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ABSTRACT Quantitative modeling of the photovoltaic response of the dye-
sensitized solar cell (DSC) is an important subject for improving both the under-
standing of operation mechanisms and the device performance. A range of
experimental techniques indicates that nonlinear recombination of the form
Un = krn

β, with β 6¼ 1, is a property of DSCs. We show that the diffusion length
Ln defined from the probability of collection is independent of the macroscopic
perturbation for β6¼1 only for a small perturbation, and in this case, it coincides
with the value λn = (Dnτn)

1/2 that can be measured by impedance spectroscopy in
homogeneous conditions. The increase of the diffusion length with the potential,
usually observed experimentally, is attributed to the increase of the free carrier
lifetime. We also discuss the modeling of real DSC devices under different
conditions, and we conclude that the diffusion-recombination-generation equa-
tion based on Un = krn

β is a fundamental ingredient of the simulation tools.

SECTION Energy Conversion and Storage

W ith the continuing progress of dye-sensitized solar
cells (DSC) and the appearance of different con-
figurations and new components, it has become

very important to establish the properties of the preparedDSC
using a range of characterizationmethods,with a refined level
of detail. Recently, some papers discussed the results on the
diffusion length measured by small perturbation techniques,
in comparison with a diffusion length measured from the
collection efficiency.1-3 It is a very important task to correlate
the results of differentmeasurements in order to establish the
significance of the parameters that govern the solar cell
behavior. However, a problem in the interpretation of these
results1-3 is that the diffusion length under steady-state
conditions, and in the presence of nonlinear recombination,
has not been generally defined. This is not a trivial question
since for a recombination model that is not linear on carrier
density, the lifetime depends heavily on the local concentra-
tion. However, the diffusion length cannot be defined on a
point-to-point basis since it is a length that carriers travel
before recombining. Here, we explore the meaning of the
definition of the diffusion length in a nonlinear problem. We
construct an analytical solution of this problem, and we
discuss the interpretation of characteristic experimental re-
sults.Wealsodiscusswhich are themain strategies fora useful
characterization of the real DSC devices.

We present an introductory overview of the empirical
evidence of recombination of DSCs. We highlight several
important aspects of the DSC that have been consistently
and independently observed in many laboratories, concern-
ing the fill factor in current-potential curves, recombination
resistance, and the dependence of open-circuit voltage on

illumination intensity. The starting point of our considerations
is the well-known equation for diffusion, recombination, and
generation at steady state

D0
∂
2n
∂x2

-Un þG ¼ 0 ð1Þ

In this equation, D0 is the electron diffusion coefficient, Un is
the recombination rate per unit volume, and G is the genera-
tion rate. It is important to notice that we write the conserva-
tion eq 1 for the free electron concentration, n. In general,
there are also trapping-detrapping effects that induce a
density of electrons in localized states in the semiconductor
bandgap, nL, but these effects are described by time-depen-
dent terms that do not contribute to eq 1.4 In a DSC, provided
that the contact with the substrate is good and the electrolyte
conductivity is high, we can relate the free electron density
and the voltage V as

n ¼ n0eqV=kBT ð2Þ
where kB is Boltzmann's constant, T is the temperature, q is
the elementary charge, and n0 is an equilibrium concentra-
tion. Equation 1 provides the current-potential (IV) charac-
teristics of the solar cell provided that we take into account the
thermal generation Gthermal.

The central question that we wish to treat in this Letter is
the form of the recombination rate, Un, and how this impacts
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in all cases the modeling of real DSCs. Awell-knownmodel in
photovoltaics uses the assumption

Un ¼ k0n ð3Þ
This is a linear model, amply used in silicon solar cells, for

the minority carrier recombination. The linear model was
proposed by S€odergren et al.5 in an early stage in DSC
research and has been profusely used in DSC modeling
thereafter.

However, there is consistent and repeated evidence that
the linear model cannot describe DSC characteristics quanti-
tatively. We just mention two pieces of evidence. Important
evidence about the recombination order arises from the
recombination resistance measured in impedance spectro-
scopy (IS).6,7

Rrec ¼ 1
A

∂jrec
∂V

� �-1

ð4Þ

where jrec is the recombination current and A is the cell area.
For a layer of thickness L, we have jrec = qLUn, and we find
that Rrec is related to a derivative of Un as

Rrec ¼ 1
qLA

∂Un

∂V

� �-1

ð5Þ

Now from eqs 2-4, it follows readily that Rrec = R0

exp(-qV/kBT) in the ideal (linear) model. However, this is
far from true in the measurement of DSCs. The actual result
follows the expression7

Rrec ¼ R0
0 exp -β

qV
kBT

� �
ð6Þ

where the β parameter is typically in the range of
0.5-0.7.

