numerical integration
of the average jump frequency, and with the analytical expression
calculated in the text (eq 24). The following parameters were used in
the calculation:N0 ) 5.0 × 1021 cm-3, NL ) 1021 cm-3, T ) 275 K,
T0 ) 800 K, D0 ) 10-2 cm2s-1 (for multiple trapping),R ) 0.5 nm,
andν0 ) 5 × 1012 s-1 (for hopping transport).
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Another interesting observation in Figure 2c is the point of
intercept of the lines at the different temperatures. According
to eq 8, this marks the activationless transport atE0, that is, the
position of the TiO2 conduction band with respect toEredox(I
-/I3

-).20 However, the experimental valueE0 ≈ 0.7 eV that is
thus deduced from Figure 2c is clearly too low with respect to
the values commonly admitted in the DSC area (0.9-1.0
eV).21,22 Therefore, the level for transport seems to be situated
some 0.2 eV below the conduction band; this fact was already
acknowledged in ref 6. Because this is not compatible with the
standard formulation of the MT model, as described above, in
the following we provide a description of the hopping model,

where this feature occurs by construction, and we calculate
explicitly the chemical diffusion coefficient.

In the hopping model, the carriers move by direct transitions
between the localized states of the distribution in eq 1.10,11The
transition probabilities are given by the upward and downward
jump rates in the Miller-Abrahams23 expression

where ν0 is the attempt-to-jump frequency,r is the distance
between sites,R is the localization radius, andEj and Ei, are
the energies of the target and starting sites, respectively. Under
very general conditions, the chemical diffusion can be expressed
in terms of the jump diffusion coefficient,DJ, and thermody-
namic factor,øn, as4,24

The thermodynamic factor can be written

and for the distribution in eq 1 it has a constant value,øn )
T0/T.2 The jump diffusion coefficient can be expressed as4,24

in terms of a mean effective jump frequency,<ν>, and the
square of effective jump length,<r 2>. It was shown in previous
work that in multiple trapping models eq 14 reduces to eq 7,2

so that the chemical diffusion coefficient is readily obtained
from the capacitances of free and localized states.

In the hopping model, we must obtainDJ by directly
averaging the hopping rates of eq 11 over disordered spatial
and energy configurations, taking into account the occupation
established by the value of the Fermi level, in order to obtain
the mean jump frequency<ν>. Because the hopping rates
depend exponentially both on the energy difference and on the
distance between pairs of sites, analytical calculation of such
an average is usually very difficult, but it is partially simplified
in a system with a steep distribution of localized states, where
the hopping process is well described with the concept of
transport energy.9,11 The rationale for such an approach is that
in equilibrium the transport is governed by the fastest hop of a
charge carrier. The most probable upward jump corresponds to
an optimized combination of the distance and energy difference.
Let a ) NL

-1/3 be the mean distance between localized sites.
The average distance for states below any energyE1 is

Inserting this average distance in eq 11, one can find the
energy that optimizes the upward jump rateνv. The result12,16

is that, independent of the energy of the starting site, the fastest
hops occur toward sites in the vicinity of a specific level, the
transport energyEtr, as indicated in the scheme of Figure 1,

Figure 2. Representation of several quantities for charge accumulation
and transport at different temperatures, in a high-efficiency (10.2%)
DSC. The experimental points are the chemical capacitanceCµ and
conductivityσn, which are obtained from IS data on capacitance and
transport resistance reported in ref 5, using the cell area 0.18 cm2 and
active nanocrystalline TiO2 electrode thickness 12µm. (a) Chemical
capacitance. The fit line is lnCµ ) -8.70+ V/0.0704, corresponding
to T0 ) 808 K. The carrier density is calculated with eq 50. (b) Electron
conductivity. The fit lines are lnσn

273K ) -34.6+ V/0.0245, lnσn
333K

) -28.9+ V/0.0306. (c) Chemical diffusion coefficientDn calculated
with eq 9. The fit lines correspond to the hopping model with the
transport energy concept, using the analytical expression in eq 24, and
the fixed parametersNL ) 1021 cm -3, R ) 0.5 nm, andν0 ) 5 × 1012

s -1.
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that is given by

where

The average jump distance is therefore evaluated by eq 15

The jump frequency from the energyE to the transport energy
is12

For the calculation of the jump diffusion coefficient, we
average eq 19 as follows15

