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The random walk numerical simulation (RWNS) method is used to compute diffusion

coefficients for hopping transport in a fully disordered medium at finite carrier concentrations.

We use Miller–Abrahams jumping rates and an exponential distribution of energies to compute

the hopping times in the random walk simulation. The computed diffusion coefficient shows an

exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to

temperature. This result indicates that there is a well-defined transport level implicit to the system

dynamics. To establish the origin of this transport level we construct histograms to monitor the

energies of the most visited sites. In addition, we construct ‘‘corrected’’ histograms where

backward moves are removed. Since these moves do not contribute to transport, these histograms

provide a better estimation of the effective transport level energy. The analysis of this concept in

connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest

for the functioning of dye-sensitised solar cells is thoroughly discussed.

I. Introduction

The theoretical description of electron transport in disordered

materials is a challenging issue with implications in the fields

of dye-sensitised solar cells (DSC),1 plastic solar cells,2 organic

light emitting diodes3 and organic electronics.4 In these

materials, transport of charge occurs by jumps of electrons

between localized states, although extended states may also play

a role. The transport rates are determined by two kinds of

microscopic disorder: (1) energetic disorder characterized by a

broad distribution of localized states5 and (2) spatial disorder,

related to the morphological features of the material.6,7 The

correct description of the influence of these two kinds of disorder

and their microscopic parameters on the transport features of the

material is crucial to design of better performing devices.

Two main approaches have been applied so far to describe

electron transport in these materials. The first is the classical

multiple-trapping model,8–10 in which transport occurs via

extended states along a mobility edge (or conduction band)

but it is slowed down by a succession of trapping–detrapping

events in localized states. In this model, only energetic disorder

is taken explicitly into account by means of the distribution of

energies (relative to the mobility edge) characteristic of the

ensemble of localized states. The second approach is the

hopping transport.11–14 In the hopping model electron

transport occurs by direct jumps between localized states

and the hopping rates depend explicitly on both energy

difference and spatial distance.15

To obtain usable analytical expressions for electron

mobilities and diffusion coefficients requires making averages

over spatial and energy disorder. This analysis is especially

cumbersome in the context of the hopping model since both

energetic and spatial disorder must be taken into account.

However the analysis can be simplified if the distribution of

energies for the localized states is very steep. In this case it has

been shown that a particular level called the transport energy

determines the dominant hopping events for carriers sitting in

very deep states.16–21 The existence of an effective transport

level reduces the hopping transport to multiple trapping, with

the transport energy playing the role of a mobility edge.

The transport energy concept has been utilized to derive a

theoretical expression for the diffusion coefficient of electrons

hopping in an exponential distribution of localized states.16

The transport energy has been shown to be affected by the fact

that the system is not ideal, that is, correlations between

carriers may play an important role. These correlations can

be due to exclusion effects, which makes the transport energy

depend on Fermi level position,17,22 or due to energetic

correlations between charges and dipoles.23,24

Hopping transport in amorphous semiconductors has been

amply studied over the last decades mainly in relation to

disordered inorganic semiconductors such as amorphous

silicon, and in recent years also for organic conductors.25

Recently, the interest in electronic transport in the presence

of an exponential distribution of states has increased with the

advent of nanostructured wide bandgap semiconductors

applied in DSC.26,27 Indeed, electron transport in DSC has

been largely described using multiple trapping, arguments.28

For DSC using relatively thick TiO2 porous nanocrystalline

layers, electron transport may impose limitations to charge

extraction.29 Since DSC operate at large electron densities, it is

crucial to further determine the transport mechanism in these

systems as a function of charge density and, especially at high
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Fermi levels, beyond the analytical approximations adopted