By an integration of eq 4, one can easily see that the β
parameter relates to the diode ideality factor as m = 1/β.
Therefore, the appearance of an ideality factor m > 1 is
another manifestation of nonlinear recombination in a DSC;8

see some examples in Figure 3b, below. However, the ob-
servation of β < 1 in IS measurements of resistance is
perhaps even clearer evidence since the recombination re-
sistance can be unambiguously separated from series and
contact effects by the analysis in the frequency domain. In
comparison, this is not always straightforward on current-
potential curves. It should also mentioned that S€odergren
at al.5 noticed that m > 1 was not consistent with their
model;8 therefore, they tried to modify (ad hoc) the solution
of the linear equation in the voltage dependence of the
photocurrent. However, the measurements leading to eq 6
clearly show that the diode factor m > 1 arises from the
recombination in the whole layer and not from any contact
effects that may be incorporated as boundary conditions. To
include a posteriori the nonideality factor is not a valid
procedure since the continuity equation is nonlinear, and this
has implications for the collection efficiency. Thus, anymodel
based on eq 3 cannot consistently describe the experimental
results.

A second, important piece of evidence is found in themea-
surement of the photovoltage dependence on illumination

intensity, F0. At open circuit, diffusion can be neglected,
and eqs 1, 2, and 8 give the slope of the experimental
curve as

dVoc

d log F0
¼ kBT

2:30βq
ð7Þ

which predicts a slope of 60 mV for linear recombination
with β = 1. Again, the ideal model is far from the observa-
tions, which provide close to straight plots of Voc versus
log F0 but with a slope which can reach 120 mV.8,9 Only in
seldom cases is the 60 mV slope observed in a potential
range.9

The results of measurements with different kinds of
perturbation of the solar cell (electrical, as well as optical)
are therefore consistent with a recombination rate of the
type

Un ¼ krnβ ð8Þ
where kr is a constant with units of cm-3(1-β) s-1. We
should remark that although eq 8 is not strictly obeyed
in all situations,10 it applies in many different types of
DSCs over a significant voltage range, and therefore, it
merits a detailed analysis as a first approach to nonlinear
recombination.7,8,11

One can also wonder what is the microscopic behavior of
charge transfer that causes eq8. It hasbeen suggested that the
power law behavior relates to the charge transfer via an
exponential distribution of surface states, with parameter
T0, which gives β= 0.5þ T/T0.

7,9,12 This approach has been
amply discussed recently,10,13 but here, we are not concerned
with the interpretation of eq 8. Rather, we take eq 8 as an
empirically given reality and investigate the implications for
steady-state modeling of the DSC.

Our goal is therefore to study the consequences of the
equation

D0
d2n
dx2

-krnβ þG ¼ 0 ð9Þ

For clarity, we analyze only the case in which the generation
rate G is homogeneous and much larger than thermal gen-
eration. In the absence of other sources of carriers, we have a
constant density in all positions, which we term the back-
ground concentration

nb ¼ G
kr

� �1=β

ð10Þ

It is illustrative to recall the reference case of the linear
recombination. Thus, for β = 1

d2n
dx2

-
1
L12

ðn-nbÞ ¼ 0 ð11Þ

The problem depends on a single length scale

L1 ¼ D0

kr

� �1=2

ð12Þ

Now, we introduce the general definition of the diffusion
length. Toavoid anycomplicationsofboundaries,we consider
infinite space -¥ < x < ¥. Diffusion and recombination of
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generated and injected carriers is described by eq 9
with a constant G. We assume the injection of carriers
by a point source at x=0, and we define the diffusion length
Ln as the average distance that injected carriers travel
before disappearing.14 Since the equation is clearly symme-
trical, we only need to consider the half space 0 e x < ¥.
Thus

Ln ¼
Z þ¥

0
xf ðxÞdx ð13Þ

where the probability that a carrier is at position x is

f ðxÞ ¼ nðxÞ-nbR þ¥
0 ½nðxÞ-nb�dx

ð14Þ

Here, n(x) is the solution of eq 9 with the following boundary
conditions:

(i) n(0) - nb is the concentration injected at x = 0 over
the background, and

(ii) n = nb at x = þ¥.

