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The dynamics of trapping coupled with charge transfer is analysed in the frequency domain for a model
of the dye-sensitized solar cell. We solve the steady state occupations of the surface state and the result-
ing recombination currents, based on the assumption of detailed balance. We determine all the param-
eters that control the frequency response in Impedance Spectroscopy as a function of the steady state,
and the characteristic shape of the impedance spectra. At large charge transfer rate the low frequency
capacitance of the surface states is considerably reduced with respect to the thermodynamically defined
equilibrium capacitance. We also show that the usual kinetics of recombination does not give a negative
capacitance contribution.
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1. Introduction

Considerable research effort has been devoted to the dye-sensi-
tized solar cell (DSC) based on mesoporous titania, as a feasible low
cost photovoltaic device. DSC devices with ruthenium sensitizers
and liquid electrolytes have achieved demonstrated efficiencies
over 11% at 1 full sun, and remarkable stability has been obtained
using ionic liquids. In a DSC, electrons injected into mesoscopic
TiO2 recombine with the holes in the redox carrier or organic solid
conductor by interfacial charge transfer. It is believed that a better
understanding of the back reaction of photoinjected electrons may
contribute to greatly improve device performance, and especially
photovoltages, by a rational design of materials and nanostructures
[1].

It was recognized that surface states play a dominant role in
electrochemical reactions at extrinsic crystalline semiconductor
electrodes [2–5]. In a DSC, low doped anatase-TiO2 nanoparticles
ca. 20 nm diameter are frequently used to form the porous semi-
conductor electron transport phase. Such particles present both a
large surface exposed to the hole transport material, and promi-
nent energy disorder in the electronic states that becomes appar-
ent in different kinds of dynamic measurements [1,6]. It has
therefore been established that most of the electrons reside in
localized states in the bandgap. Since a distance for electron tun-
neling should be of the order of 1 nm, it is important to consider
in detail the dynamics of charge transfer from bandgap localized
ll rights reserved.
states situated close to the surface of the nanoparticle, within tun-
neling reach (hereafter termed surface states), to the electron
acceptor.

Small amplitude perturbation dynamic techniques have be-
come a major tool for DSC characterization [7,8]. In the literature
of photoelectrochemistry there are detailed treatment of the dy-
namic effects of surface states [4,9–15]. We have presented calcu-
lations of the effect of surface states in DSC in steady state [16–18],
and we have also characterized quite generally the dynamics of
traps in terms of Impedance Spectroscopy (IS) [19,20]. However,
the combination of trapping and charge transfer in surface states
introduces additional features in the dynamics [2–5]. IS of charge
transfer via surface states has been mentioned sometimes in the
DSC field but the traps dynamics was not explicitly described
[21,22].

Recently some IS experimental evidence has been presented for
charge transfer involving a distribution of surface states in DSC
with volatile electrolytes [8,23], and via a localized surface state
in the case of aqueous electrolyte [24] and ionic liquids [25]. An-
other important feature of IS measurements in DSC is the frequent
observation of a negative capacitance at low frequencies [26]. This
is obtained in different types of solar cells, for example in DSC with
OMETAD solid hole conductor [27] and in mesoscopic TiO2 quan-
tum dot-sensitized solar cells [24]. This feature greatly complicates
the analysis and interpretation of steady state performance of the
investigated DSCs. A recent experimental study shows the progres-
sive suppression of the negative capacitance by conformal covering
of the TiO2 with an insulator phase, via atomic layer deposition
[27]. It is therefore likely that the negative capacitance is strongly
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connected to the recombination via surface states, but a definite
model to support this has not been devised so far.

Let us summarize briefly the basic features of the known IS
models for DSC concerning recombination and traps (neglecting
diffusion). The potential applied in the mesoporous TiO2 produces
a charging of the chemical capacitance of the transport states [28].
Charge transfer from the transport state produces a recombination
resistance in parallel with the chemical capacitance [29]. A trap is a
localized state in the bandgap that communicates with the trans-
port state. The trap has a separate chemical capacitance [30], that
is connected in parallel to the chemical capacitance of the conduc-
tion band states. Trapping and detrapping also has a resistive com-
ponent, and the equivalent circuit for a trap consists on a series of
resistance and the chemical capacitance of the trap [9,20].