previously.16,28 A recent report shows experimental results of

diffusion coefficients in TiO2 at large electron densities.30

In this paper we apply the random walk numerical

simulation (RWNS) method31–36 to obtain the jump diffusion

coefficient in a hopping system with an exponential distribution

of localized states and at finite carrier concentration. We use

our calculations to cast light on the foundations of the

transport energy approximation in this case. The RWNS

method is a stochastic technique that permits us to analyse

the transport mechanism for a particular transport model

from first principles and with no approximations (as those

sometimes applied to compute magnitudes such as the transport

energy and the mobility18,19,37,38). The density of localized

states (energy distribution) is used as an input to construct a

three-dimensional network of sites whose energies are allocated

according to this distribution. The simulation is performed by

implementing jumping rates characteristic of the selected

transport mechanism. In this case we implement the hopping

mechanism via the Miller–Abrahams jumping rates.15 The

RWNS calculations yield the jump diffusion coefficient as a

function of Fermi level and temperature.31 On the other hand,

we have carried out our simulations on a network of randomly

distributed sites instead of a simple cubic lattice. Placing the

sites on an ordered spatial arrangement has been shown to

affect the results for the carrier mobility.39 To work with a

fully disordered system permits us to eliminate the effect of

introducing an artificial spatial order on the simulation results.

In this work we have used the simulations to construct

histograms of most visited energies so that the probability for

the electrons to jump to target sites of specific energy can be

calculated. The form of this histogram for jumps upward in

energy will allow us to identify the existence of a well-defined

maximum and how it depends on carrier concentration and

Fermi level. As noted by Arkhipov et al.,19 the transport

energy can differ noticeably from the energy of the most

probable jump due to the influence of neighbored sites close

in energy. These sites make carriers hop back and forth many

times so that those moves do not contribute to transport and

hence to the computation of the diffusion coefficient. The

RWNS method makes it possible to remove those jumps from

the calculation so that a better approximation to the ‘‘effective

transport energy’’ can be obtained for the studied cases.

This numerical work is aimed at understanding recent

experimental studies of electron transport in nanostructured

semiconductors where exponential distributions and strong

Fermi level variations are very common.40,41 We believe that

the results here presented will be quite useful to guide and

interpret future experimental work in DSC and related systems.

II. Random walk numerical simulation for

hopping transport

A Method and simulation details

The RWNS is a stochastic computational procedure that

allows for a flexible description of transport of charge carriers

in a network of traps without huge computational demands.

This is especially useful in the context of nanostructured

materials since the existence of spatial disorder coupled with

a broad distribution of trap energies is characteristic of these

systems. A general description of this method can be found

elsewhere.31–33,35,42

In this work we run the random walk simulation on a three-

dimensional network of traps distributed randomly and

homogeneously in space. As mentioned above in this way we

avoid the undesired influence of an artificial ordering in the

system.39 However in a fully disordered network there exist

traps that happen to be very close to each other, which is not

likely to occur in real materials. Nevertheless, as we will show

below, the effect of these very close pairs do not have a

strong effect on the diffusion coefficient because they produce

back-and-forth moves which do not contribute to transport.

In the RWNS calculation a certain number of carriers

(which can represent either electrons or holes) are allowed

to jump between neighboring traps. The formula here used to

compute the hopping times for carriers jumping from a trap i to

a trap j is derived from the well-known Miller–Abrahams

hopping rates.15 In this work we use the following formulation

of the Miller–Abrahams formula based on times (inverse

of rates)

tij ¼ � lnðRÞt0 exp 2
r

a
þ Ej � Ei

2kBT
þ jEj � Eij

2kBT

� �
ð1Þ

where R is a random number distributed uniformly between

0 and 1, t0 is the inverse of the attempt-to-jump frequency,

r is the distance between the traps, a is the localization radius,

and Ej, Ei are the energies of the target and starting traps,

respectively. A random walk simulation based on times rather

than on rates or probabilities11 leads to the same results

because a jump between two traps i and j for which eqn (1)

predicts a long hopping time is equivalent to consider a very

small jumping rate between the two traps (and vice versa).

Trap energies are extracted from the usual exponential

distribution

gðEÞ ¼ NL

kBT0
exp ðE � E0Þ=kBT0½ � ð2Þ

where NL is the total trap density, kBT0 the width of the

distribution, E is the trap energy (negative) and E0 is the lower

(higher) edge of the conduction (valence) band, for electrons

and holes respectively. E0 indicates the energy of extended

states, in case they exist (such states are not a necessary

assumption in our model). Hereafter we take E0 = 0.