For the linear case in eq 11, the well-known solution is

nðxÞ ¼ nb þðnð0Þ-nbÞe-x=L1 ð15Þ
If we insert eq 15 into eq 13, we obtain that eq 12 is indeed
the diffusion length. In the case of β = 1, eq 9 is a linear
equation, and all of the calculated responses, even for
spatially dependent generation, are governed by a single
constant length L1.

5 This is because the response to an
arbitrary stimulus can be calculated quite simply from the
superposition of responses to point sources. However, this
is far from true in a nonlinear problem; see section S1 of the
Supporting Information.

We turn our attention to the analysis of the general case in
eq9. First of all, we observe that forβ 6¼ 1, there is no constant
with dimension of length. This is an early indication that a
constant diffusion length such as L1 is an exception that
pertains only to the linear case. The physical reason for this
is that in the nonlinear problem, the recombination rate
depends strongly on the local concentration. We can reduce
eq 9 to the convenient expression

d2c
dx2

-
1

λ0
2c

β þ g ¼ 0 ð16Þ

Here, we have introduced a normalized concentration c= n/
nb and generation

g ¼ G
D0nb

¼ G1-1=βkr1=β

D0
ð17Þ

and

λ0 ¼ D0nb1-β

kr

 !1=2

ð18Þ

is the length scale of the problem that now depends on nb
(note that λ0 is not a diffusion length, which is given below).

In order to compute diffusion lengths, we need to solve
eq16with the boundary conditions indicated above. Sincewe
are only interested here in the case in which g is constant, we

can apply a procedure15 to obtain a first integral. From
eq 16

1
2

dc
dx

� �2

-
1

ðβþ1Þλ02
cβþ1 þ gc ¼ K ð19Þ

where K is a constant of integration. By application of the
boundary condition (ii), we can set dc/dx = 0 at c = 1. This
fixes the constant K, and we get

1
2

dc
dx

� �2

-
1

ðβþ 1Þλ02
ðcβþ1 -1Þþ gðc-1Þ ¼ 0 ð20Þ

A second integration gives

x ¼ -
1ffiffiffi
2

p
Z c

cð0Þ

1

ðβþ 1Þλ02
ðcβþ1 -1Þ-gðc-1Þ

" #-1=2

dc

ð21Þ
Equation 21 can be computed numerically and inverted to

give c(x). The results are shown in Figure 1a for β= 0.5. It is
observed that the concentration decays smoothly fromn(0) to
the background value, nb, which is marked in gray.

Before we discuss the results of n(x) for this model, let us
consider an important aspect of the problem that is related to
the small perturbation measurement such as IS, time transi-
ents, and so forth. We notice in Figure 1a that when the
injected concentration is n(0) - nb , nb, recombination will
be basically fixed by the value of the background concentra-
tion at all points of space. Therefore, in eq 9, we can write
n(x) = nb þ n1, with n1 , nb. The terms in nb cancel out by
eq 10; see section S2 of the Supporting Information. The
remaining equation for n1 is

D0
d2n1
dx2

-
1
τf
n1 ¼ 0 ð22Þ

Here, τf is the lifetime of free carriers, which has been defined
elsewhere10 as

τf ¼ ∂Un

∂n

� �-1

ð23Þ

and for eq 8, this gives

τf ¼ nb1-β

βkr
¼ n01-β

βkr
exp

qð1-βÞV
kBT

� �
ð24Þ

Weobserve that eq22 is linear just as eq11. By reference to
the linear case, in eq 22, we can introduce the small perturba-
tion diffusion length

λn ¼ ffiffiffiffiffiffiffiffiffi
D0τf

p ð25Þ
In the case β= 1, we obtain obviously λn = L1, independent
of background concentration,which is the standard definition
of the diffusion length in terms of the small perturbation
lifetime. However, in general

λn ¼ D0nb1-β

βkr

 !1=2

¼ nb -β=2

β1=2
λ0 ð26Þ

With respect to the measurements, it should be empha-
sized thatD0 and τf are usually not directly accessible. We can
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determine the small perturbation diffusion length from the
quantities measured by small perturbation methods,4

namely, the chemical diffusion coefficient, Dn, and the life-
time, τn, as

λn ¼ ffiffiffiffiffiffiffiffiffiffi
Dnτn

p ð27Þ
In a DSC, it is usually the case that there are trapping

factors4 δL = ∂n/∂nL (see section S3 of the Supporting
Information for further discussion), so that the measured
diffusion coefficient and lifetime are