The main contributions arise from carriers betweenEF and
Etr; therefore, we can write

We calculate the carrier density belowEtr by using suitable
approximations to the Fermi-Dirac distribution

Calculating the integral in eq 21, we arrive at the result

Therefore, the chemical diffusion coefficient is

Using eqs 9 and 4 we obtain the conductivity

Let us remark on some features of these results. First of all,
eqs 24 and 25 show the same Fermi-level dependence as that
in MT, which is understandable because the transport has been

assumed to be governed by activated hops toEtr. But there are
important differences between the models. In the MT interpreta-
tion of electron transport in DSC, we usually adopt two essential
parameters of the crystalline material: the free electrons
diffusion coefficient,D0, and the conduction band edge,E0, that
is the sole transport level. These parameters are independent of
traps, and are needed separately to describe steady-state
transport. In contrast, the hopping model lacks such parameters.
The rate of transport is governed by the fundamental frequency
ν0 and the localization radiusR, and the transport levelEtr is
associated with the distribution of localized levels, depends on
the temperature, and lies belowE0.

Now we make an estimation of the values ofDn obtained in
the framework of the hopping model using parameters from
the literature: the total trap concentrationNL ) 1021 cm-3, that
is, a ) 1 nm,25 the localization radiusR ) 0.5 nm,26 andν0 )
5 × 1012 s-1. The results of the numerical calculation (eq 20)
and the analytical formula (eq 24) are plotted in Figure 1b. We
remark that both lines in Figure 1b (i) have exactly the same
slope and (ii) differ by a small multiplicative factor (due to the
approximations involved in eq 24), of about 3, that becomes
larger asT0 increases. Therefore, eq 24 is a good practical
approximation. In addition, the absolute values ofDn are close
to those obtained in the MT model, and hence, in agreement
with the literature results. (The exact match between all of the
lines in Figure 1b is coincidental because in MT the line can
be shifted by changing the bulk valueD0 of TiO2.) This is a
first indication that indeed the hopping model is a good
candidate to describe theDn(EF) typically measured in DSC.

Further features of the hopping model concern the temperature
dependence of transport quantities and are illustrated in Figure
3. According to eq 17, the transport level changes with the
temperature, and for the assumed parameters the change is about
60 meV over 100 K, see Figure 3a. The effective “free electron”
diffusion coefficient can be defined from eq 24 atEF ) Etr and
has the value

D0
hopping also shows a temperature dependence as illustrated

in Figure 3b. Thus, the intercept ofDn(EF) lines at different
temperatures, as shown in Figure 3c, does not indicate the
transport level exactly, in contrast to MT. Still, in a first
approximation the intercept shows roughly the position ofEtr,
which is substantially below the conduction band levelE0. Thus,
we can appreciate that the model results in Figure 3b show good
agreement with the experimental results of Figure 2c. The
hopping model seems to describe this feature much better than
the MT model.

We are therefore encouraged to fit the results in Figure 2c
with the model of eq 24 in order to obtain the electronic
parameters included in the hopping model. However, one must
be careful when treating theDn(EF) data because, as mentioned
above in the MT analysis, the slopes in the experimental data
of Figure 2c only give the parameterT0 (which can already be
inferred from the capacitance). Each line has then only one
degree of freedom (the prefactor), and we choose to fitDn(EF)
using the above-mentioned parameters and leaving as the free
parameter the position of the conduction band edge with respect
to Eredox(I-/I3

-), E0. From the lines in Figure 2c, we obtain the
values E0

273K ) 0.914 eV andE0
333K ) 0.884 eV. The two

values differ by a small amount of about 30 meV, in agreement

Etr ) E0 - ∆Etr (16)

∆Etr ) 3kBT0 ln[3RT0

2aT (4π
3 )1/3] (17)

<r(Etr)> )
3T0

2T
R (18)

ν(E,Etr) ) ν0 exp(- 2
<r(Etr)>

R
-

Etr - E

kBT ) (19)

<ν> ) 1
nL
∫-∞

Etr ν(E,Etr) gL(E ) f(E - EF) dE (20)

<ν> ) 1
nL
∫EF

Etr ν(E,Etr) gL(E) exp[-(E - EF)/kBT] dE (21)

nL ) ∫-∞

EF g(E) dE + ∫EF

Etr g(E) exp[-(E - EF)/kBT] dE )