In this work we aim to obtain the properties of a hopping

system as a function of the carrier concentration or Fermi level.

To achieve this, the simulations are run under the condition

that no more than one carrier is allowed per site at the same

time. As we will see below this makes the carrier occupancy

function to follow Fermi–Dirac statistics.31,33 In contrast to

previous studies17,22 the Fermi–Dirac function is not imposed

a priori, but it arises naturally from the calculation instead.

The simulations were performed as follows (see Fig. 1).

A random network of traps is generated and energies are

allocated to the traps according to eqn (2). Carriers are

then initially placed at random on the network of traps.

For each carrier hopping times to neighbored traps are

computed via eqn (1). This calculation is restricted to
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non-occupied traps within a certain cut-off radius rcut. The

minimum of these hopping times and its corresponding target

trap is identified and stored. The procedure is repeated for all

carriers so that the jump with the minimum hopping time,

called tmin, can be executed. The hopping times of the rest of

the carriers are then reduced by tmin and the process is

repeated in such a way that, for each simulation step, the

carrier that happens to have the minimum hopping time is

moving along the network and the simulation is advanced by

time intervals of variable size tmin.

Calculations were carried out with 1–100 carriers and the

size of the simulation box ranged between 10 and 65 nm.

A density of traps ofNL = 1027 m�3 was used in all cases. This

corresponds to an average distance between traps of 1 nm.

It must be stressed that, as traps are distributed randomly,

hops can be executed for distances either longer or shorter

than this averaged distance. Hereafter, the simulations are

described by a label N/aL
3 where N is the number of carriers

and aL the size of the simulation box in nm’s.

The jump diffusion coefficient5 DJ is obtained from the

mean square displacement according to31

hrðtÞ2i ¼ 1

N

XN
i¼1
f½xiðtÞ � xið0Þ�2 þ ½yiðtÞ � yið0Þ�2

þ ½ziðtÞ � zið0Þ�2g

ð3Þ

hr(t)2i= 6DJt (t - N) (4)

The mean square displacements are observed to be linear at

longer times (normal diffusion). This allows extracting the

diffusion coefficient from the slope of the curve in the

time plot.

B Convergence tests

As mentioned above, to save computing time a certain cut-off

distance rcut is introduced. Neighbors located beyond this

distance are not considered as target sites. Since the hopping

times in eqn (1) do depend on distance between traps, the

cut-off distance should be large enough to ensure that the

results are not significantly affected. In Fig. S1 in the ESIw
the diffusion coefficient as a function of rcut is plotted for two

values of the localization radius.

As it could be expected, a larger localization radius requires

a larger cut-off radius to ensure convergence. Hence, for

a = 0.5 nm and 2.5 nm a cut-off radius of 2.5 nm and

4.5 nm were found to be sufficient respectively. These are the

parameters used henceforth.

C Energy level populations and one particle approximation

By running a long enough RWNS calculation it is possible to

construct a histogram of the number of carriers that occupy

levels of energy E. From this the corresponding occupancy

probabilities can be extracted. As stated above, in our simulations

it is observed that this probability resembles a Fermi–Dirac

distribution with a well-defined Fermi level (see Fig. 2). The

Fermi level is a monotonic function of the carrier density.

In previous work for RWNS with multiple-trapping it was

found that it is possible to reproduce the diffusion coefficient

of multi-carrier calculations by running a random walk

simulation with just a single carrier and a modified trap energy

distribution in which all traps with energies below EF are

ignored.31 This approximation is found to work well for the

hopping model here considered, although a constant shift is

observed in the one-particle calculations (see Fig. S2 in the

ESIw). This shift is not surprising if we take into account that

the zero temperature approximation neglects the influence of

unoccupied traps in the vicinity of the Fermi level that might

contribute to transport with a constant weight that would

depend on temperature but not on the position of the

Fermi level. In any case, it must be noted that we are mainly

interested in the behavior of the diffusion coefficient with

respect to the Fermi level and temperature rather than in

absolute values.