Dn ¼ δLD0 τn ¼ τf=δL ð28Þ
For example, for an exponential distribution of traps

δL ¼ An1-R ð29Þ
where R = T/T0. If eq 28 is realized experimentally, the
trapping factors disappear in the small perturbation diffusion
length, and then, eq 27 gives eq 25 exactly.10

We have observed that for a small perturbation over a
homogeneous background, the excess concentration is gov-
erned by the linear eq 22. We can thus infer that in such a
situation, the calculation of the diffusion length in eq 13 will
give

Ln ¼ λn ðfor nð0Þ - nb,nbÞ ð30Þ
The diffusion length is therefore well-defined for a small
perturbation and measurable in a DSC, for example, by IS,
even under nonlinear recombination, provided that the car-
rier distribution is homogeneous in the nanoporous layer. We
also have the expression16

Ln ¼ L

ffiffiffiffiffiffiffiffi
Rrec

Rtr

r
ð31Þ

that relates the diffusion length to the recombination and
transport resistances.

Usually, themeasured lifetime in a DSC, τn, decreases with
the bias voltage, but this is associated with a large trapping
factor, eq 28. We remark that τf, the free carrier lifetime,
increaseswith the bias voltage forβ<1 (the usual situation in
a DSC); see eq 24. It follows from eqs 25 and 30 that Ln must
increase with the bias voltage as well, and this is clearly
observed in recent reports.2,3,17,18

Let us discuss the general trends of the decay of injected
carriers under the background concentration nb that is shown
in Figure 1. First, as already stated in eq 28, if n(0)- nb, nb,
all decays have the same shape, which corresponds to the
linear approximation in eq 22 and are represented with a
thicker line in Figure 1 (because several decays give nearly the
same response). This is observed in the normalized plot of
Figure 1b, and the exponential shape is obvious in the log-
linear plot of Figure 1c. The calculation of diffusion length
by integration, eq 13, also confirms eq 30; see Figure 2.
However, when n(0) ≈ 5nb and larger, the decay profile
departs from the linear model, and the diffusion length
increases. Figure 1c shows that under large injection (with
respect to background), the decays do not follow the expo-
nential shape. If we attempt to determine the diffusion length
using the linear approximation (exponential decay), we ob-
tain an apparent diffusion length Lexponential that is about twice
Ln. If we determine the impedance response or other tran-
sient measurement under large injection, the free carrier

Figure1. Representationof thedecayofexcessconcentration injected
at x=0, for diffusion and nonlinear recombination with β=1/2, in a
background concentration. The different graphs show different nor-
malization and scales of the same decays. Parameters D0=kr=G=1.
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lifetime will correspond not with the carrier density nb but
with some homogeneous average concentration n ≈ nb þ
[n(0) - nb]/2. Furthermore, the correspondent diffusion
length λn0 (n0/2) calculated by eq 26 is even larger than the
exponential approximation; see Figure 2.

This analysis provides the following conclusions. In the
presence of nonlinear recombination, it is possible to associ-
ate a unique diffusion length to a set of external conditions
only if the background concentration is uniform and the
measuring perturbation is small. In this way, we obtain
Ln = λn = (Dnτn)

1/2, which is well-defined, independent of
the amplitude of the perturbation, and this is shown experi-
mentally in the agreement of λn = (Dnτn)

1/2 measured by
different methods.3 It is also possible to associate a diffusion
length for a point source of large intensity since the back-
ground concentration becomes irrelevant. In this case, Ln is
found by integration of the result of eq 21 and the definition in
eq 13. In general, for other situations (e.g., with exponential
generation profile or with the boundary condition of the solar
cell, [dn/dx]x=0 = 0, etc.), the notion of a diffusion length
should be confirmed with a full solution of the device model.

It is therefore convenient to conclude with a brief analysis
themain strategies that one should adopt inmodeling ofDSC.
To assist the discussion, we show in Figure 3a a set of
current-potential (IV) curves that are drawn using the well-
knowndiode equation. All curves are physically feasible in the
sense that current and efficiency are below the Schock-
ley-Queisser (SQ) limit for the given band gap of the
absorber. Curve A is a solar cell of low band gap, high current,
and recombination governed by the linear model that gives
the diode factorm= 1. This may be representative of silicon
solar cells. Curve B, representing a DSC, produces a larger

voltage but lower current than A, and the recombination with
β= 0.5 gives a higher m= 2. This feature has an important
impact on the reduction of power conversion efficiency since
the fill factor decreases rapidly with increasing m; see
Figure 3b and section S4 of the Supporting Information.
Under these conditions, the maximum photocurrent is
reached, but this is not the case for the photovoltage. Even
in the SQ limit, the maximal photovoltage does not reach the
band gap (at AM 1.5G illumination) due to radiative recombi-
nation. In a real solar cell, Voc is even lower due to (i) voltage
losses in the device (contacts, aligment of energy levels, and
so forth) or (ii) additional recombination pathways. In the
current stressing work of pushing the DSC efficiency up, it is
important to determine what is the best way to discriminate
between these two limiting photovoltage factors. For exam-
ple, for solar cells of type B, the given photocurrent could
provide a much larger voltage, even allowing for some
overvoltage between the absorber and the electron and