NL

1 - T/T0
exp(-

E0 - EF

kBT0
) (22)

<ν> ) ν0(1 - T
T0

) exp[-3
T0

T
-

(Etr - EF)( 1
kBT

- 1
kBT0

)] (23)

Dn ) øn<r 2(Etr)><ν> )
9T0

3

4T3 (1 - T
T0

) exp×

[-3
T0

T
- (Etr - EF)( 1

kBT
- 1

kBT0
)]R2V0 (24)

σn )
9NLq 2T0

2R2ν0

4kBT 3 (1 - T
T0

) exp×

[-3
T0

T
-

E0 - Etr

kBT0
-

Etr - EF

kBT ] (25)

D0
hopping)

9T0
2

4T 2(T0

T
- 1)e-3T0/TR2ν0 (26)

D J. Phys. Chem. C Letters



with the stationary values of the capacitance. These values are
furthermore reasonably close to those presented in the litera-
ture.21,22

In comparison with previous literature calculations, we note
that the Fermi-level dependence of the conductivity obtained
in eq 25 is in agreement with the result of Vissenberg and
Matters,27 which was obtained using the critical path analysis
based on percolation theory. Such analysis is more reliable than
our simple approach that assumes from the start the activated
hops to the transport energy.28 Unfortunately, the percolation
analytical approach does not provide the conductivity prefactor,
and this prevents the comparison of our analytical results with
those of the percolation framework. Therefore, concerning the
absolute values of the hopping diffusion coefficient, our
analytical results based on averaging the hopping rates must be

regarded as an estimation, and for further check of the validity
of eqs 24 and 25 one should compare them with Monte Carlo
simulations as discussed by Baranovskii et al.28 This last paper
also gives consideration of the contribution of the localized states
betweenEtr and E0 to electron displacement. In addition, it
should be emphasized that the transport energy approach does
not work well when the Fermi level approaches the levelEtr.
In fact, when the Fermi energy rises, the average distance
between sites decreases rapidly and the tunneling becomes
favorable over thermal activation to the higher energies.
Therefore, diffusion in the high carrier density range requires a
different approach.

Another work worth commenting on is that of Nelson et al.29

These authors used a simulation method based on the continuous
time random walk (CTRW) algorithm to compare multiple
trapping and hopping transport in the interpretation of transient
optical spectroscopy of the recombination of electrons with the
dye cations in DSCs. However, the transition rates assumed in
this paper are rather unconventional because the localization
radius, which we termed hereR, is energy-dependent in ref 29.
This is not in agreement with the core, and almost universal,
assumption of transition rates in hopping conductivity, indicated
in eq 11, above, namely, that the energy dependence is only on
the second term of the exponent of upward jumps, while the
tunneling factor is independent of energy. Therefore the results
in ref 29 are not claims about standard hopping theory and are
not in conflict with ours. Using the standard Miller-Abrahams
jump rates, the CTRW simulation of hopping should led to a
transport energy level quite similar to multiple trapping, as we
have discussed above, and in more detail elsewhere.30

It is well agreed that recombination in DSC is influenced by
trapping effects. A model based on trapping and detrapping
followed by interfacial charge transfer at the conduction band
levels31,32 seems to be so far the best approach for the
interpretation of electron lifetimes.3 In this approach, the same
factors that affect the chemical diffusion coefficient of electrons
determine the lifetime dependence on Fermi level. Therefore,
it is obvious that the clarification of the interpretation of the
transport level for electrons in the nanostructured metal oxides
used in DSC can have a substantial impact on the understanding
of recombination processes. This important question requires
further work.

In conclusion, we have derived a useful working formula for
the interpretation of the chemical diffusion coefficient of
electrons in DSC using the hopping model. This approach seems
to describe well some features of the data that are not captured
correctly in the multiple trapping model, especially concerning
the temperature dependence and energy levels governing
electron transport. However, it must be recognized that the linear
region of log Dn(EF) contains very little information on the
transport mechanism. We hope that the present considerations
will encourage further experimental work in the temperature
dependence and high carrier density regime, where the transport
mechanism should be unambiguously identified. If the hopping
model is confirmed by such measurements, then it can provide
interesting new insight into the operation of dye-sensitized solar
cells.
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