III. Results and discussion

A Energy of the most probable jump and transport energy

concept

As mentioned in the introduction, the hopping transport can

be rationalized using the concept of transport energy.13,19–21

In this approach it is assumed that in equilibrium the transport

is governed by a single energy level related to the fastest hop of

a charge carrier. The most probable upward jump corresponds

to an optimized combination of the distance and energy

difference. For an exponential distribution of localized levels,

the result18,43 is that the fastest hops occur in the vicinity of the

so-called transport energy, given by

Etr = E0 � DEtr (5)

Fig. 1 Illustration of the random walk method employed in this

work. Traps (open circles) are distributed on a simulation box of size

aL. Some of these traps are occupied by charge carriers (grey circles).

For a certain carrier (black circle), hopping times to neighbored traps

are computed according to eqn (1). This computation is restricted to

those traps within the cut-off rcut that are not occupied. Once all

release times are computed the minimum hopping time and its

corresponding target trap are looked for and stored. The process is

repeated for all carriers in the simulation box so that the carrier having

the minimum hopping time is identified. This carrier is then moved to

its corresponding target trap. See text for more details.
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where18

DEtr ¼ 3kBT0 ln
3aT0

2aLT

4p
3

� �1=3
" #

ð6Þ

independently of the energy of the starting site. This

expression is obtained by maximizing the upward hopping

rate for an average hopping distance. Alternatively the

transport energy can be obtained by averaging the hopping

rate below a certain energy value as reported by Arkhivov.19,37

This latter procedure has been put into question44 due to the

difficulty of considering the effect on transport of all relevant

hops. In any case, the existence of a transport energy implies

that the hopping model should behave in a very similar way to

the multiple trapping model, where there is a transport level by

definition.

In connection with the transport energy approximation, we

have monitored the energies of the target sites for jumps

upward in energy in the RWNS calculations. These values

were used to construct a histogram of energies. Results

can be found in Fig. 2 and Fig. S3 (ESIw) for two test cases

(a = 0.5 nm and a = 2.0 nm, T0 = 800 K, T = 275 K and

densities corresponding to labels 100/123 and 100/153). The

results reveal that most carrier moves take place in the vicinity

of a certain energy that always lies (as expected) above the

Fermi energy for each particular case.

In this work we make a critical analysis of the following

assumption: the maximum of the energy histogram, Emax, can

be assimilated to the value of the transport energy. We must

note that the former is just a simulation result whereas

the latter is a theoretical concept obtained under certain

approximations whose origin we want to test in this work

using numerical simulation. Monte Carlo simulation has been

used by Cleve et al.38 and Novikov and Malliaras with similar

purposes.23 However, Cleve et al.38 investigate an empty

system with no influence of the concentration of carriers.

The work in ref. 23 investigates a Gaussian distribution that

applies in organic conductors.

The most relevant feature of the present calculations is that

Emax is found to move upwards in the energy scale when the

Fermi level is raised. A similar effect has been described

recently for the transport energy with a Gaussian distribution

of states.22 The variation of Emax with density and Fermi

level is shown in Fig. 3 for two characteristic temperatures

(T0 = 600 K and T0 = 800 K). The calculations have been

extended to the regime of very low densities, with Fermi levels

between �0.17 and �0.61 eV and densities up to 7 � 1016 cm�3.

It must be noted that at low densities the statistics of the

simulation is very poor, which increases the uncertainty of

Emax. This is extracted when the population distribution

if found to relax to a Fermi–Dirac distribution with a

well-defined Fermi level as explained in Section II.

The poor statistics in the low density limit are related to the

occurrence of spurious peaks in the energy histograms.

These are due to carriers jumping many times back and forth

between sites that happen to be close in distance and in energy

and tend to disappear when the simulation is very long.

As a matter of fact the RWNS predictions at low densities

do not converge to the classical value of eqn (6) as it could be

expected. The reasons for this disagreement, in connection

with the concept of effective transport energy of Arkhipov

et al.19 will be discussed in Section IIIC below.