Figure 2. Representation of the diffusion length, Ln, for diffusion
and nonlinear recombination with β = 1/2, over a background
concentration, nb, as a function of the injected density in a point
source. The blue line is the small perturbation diffusion length, λn.
The squares represent the approximate diffusion length obtained
by fitting the decays to an exponential function. The triangles
consist of calculating the small perturbation lifetime from the
average concentration, λn0 (nb þ [n(0) - nb]/2) (instead of the
background concentration).

Figure 3. (a)Current density potential curves of solar cells at 1 sun
(AM 1.5G) illumination with the following characteristics: (A)m=
1, FF = 0.82, η = 17.3%; (B) m = 2, FF = 0.77, η = 12.3%; (C)
m = 15, FF = 0.86, η = 20.3%; and (D) η = 2.4%. (b) The fill
factor of a Schockley diode as a function of the open-circuit
potential, according to the value of the ideality factor, m. The
points are values corresponding to characteristics of DSCswith dyes
Z991 (η= 12.2%),19 C106 (η= 11.3%),17 and D131 (η= 5.1%).20
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hole-transport materials. Thus, solar cell C could be reached by
aDSC type, in principle. Therefore, a question arises about solar
cell B, what is causing the limit of photovoltage? There are
energetic limitations due to the specific electron and hole-
transport materials used,21 but nonetheless, it is necessary to
check if the recombination rate allows for such limits to be
reached, that is, if the Fermi level of electrons in TiO2 really gets
right to the conduction band level.22 We observe in Figure 3b
that real high efficiency DSCs provide fill factors around the
value corresponding tom=2.Weassume that the influence of
the series resistance in such cells must be very small.

For a detailed analysis of these features, it is important to
obtain both the recombination resistance and the lifetime,
even in the flat region of the IV curve and also close to Voc; see
section S6 of the Supporting Information. These magnitudes
are essential for the study of solar cell performance, while the
diffusion length only can be defined as a global parameter in
the linear case of eq 9, which is not obeyed by DSCs. More
concretely, F. Fabregat-Santiago and co-workers showed11

that Rrec is central for a proper reconstruction of the IV curve,
and our discussion above indicates that the free carrier life-
time, τf, provides the fundamental information on recombi-
nation.10 Description of these experimental data, in the route
toward higher voltages, requires eq 9 as the basic starting
point.

Finally, one often finds in the literature the analysis of cells
of low performance of the type D. For example, it has recently
been observed that in some sets of metal-free organic dyes,
the recombination increases strongly when the conjugation
length is increased to shift the light absorption to the red part
of the solar spectrum.23,24 In such cells, it is found, as inD, that
the flat collection region is absent, indicating a decrease in the
collection efficiency; see section S5 of the Supporting Infor-
mation.23 A detailed recombination model is necessary to
describe such a system. It should be also mentioned that in
addition to the electronic aspects described by eq 9, there
may be considerable complexity of the transport of the hole-
transport material, especially in viscuous solvents or organic
hole conductors, and also additional recombination path-
ways.25 However, useful simulation tools should be consistent
with the electronic properties of the DSCs that have been
established by experience of many years in many different
laboratories. This points out the need for more robust simula-
tion programs that allow a proper interpretation of the data,
with a combined and consistent analysis of impedance and
steady-state data in combination with other useful methods.
Some steps in this direction are taken recently by J. A. Anta
and co-workers by adapting IV data to eq 9.26 It is also
important to develop a detailed description of the collection
efficiency in a DSC starting with the nonlinear recombination
model of eq 9 in order to clarify some experimental results
that were reported recently.1-3

In summary, nonlinear recombination becomes manifest
in measurements of DSCs, especially in the recombination
resistance dependence on voltage and in the dependence of
the photovoltage on illumination intensity.Wehave suggested
that a starting model to describe such properties is based on
the free carrier lifetime and recombination resistance depen-
dence on carrier density and on the compensation of trapping

factors. These two properties imply the increase of the diffu-
sion length with voltage, as observed experimentally, but a
more systematic study of the validity of the two assumptions
should be carefully investigated. Modeling of the steady-state
behavior of a DSC should start with the diffusion-
recombination-generation equation, in which recombina-
tion order β is consistent with that obtained from the recom-
bination resistance. In some situations, especially in very low
performance solar cells, the collection efficiency becomes an
issue and should be further investigated consistently with the
generally valid simulation approach.