In any case, if we assume that Emax can be assimilated to the

transport energy, the same behavior is found by Arkhipov and

coworkers17 and Li and coworkers.22 The carrier density

dependence of Emax is a result of the progressive filling of

the localized states, that prevent carriers from hopping to

neighbored sites for which the Miller–Abrahams formula

yields high probability. The carriers are then forced to jump

to levels of higher energies, hence producing a larger value of

Fig. 2 Occupation probabilities (f(E), full symbols) and histograms of

the energies of target sites (N(E), open symbols) in RWNS calculations

for jumps upward in energy. The latter have been normalized with

respect to the maxima. Simulations were carried out for a = 0.5 nm,

T0 = 800 K, T = 275 K and densities corresponding to labels 100/123

(circles) and 100/153 (squares). The following values are obtained from

the simulations for both densities: EF = �0.22 eV (Emax = �0.12) and
EF = �0.26 eV (Emaz = �0.18 eV), respectively. The solid line stands

for the exponential trap distribution of T0 = 800 K.

Fig. 3 Energy of the most probable jump versus Fermi level (upper

panel) and carrier density (lower panel) as obtained from RWNS

calculations with Miller–Abrahams hopping rates with a = 0.5 nm.

Results shown correspond to T0 = 600 K (circles) and T0 = 800 K

(triangles). The dashed and dotted lines represent the classical values

as obtained from eqn (6).
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the transport energy. At very low concentrations this filling

effect is negligible and Emax remains constant. Nevertheless,

the real connection between Emax and the transport energy is

subtle and requires further analysis, as discussed below.

B Fermi level dependence of the diffusion coefficient

As explained before, the jump diffusion coefficient for carriers

can be computed from the RWNS calculations as a function

of Fermi level. Results in reduced units for two test cases

(a = 0.5 nm, T0 = 800 K, T = 275 K and a = 2.0 nm,

T0 = 800 K, T = 275 K) are presented in Fig. 4.

The simulation data show that the logarithm of diffusion

coefficient scales almost linearly with Fermi level. Diffusion

coefficients are found to be higher for large localization radius.

This is explained by the fact that delocalization favors jumps

to traps further apart and produces shorter average

hopping times.

The exponential dependence of the diffusion coefficient with

respect to the position of the Fermi level is analogous to the

typical behavior of the multiple trapping model. This result

indicates that there should exist a well-defined transport level

that controls the transport of carriers under equilibrium

conditions. However, the results presented in the previous

subsection reveal that the energy of the most probable jump

does move to higher energies when the trap distribution

becomes progressively filled. This appears to be contradictory

to the fact that there is a fixed transport energy. In the next

subsection this issue is discussed and clarified.

C Diffusion coefficient and transport energy

The theory of diffusion45–47 often allows to separate the kinetic

or jump diffusion coefficient in two factors:

DJ = hr2ihni (7)

where hr2i is an average hopping distance and hni is an average

hopping frequency. In hopping transport, there is not a well

defined separation between hopping at different distances and

hopping at different energy levels. However, the rationale for

the transport energy approximation is that the relevant jumps

occur to a well defined level, and in this case eqn (7) may

provide a useful approach to obtain analytical expressions for

hopping transport as a function of Fermi level. The numerical

simulations performed in this work constitute an excellent tool

to check the validity of such approximations.

Therefore, following the work from previous authors,16,17

we compute the jump diffusion coefficient using eqn (7).

According to the transport energy concept both quantities

can be calculated from

hrðEtrÞi ¼
4p
3

ZEtr

�1

gðEÞdE

2
4

3
5
�1=3

ð8aÞ

hni ¼

REtr

�1
nðE;EtrÞgðEÞf ðE � EFÞdE

REtr

�1
gðEÞf ðE � EFÞdE

ð8bÞ

where n(E,Etr) is the frequency for an upward hop from the

energy E to the transport energy Etr (inverse of eqn (1)) at fixed

distance r = hri.
By applying the zero-temperature limit of the Fermi–Dirac

distribution in eqn (8b) and introducing the classical value of

eqn (6) for the transport energy, Bisquert found the following

expression for the diffusion coefficient:16

DJ ¼
9T2

0

4T2
1� T

T0

� �

� exp �3T0

T
� ðEtr � EFÞ

1

kBT
� 1

kBT0

� �� �
a2n0

ð9Þ

This theoretical expression predicts an exponential behavior

with respect to the Fermi energy, in analogy with the multiple-

trapping result and in accordance with the simulation

(see Fig. 4). However, the theoretical slope (27.71 eV�1 for

T0 = 800 K and a = 0.5 nm) is slightly larger than the

simulation result.