SUPPORTING INFORMATIONAVAILABLE Definition of the
diffusion length, the conservation equation, trapping factors, diode
quality factors, theoretical IV curves, and the diffusion length in
terms of resistances. This material is available free of charge via the
Internet at http://pubs.acs.org.
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S1.- Consistency of the definition of the diffusion length 

Consider diffusion-recombination and generation for a constant free carrrier lifetime 

(linear recombination) 

0)()(1)(

0
2

2

0 =+− xGxn
dx

xndD
τ

 (S1) 

We solve the equation for an impulse that generates an   at 0=x  . 
nLx

aenxn /)( −=  for 0≥x  . 

nLx
aenxn /)( =  for 0≤x  . (S2) 

where 00τDLn =  . 
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Fig. S1.1. Diffusion with linear recombination. The black lines are the distribution of 

carriers for isolated impulses. The blue arrow is the diffusion length from the point of 

injection. 

 

If we consider several impulses, see Fig. S1.1, the resulting )(xn  can be simply 

obtained by addition of the solution to the individual source. The excess diffusing 

carriers of separate impulses do not interfere with each other. As an example in Fig. 

S1.1 we combine a constant generation at all points and two point sources. The diffusion 

length, i.e., the distance that carriers travel from point A, maintains the meaning for an 

arbitrary generation profile around the original source A. 

For the non-linear equation 

0)(2

2

0 =+− xGnk
dx

ndD r
β  (9) 

the situation is quite different. The solution for two impulses is not the addition of the 

responses for the individual impulse. For example if the free carrier lifetime increases 

with the concentration, in Fig. S1.2 the flux to the right from source A will be enhanced 

by the presence of source B. The distance travelled from A depends on the particular 

situation along the way and cannot be defined as a general parameter. 

 

 

Fig. S1.2: Diffusion with nonlinear recombination. The black lines are the 

distribution of carriers for isolated impulses. The green line suggests the diffusion of 
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carriers generated at source A in the presence of source B. 

 

S2.- Linealization of the conservation equation 

We start from the following equation. 

0)()()(
2

2

0 =+− xGxnk
dx

xndD r
β  (9) 

Given a generation profile )(xGss  and boundary conditions, Eq. (9) has some 

solution that we denote )(xnss  .  

We apply some small perturbation (for example a slight change of the potential at the 

boundary). The new solution will be )()( 1 xnxnss + , where ssnn <<1 . Eq. (9) is 

generally valid, therefore   
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The term in rk  can be simplified by expansion to first order   
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Returning to (S2.1) we can separate two equations. The first is eq (9) for ssn . The 

second is the linear equation 
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0 =− − xnxnk
dx
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D ssr

ββ  (S2.3) 

If ssn  is homogeneous (uniform G) then bss nn = . This is the case described in eq 

(22) of the text. 

If ssn  is position-dependent then we must solve the eq (9) for )(xnss  and this enters 

the equation (S2.3) for )(1 xn . For example the impedance problem can be formulated in 

terms of the equations 

dx
xdnDxJ )()( 1

01 −=  (S2.4) 
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S3.- Trapping factors 

In the presence of traps, the time-dependent conservation equation for free carriers, 
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cn , contains an additional term, due to the net capture by traps, which increase the 

concentration of localized electrons Ln . 
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 Eq (S3.1) may be completed by a kinetic equation for the traps that defines the 

variation tnL ∂∂ / . However, if the trapping kinetics is fast we may assume that the traps 

follow the equilibrium relation with the free carriers 
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Therefore eq (S3.1) is written 
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We introduce the trapping factor 
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Equation (S3.3) takes the form 
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For a small perturbation,  
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For a time dependent small perturbation, we can treat the system in terms of the free 

carriers but the measured diffusion coefficient and lifetime are 

Ln DD δ/0=  (S3.7) 

fLn τδτ =  (S3.8) 

For a steady state situation, the trapping factors do not contribute and the 

conservation equation is 

02

2

0 =−
∂

∂ βnk
x
n

D r
c  (S3.9) 

The essence of the quasistatic approximation, is to describe the kinetic factors for 

trapping and detrapping in terms of occupation of free and localized states. This is 
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possible because the kinetic constants for forward and reverse processes are linked by 

detailed balance to the occupation of the states from which the transitions occur, and this 

is succinctly expressed in eq (S3.2). The quasitatic approximation was introduced to 

account for the properties of measured time constants in DSC in Ref. 1. For a complete 

explanation of this approach see Refs 1-3  

The compensation of the trapping factors1 in the small perturbation diffusion 

coefficient is not complete if the free carrier lifetime shows some dependence with the 

potential, as implied by eq (24) 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

−
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k
n

Br
f

)1(exp
1

0 β
β

τ
β

 (24) 

Therefore, the lifetime, nτ , that is measured by the decay of the Fermi level, 

decreases with the potential, but this can be attributed mostly to the trapping factor. 

While the relevant lifetime for steady state conditions is the free carrier lifetime, fτ , 

which increases with the bias as indicated in eq. (24). This is explained in the following 

diagrams, Fig. S3.1. The characteristic variation of parameters with voltage in a DSc is 

described in Fig. S3.2, and the variation of paramaters with the temperature is illustrated 

in Fig. S3.3. 
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Fig. S3.1. Schematic view of the electron lifetime measured by small perturbation, 

nτ  (top pannel) and the free carrier lifetime, fτ  (bottom pannel), and the implications 

for the diffusion length in the case that recombination is determined by a constant 1<β . 

The set of arrows indicates the change of charge transfer rates. 
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Fig. S3.2. (a) Representation of the free and localized carrier density, as a function of 

potential (Fermi level position), for an exponential distribution of localized states 

( K 300=T  , K 14000 =T  , 71.0/5.0 0 =+= TTβ ). (b) Electron lifetime, nτ , and the 

diffusion coefficient, nD , measured by small perturbation. (c) The free carrier lifetime, 

fτ , and diffusion length fnnn DDL ττ 0== . 
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Fig. S3.3. (a) Representation the free carrier lifetime, fτ , and diffusion length 

fnnn DDL ττ 0==  as a function of potential (Fermi level position), for an 

exponential distribution of localized states ( K 14000 =T , 0/5.0 TT+=β ) at different 

temperatures. See experimental data in Refs. 3,4. 

 

S4.- Diode quality factors 

The fill factor (FF) of a Schockley diode is found readily, by solving the potential 

that gives the maximum power of the IV characteristics. The result is only a function of 

the open-circuit voltage, ocV . )( ocVFF  is found with excellent approximation by the 

analytically closed expression given by M. Green in 1980 [Solar Cells: Operating 

Principles, Technology and Systems Applications] 

( )
1/

72.0/ln/
)(

+
+−

=
roc

rocroc
oc VV

VVVV
VFF  (S4.1) 

where )/( TmkqVV Bocr = . Fill factors are shown in Fig. 3(b) as a function of ocV .  
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It should be emphasized that eq. (S4.1) is obtained from a model in which the 

probability of collection is independent of the potential. Since a DSC current-potential 

curve must be based on a more general equation such as (9), the equation (S4.1) for the 

FF as a function of ocV  must be considered a first approximation. 

 

S5.- IV curves for linear recombination 

In order to clarify comments in the main text referred to Fig. 3, we have simulated 

several IV curves with different parameters. To obtain the IV curves we have integrated 

the linear equation (S5.1)5,6 for reason of simplicity: 

( ) ( ) ( ) 0exp
0

0
2

2

0 =−Φ+
−

−
∂

∂ x
nxn

x
xnD a αα

τ
 (S5.1) 

We have considered a non-homogeneous, exponential absorption, where aα  is the 

absorption coefficient and Φ  in the incident light intensity. The boundary conditions 

employed considering substrate side illumination are: 

 (i) )0(n  relates to the bias voltage V as determined by eq. (2). 

(ii) 0)( == LxJ  where L is the length of the sample.  

 Fig. S5.1a shows the IV curves considering a constant diffusion coefficient and 

lifetime, 0τ . Fig. S5.1a plots the IV curves using different diffusion length 

(unambiguously defined in the linear case): 10L, L and 0.1L. The collection efficiency 

moves to significantly lower than 100% when the diffusion length is of the same 

magnitude or lower than the sample length as it is commonly know. But it is important 

to point out that in the three cases IV curves follow the same pattern: with a flat part at 

lower voltages and an exponential decrease at the higher ones due to recombination. In 

the case of a DSC the diffusion length is not a good parameter when the recombination 

is non-linear, as it has been pointed out in the main text. The question is what is the 

good magnitude to differentiate between good and bad performing cells, taking into 

account that both presents the same IV pattern.  