In spite of this encouraging result, the exponential behavior

of the diffusion coefficient is not consistent with the upward

shift of the average hopping energies when the Fermi level is

increased. As it can be observed in Fig. 2 and 3, the maximum

of the energy histogram Emax lies always above and

approximately at a constant distance with respect to the

Fermi level. If we would assume that Emax can be assimilated

to the transport energy, this behavior would lead to a

constant diffusion coefficient according to eqn (9).

D Effective transport energy

To disentangle from the paradox posed in the previous

subsection, the concept of effective transport energy of

Arkhipov and coworkers19 is especially useful. These authors

make a distinction between the energy that controls transport

at equilibrium conditions and the energy of the most probable

Fig. 4 Jump diffusion coefficient vs. Fermi level as obtained from

RWNS calculations with Miller–Abrahams hopping rates (full circles)

and several theoretical predictions (see text for details): eqn (9)

(solid line), eqn (8) with Etr taken from the classical value of eqn (6)

(open circles), eqn (8) with Etr = E0max (squares), eqn (8) with Etr = 0

(times). The dashed line is a linear fit of the simulation data. Results

shown correspond to T = 275 K and T0 = 800 K and localization

radii of a = 2 nm and 0.5 nm.
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jumps. That these two are different has been already observed

in Monte Carlo simulations for hopping systems in a Gaussian

density of states.43

As mentioned above, RWNS calculations at low densities

produce energy histograms with spurious peaks in the low

energy region. These peaks arise from carriers jumping back

and forth between neighboring sites. The consequence in the

numerical simulation is that these ‘‘oscillatory’’ moves do not

contribute to the diffusion of the carriers and therefore should

be excluded in the estimation of the transport energy.

Bearing this is mind, we have extended the computation of

the histograms of hopping energies to the situation in which

backward jumps are ignored. To achieve that, the coordinates

of the starting site are stored for every move so that when the

carrier returns to its original position, the target energy is not

used to compute the energy histogram, since these jumps do

not produce the spatial displacement of the electrons.

Results for both types of energy histograms are presented in

Fig. 5 for calculations with a single carrier in an empty

exponential trap distribution and for a finite density corres-

ponding to label 10/153. The most visible feature is that the

spurious peaks tend to disappear when backward jumps are

ignored. However, sharp peaks are not completely removed.

This is due to the fact that oscillatory moves between pairs of

sites are not the only moves that do not contribute to trans-

port. Carriers can get ‘‘trapped’’ between small groups of sites

and follow circular trajectories before escaping, especially at

lower energies. Nevertheless to remove these ‘‘second-order’’

moves is much more difficult in the numerical computation

and goes beyond the scope of the present work. The occur-

rence of spurious peaks is magnified in the present calculations

by the fact that we perform our simulations on a random

network of traps. As mentioned above, this leads to the

possibility of traps that happen to be very close to each other.

This problem does not appear in the simulations of Bässler

and coworkers,11,38,43 which are executed on a cubic lattice.

Simulations on-lattice reduce the numerical demands and

produces results more in accordance to the assumptions of

the theory (see eqn (8a) for instance) but at the cost of losing

the subtleties of the positional disorder implicit to these kind

of systems.39

A second feature of the corrected histograms is that the

maximum, that we call E0max, lies at higher energies than in the

original histogram. That the effective transport energy lies

above the energy of the most probable jump is the main

conclusion of the work of Arkhipov et al.19 and it is confirmed

in the present calculations. The simulations of Hartenstein and

Bässler43 and Cleve et al.38 also predict energies for the most

probable jump below the classical value of eqn (6). On the

contrary, the computation of the histogram without backward

jumps for a single carrier leads to a maximum much closer

to the theoretical value of �0.26 eV predicted by eqn (6)

(see Fig. 5). It must be born in mind that eqn (6) is obtained

under the assumption that all hops occur at a constant average

distance whereas in the simulation traps can be occasionally

very close to each other and this induces the appearance of the

oscillatory moves mentioned above.