 We want to show that recombination resistance is a good magnitude to clarify 

this point. In the case of linear recombination defined in (S5.1), with the boundary 

conditions commented, recombination resistance can be calculated as: 



  10 

( ) ( )
n

L
L

L
L

qL
kT

V
xJ

V
xJ

R

n

n

n

rec
rec

1

sinh

cosh
00

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎟
⎠
⎞

⎜
⎝
⎛

∂
=∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
=∂

=
τ  (S5.2) 

Note that genrec JJJ −=  and the generation current, genJ , is constant and dependent of 

the light intensity. recJ  is the recombination current. Fig. S5.1b shows the recombination 

resistance, recR , for the three cells simulated in Fig. S5.1a. It should be remarked that in 

the flat part of the IV curve, recombination resistance recR  shows an exponential 

variation and informs us about recombination rate in all conditions of the solar cell. This 

is because recR  is a derivative of the current that removes the voltage-independent 

contributions, eq (4) and (S5.2). Therefore recR  gives us a key magnitude to 

discriminate between these cells, and can be unambiguously defined, even in the case of 

non-linear recombination, as it has been shown in the main text. It can be easily 

measured by IS.  

On the other hand a cell, as B in Fig. 3, can have a 100% of collection efficiency but 

does not reach its maximum potential photovoltage due to recombination, see Fig. 

S5.1c. Again, recR  allow us to identify this effect, see Fig. 5.1d. An increase of recR  

moves the point were recombination reduces the current to higher voltage, and recR  

increases. Obviously the photocurrent is not affected since it has in all cases the 

maximal possible value, determined by the convolution of the absorbance of the 

absorber material and the spectral flux of photons. 

The present study should be completed with the correspondent analysis based on non-

linear recombination, eq (9). This will be presented in a forthcoming publication. 
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Fig. S5: a & c) IV curves from the integration of equation (S5.1). b&d) 

Recombination resistances. 125
0 ·10 −−= scmD , cmL 310−= , 1217 ·10·5 −−=Φ scm , 

KT 300= , 1500 −= cmα .  
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S6.- Diffusion length in terms of measured resistances 

An evaluation of the collection efficiency requires to compare the rate of transport 

and the rate of recombination in the active layer of the solar cell. The expression7 

tr

rec
nn R

R
LL == λ               (31) 

relates the diffusion length to the recombination and transport resistances. 

 

 

Fig. S6: The impedance spectra in diffusion-recombination model, at decreasing 

ratios trrec RR / .  
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It was shown7 that the ratio trrec RR /  provides different types of spectra, as shown in 

Fig. S6. If trrec RR >>  the recombination resistance forms a large arc at low frequency, 

and the transport resistance forms a small Warburg feature at high frequency, Fig. S6a. 

This type of spectrum allows to immediately recognize a DSC with a large collection 

efficiency.8 In contrast, when recombination flux is large and we have the situation 

trrec RR <  we obtain the Gerisher impedance which indicates that not all carriers can be 

extracted from the sample, Fig. S6c. In the Gerisher impedance trR  and recR  cannot be 

distinguished by inspection and a fit of the spectra is necessary to determine these 

parameters.  

The impedance model was solved for homogeneous conditions of carrier 

distribution,7 and for situations in which the carriers are not homogeneous, a numerical 

solution based on eqs (S2.4) and (S2.5) should be attempted.9 

It interesting to observe that in Fig. S6a (high collection efficiency) capacitances (or 

time constants) are not necessary to appreciate the collection efficiency, which is given 

by competition of transport and recombination fluxes that are directly evaluated by the 

correspondent resistances. The capacitive behaviour is however important to 

discriminate the different resistive components from the total resistance. The power of 

IS is to provide both resistances and the discrimination method in a single spectroscopy. 

In the case of low collection efficiency, Fig. S6c, it is important to remark that the 

two processes of transport and recombination are closely coupled, and the time 

constants are mixed. It is therefore rather tricky to determine the time constants by time 

transient decay experiments. A full spectroscopy, either based on the perturbation or the 

voltage (IS), or the light,10 should be used in such situation. By fitting the spectra to an 

appropiate model, as in the case of Fig.  S6c, the parameters can be properly determined. 
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