The energy of the maximum of the corrected histograms,

E0max, allows us to propose a better estimate for the transport

energy that is implicit to the diffusion coefficient dependence

on the Fermi level. Results for this are collected in Fig. 6

together with the values of the most probable jump as

computed in subsection IIIA. Here it is observed that E0max,

lies always above Emax and that it converges to the classical

value of eqn (6) at low densities.

E Simulated diffusion coefficient versus theoretical predictions

The concepts introduced in the previous subsections allow us

to use the E0max values from the simulated histograms to

produce theoretical values of the diffusion coefficient accord-

ing to eqn (7) and (8). The results, together with the simulated

data and the predictions of the approximate formulas (6) and

(9) can be found in Fig. 4.

We observe that eqn (7) and (8) with the transport energy

assimilated to E0max reproduce Bisquert’s formula at low

Fermi levels. This is not surprising if we take into account

that the simulation reproduces the classical value of eqn (6) in

this regime as explained above. The agreement between the

theories and the simulation is also good in the low Fermi level

region for the localized case. However, as we move towards

large carrier densities the theoretical values separate from

Bisquert’s formula although they tend to remain close to the

simulated data. This effect is basically a consequence that

eqn (9) is derived under the assumption that the Fermi level is

well below the transport level. By introducing the proper

Fermi–Dirac function in eqn (8) the match with respect to

the simulation is improved. This effect is more visible in the

delocalized case (a = 2 nm) for which the classical transport

energy is �0.55 eV, than in the localized case (a = 0.5 nm) for

which the classical value equals �0.26 eV.

Due to this saturation effect, we find that eqn (7)–(8) in

combination with the transport energy values obtained from

the simulated histograms do predict a linear dependence at low

values of the Fermi level only. Nevertheless the simulation

predicts an almost linear dependence at all regimes.

Fig. 5 Histograms of the energies of the target sites N(E), (squares)

and the same without considering backward jumps between pair of

sites N0(E) (triangles, see text for details). Results for simulations at a

finite carrier density (10/153) (upper panel) and for a single carrier

(lower panel) are shown. The parameters used were T = 275 K, T0 =

800 K and a = 0.5 nm.
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To understand this we have to take into account that at high

occupations a substantial amount of the upward hopping moves

go to levels close to the conduction band level (see Fig. 2).

This introduces a distortion in the average implicit to eqn (9)

because no hops above E = 0 are allowed. To ascertain the

magnitude of this distortion we have performed calculations

with eqn (7)–(8) assuming that the transport level coincides

with the conduction band level, i.e., Etr = 0. This calculation

renders a linear dependence in the full density range.

The agreement with the simulation data is good at high Fermi

levels (where upwards hopping moves are controlled by the

upper limit of E = 0) but poor at low Fermi levels, where

transport is controlled by jumps to the transport energy level.

The results shown in Fig. 4 indicate that the real transport

energy should lie between the classical value of eqn (6) and the

conduction band level E = 0. The values of E0max obtained

from our corrected histograms are close but not the same as

Etr. To obtain this we should distinguish moves that contribute

effectively to transport from those that do not. This calculation

would require to remove also the ‘‘second-order’’ moves

discussed in subsection IIID.

F Temperature dependence of the diffusion coefficient

RWNS calculations were performed to obtain the effect of

ambient temperature on the diffusion coefficient. Arrhenius

plots for these calculations are shown in Fig. 7 and 8 in the

temperature range 260–340 K. Nearly linear plots are

obtained, with an activation energy that is larger for deeper

Fermi levels, as it could be expected. The Arrhenius behavior

is characteristic of the multiple-trapping transport.31,48 This is

an indication, as discussed above, that at a fixed Fermi level,

there is a well-defined transport energy that makes transport

to occur effectively via thermal activation to a transport level.

A similar result has been obtained by Vissenberg and Matters

using percolation theory.49

It must be noted that the theoretical framework contained

in eqn (7)–(9) is shown to predict a quasi Arrhenius behavior

as well. This is due to the fact that the temperature

dependences of the prefactors and the transport energy are

much weaker than the energetic exponential factor. Furthermore,

the transport energy is either a constant (at low occupations)

or it moves towards higher values (at high occupations).

In both cases an Arrhenius behavior with respect to temperature

is expected.

The Arrhenius behavior is maintained if the characteristic

temperature of the distribution is lower. Another important

feature is that the activation energy is smaller for the delocalized

case. This indicates that carrier percolation becomes facilitated

when the range of the mean jump is larger, so that sites of

similar energies are available for carriers.

E Implications in DSC functioning

In this work we want to make a connection with the relevant

regime in DSC and related devices. It is known that at 1 sun

illumination the electron density inside the semiconductor

oxide is approximately equal to 1017 cm�3 = 10�4 nm�3

(1 electron per nanoparticle50). For a characteristic temperature

of T0 = 600–800 K and a trap density of 1021 cm�3, which are

realistic values36,41 for nanocrystalline TiO2, this density

corresponds to Fermi energies below �0.60 eV. As it can be

observed in Fig. 3 and 6, this value corresponds to the regime

for which the effective transport energy converges with the

classical value given by eqn (6). Hence the predicted behavior

for the diffusion coefficient is close to that yielded by the

approximate formula (9) and thus indistinguishable from that

predicted by the multiple-trapping model.

Furthermore, Arrhenius behavior with typical activation

energies of 0.10–0.15 eV are commonly found in the experiments48

for nanocrystalline TiO2. Best agreement with the simulation

data is found for T0 = 800 K and a = 0.5 nm. Again the

fact that there exist a well-defined transport level in the

Fig. 6 Energy of the most probable jump (triangles), Emax, and

estimation of the effective transport energy, E0max, (circles) as a

function of Fermi level. The first are extracted from the maxima of

the energy histograms whereas the latter are extracted from the

maxima of the ‘‘corrected’’ histograms with backward jumps between

pair of sites removed. The horizontal line represents the classical value

predicted by eqn (6). The parameters used were T= 275 K, T0 = 800 K

and a = 0.5 nm.

Fig. 7 Jump diffusion coefficient vs. inverse of ambient temperature

as obtained from one-particle RWNS calculations with Miller–

Abrahams hopping rates at T0 = 800 K and a = 0.5 nm. Results

shown correspond to EF = �0.3 eV (circles) and EF = �0.4 eV

(squares). The activation energies derived from both set of data are

0.15 and 0.24 eV, respectively.
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regimen relevant for the functioning of DSC under operating

conditions produces Arrhenius like behavior like the multiple-

trapping model.

IV. Conclusions

The RWNS method with Miller–Abrahams hopping rates and

exponential distribution of energies on a random network of

traps has been utilized to test the transport characteristics in

random media and to obtain the jump diffusion coefficient

versus Fermi level and temperature. An approximate

exponential dependence is found for the former and Arrhenius

behavior for the latter.

The simulation helps to distinguish between the energy of the

most probable jump and an estimation of the effective transport

energy that determines the transport properties of the system.

This latter value is found to move upward as the carrier density is

increased except at low occupations where it converges with the

classical value predicted in the literature. We found that in

numerical modeling aiming to detect the transport energy at

high densities, it is essential to remove from the computation

back-and-forth jumps between near sites, otherwise the more

probable target site displays a large distortion with respect to the

sites contributing to diffusive transport.

Comparison of the present results with the conditions of

interest in the functioning of photovoltaic devices based on

nanocrystalline TiO2 reveal that in this case the effective

transport energy is approximately independent of the Fermi

level. Hence the observed behavior is similar to that found

with the multiple-trapping model and demonstrates that

a hopping mechanism can also explain the experimental

behaviour of the diffusion coefficient.
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