Additional features, due to the charge transfer from the trap are
analysed in this paper. We discuss the kinetic response as a func-
tion of the occupation of the states in the model shown in Fig. 1
of a mesoporous semiconductor that contains a transport state that
can be controlled by the potential applied in the substrate, and a
localized surface state. To simplify the treatment, and focus on
the required features, diffusion in the transport state is assumed
infinitely fast, and band unpinning (a property often considered
in photoelectrochemistry [12,15]) is neglected as well. These fea-
tures are briefly commented in the final section of the paper. Trap-
ping–detrapping kinetics is formulated in terms of conventional
detailed balance assumption [31]. Both the free and localized state
Fig. 1. (a) Mesoporous semiconductor film deposited over a conducting substrate,
the matrix of the active layer in a DSC. (b) Schematic representation of the steps
involved in the recombination between the electrons in TiO2 nanoparticles and the
oxidized species (holes) in the electrolyte. EF is the Fermi level of electrons under
illumination and Ec is the transport level (conduction band) energy, Eredox is the
redox potential of the acceptor species in solution, and Et is the energy level of a
surface state in the bandgap. The following steps are indicated: electron transport;
electron transfer through conduction band; capture and release by a surface state;
electron transfer from the surface state. The rate of interfacial charge transfer from
transport states is kcbnc and the rate of charge transfer from the surface state is kssfss .
produce charge transfer to the hole transport phase, and this con-
stitutes a basic description of recombination in a DSC [23]. We de-
scribe fully both the steady state features, by determining the
statistics of occupation, and the equivalent circuits that allow the
interpretation of the frequency measurements. Therefore we can
predict how the equivalent circuit parameters vary with the exter-
nal bias voltage.
2. Model

2.1. The general kinetic equations

Fig. 1 shows a piece of nanostructured semiconductor in contact
with a conducting substrate at the left side. A transport level (con-
duction band edge at the level Ec) allows the displacement of elec-
trons through the mesostructure. Charge transfer to acceptor
species in solution may occur in two different pathways: by direct
transfer from extended states in the conduction band, and via sur-
face states. We first assume that surface states are concentrated at
a single energy level, Et , and a distribution of surface states that
usually occurs in DSC, is treated later on.

The surface states are connected by trapping–detrapping kinet-
ics to the transport level, that communicates with the outer con-
tact. In the scheme, we indicate that the potential V governs the
Fermi level EF as

qV ¼ EF � Eredox ð1Þ

where q is the elementary charge. The Fermi level in the unbiased
system, EF0, is equilibrated with Eredox, the redox potential of the
holes in solution. The extended states have an effective density Nc

and number density of carriers nc , given by

nc ¼ NceðEF�EcÞ=kBT ¼ n0eqV=kBT ð2Þ

where kB is Boltzmann’s constant, T is the temperature and n0 is an
equilibrium density at zero bias.

The kinetics of electrons in the surface state is governed by the
equation that describes the variation of the occupancy function of
the state, fss, due to trapping and release from the transport state,
and transfer of electrons to the hole acceptor:

@fss

@t
¼ bcnc½1� fss� � erfss � kssðfss � fss0Þ ð3Þ

Here bc is the time constant for electron capture, er the constant
for release, and kss the rate constant for charge transfer. By detailed
balance condition, in equilibrium without applied bias each ex-
change process must be separately balanced. For the charge trans-
fer process we have obviously fss ¼ fss0 ¼ fssðEF0Þ, and for the
trapping process we obtain from Eq. (3)

fss0 ¼
1

1þ er=ðbcn0Þ
ð4Þ

In equilibrium we also have fss0 ¼ FðEt ; EF0Þ, in terms of the
Fermi–Dirac function

FðE; EFÞ ¼
1

1þ eðE�EF Þ=kBT
ð5Þ

Therefore the following constraint holds

erðEtÞ ¼ bcNceðEt�EcÞ=kBT ¼ bcnceðEt�EF Þ=kBT ð6Þ

We consider the kinetics of electrons in the transport level in
the mesoporous semiconductor of thickness L shown in Fig. 1a.
At position x, Jn is the flux of carriers in the positive x direction
by diffusion, that relates to the gradient of concentration by Fick’s
law
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Jn ¼ �D0
@n
@x

ð7Þ

Here D0 is the diffusion coefficient electrons. The variation of
electron density at point x is determined by the change of the flux,
and by trapping, release and charge transfer terms:

@nc

@t
¼ � @Jn

@x
� bcncNss½1� fss� þ erNssfss � kcbnc ð8Þ
2.2. The global dynamic equation

Eqs. (3) and (8) form a general model for transport, trapping and
charge transfer. Solving the model requires due consideration of
generation terms (this has been omitted in Eq. (8), since it provides
a trivial modification of the IS results) and the boundary condi-
tions. In this paper we are interested in the local behaviour of trap-
ping and charge transfer. Therefore we adopt some simplifying
assumptions to obtain the steady state and impedance response
of the mesoporous film, neglecting the transport phenomena,
which can be added if desired in a more complete model (the
impedance of diffusion and diffusion-trapping has been amply de-
scribed [19,20,29]). We assume that D0 is very large implying that
the gradient of concentration required to maintain the flux is very
small. With these assumptions nc and fss become independent of
position. We now integrate between 0 6 x 6 L and obtain

@nc

@t
¼ �1

L
½JnðLÞ � Jnð0Þ� � bcncNss½1� fss� þ erNssfss � kcbnc ð9Þ

For the boundary conditions we assume that the mesoporous
semiconductor in Fig. 1 is supplemented with ideal selective con-
tacts to form a DSC [32]. The left contact is reversible to electrons
as already stated in Eq. (2), and electrical current density at this
contact is given by

j ¼ �qJnð0Þ ð10Þ

The electron flux is blocked at the right boundary, Fig. 1a,
therefore

JnðLÞ ¼ 0 ð11Þ

Using Eqs. (3), (10) and (11), we obtain from Eq. (9) the dynamic
equation that relates the variation of local, homogeneous concen-
trations (in transport and trap states) to the current injected or ex-
tracted from the mesoporous film.

j
qL
¼ � @

@t
ðnc þ NssfssÞ � kssNssfss � kcbnc ð12Þ

Eq. (12) describes the current injected or extracted in the film in
terms of (a) charging of electronic states (first term) and (b) elec-
tron flow out of the film by charge transfer (second and third
terms). Eq. (12) in combination with the trap dynamics in (3) form
the basis for the subsequent model calculations in this paper.

We will distinguish two types of experimental conditions. One
is the steady state condition at applied bias, and the quantities in
such conditions are denoted �y, if required. The second type is a
small harmonic perturbation of angular frequency x and fre-
quency f ¼ x=2p. The amplitudes of small perturbation are de-
noted by ŷ.

2.3. Steady state quantities

At steady state with an applied bias we will assume for simplic-
ity that �f ss � �f ss0. Eq. (3) reduces to

bc �nc½1� �f ss� � er
�f ss � kss

�f ss ¼ 0 ð13Þ

or
bc �nc ¼ ðbc �nc þ er þ kssÞ�f ss ð14Þ

The occupancy of the surface state is

�f ss ¼
1

1þ erþkss
bc �nc

¼ 1
1þ ð1þ kss=erÞe�ðEF�EtÞ=kBT

ð15Þ

In contrast with (4), Eq. (15) no longer has the form of the
Fermi–Dirac function relative to Et , due to the fact that electrons
are continuously transferred to the hole transport medium. In fact
when EF < Et and kss > er the standard, Boltzmann occupation is re-
duced as follows:

�f ss �
er

kss
eðEF�EtÞ=kBT ð16Þ

The Fermi level of the surface states is lower than that of trans-
port states, as discussed in Ref. [16].

At steady state, electronic states attain their equilibria with re-
spect to the imposed voltage, Eqs. (2) and (15). Therefore all the
current is recombination current. From Eq. (12), and omitting the
overbars, we have

jrec ¼ �qL½kssNssfss þ kcbnc� ð17Þ

Let us calculate the following useful derivatives

dnc

dV
¼ � q

kBT
nc ð18Þ

dfss

dV
¼ � q

kBT
fssð1� fssÞ ð19Þ

Now we can obtain from (17) the recombination resistance,

r�1
rec ¼

@�j
@�V
¼ rðcbÞ

rec

� ��1 þ rðssÞ
rec

� ��1 ð20Þ

where we have stated separately the recombination resistances for
conduction band and surface states

rðcbÞ
rec

� ��1 ¼ q2L
kBT

kcbnc ð21Þ

rðssÞ
rec

� ��1 ¼ q2L
kBT

kssNssfssð1� fssÞ ð22Þ

It is also important to determine the chemical capacitance for
transport states and trap states. Using again Eqs. (18) and (19),
we obtain [6,28] the following equilibrium chemical capacitances
for the conduction band and surface states:

CðcbÞ
l ¼ qL

d�nc

d�V
¼ q2L

kBT
nc ð23Þ

CðssÞ
leq ¼ qLNss

d�f ss

d�V
¼ q2L

kBT
Nssfssð1� fssÞ ð24Þ

We note that Eqs. (23) and (24) are defined quite generally
based on thermodynamic arguments (see Eq. (1.4) in [33]). The
capacitance CðssÞ

leq is indeed measured at low frequency [30] pro-
vided that there is no charge transfer from the surface state. The
measured capacitance at low frequency is discussed generally
below.

Combining Eqs. (21) and (23) we get the relationship [23]

rðcbÞ
rec CðcbÞ

l ¼ k�1
cb ð25Þ

and similarly

rðssÞ
rec CðssÞ

leq ¼ k�1
ss ð26Þ



Fig. 2. (a) Equivalent circuit for ac impedance conditions in the model of Fig. 1b
with electron transfer both from conduction band (Ec) and a surface state in the
bandgap at energy Et . (b and c) are different representations of the traps impedance
Zss. (d) Scheme showing the physical interpretation the equivalent circuit in (b).
CðcbÞ

l is the chemical capacitance of free carriers, rðcbÞ
rec is the recombination resistance

of free carriers, rðssÞ
td is the resistance for trapping and detrapping, CðssÞ

lp is a parallel
capacitance of the surface state, rðssÞ

p is a parallel resistance from the surface state.
(e) The equivalent circuit for stationary (dc) conditions. rðssÞ

rec is the recombination
resistance from the surface state.
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We note here a third important relationship

rðssÞ
td CðssÞ

leq ¼ x�1
t ð27Þ

where rðssÞ
td is the resistance for trapping–detrapping, and xt is the

frequency of the trap. Both magnitudes are defined later on.

2.4. Calculation of the impedance

We first take the equation for trap kinetics, (3), and express it
for a small perturbation in the frequency domain (@=@t ! ix).
Rearranging the terms in f̂ ss and n̂c , we obtain

½ixþ bc �nc þ er þ kss�f̂ ss ¼ ½1� �f ss�bcn̂c ð28Þ

Using the steady state Eq. (14), Eq. (28) takes the form [20]

f̂ ss ¼
1
�nc

�f ssð1� �f ssÞ
1þ ix=xt

n̂c ð29Þ

where the characteristic frequency of the trap is defined as

xt ¼
er þ kss

1� �f ss

¼ bcnc

�f ss

ð30Þ

and it has the value

xt ¼ ðbcnc þ eþ kssÞ ð31Þ

Note also the following relationship between the small pertur-
bation of free electron density, and voltage:

n̂c ¼
d�nc

d�V
V̂ ¼ �

CðcbÞ
l

qL
V̂ ð32Þ

Therefore from (29) we can write

f̂ ss ¼ �
1

LqNss

CðssÞ
leq

1þ ix=xt
V̂ ð33Þ

Now we take the general dynamic Eq. (12). For a small pertur-
bation this gives

ĵ
qL
¼ �½ixþ kcb�n̂c � Nss½ixþ kss�f̂ ss ð34Þ

We substitute Eqs. (32) and (33) to leave the voltage as the only
variable. Then the impedance is calculated from Eq. (34) as

Ztot ¼
V̂

ĵ
¼ 1

CðcbÞ
l kcb þ ix½ � þ CðssÞ

leq
kssþix

1þix=xt

ð35Þ

Let us write this last result as

Ztot ¼
1

ixCðcbÞ
l þ rðcbÞ

rec

h i�1
þ Z�1

ss

ð36Þ

where

Zss ¼
1

CðssÞ
leq

1þ ix=xt

kss þ ix
ð37Þ

The following alternative derivation of the same result is useful
for generalizations. We express Eq. (34) as

ĵ ¼ CðcbÞ
l ixþ kcb þ bcNssð1� �f ssÞ � Nssðbc �nc þ erÞ

f̂ ss

n̂c

" #
V̂ ð38Þ

Therefore

Ytot ¼
ĵ

V̂
¼ ixCðcbÞ

l þ rðcbÞ
rec

� ��1 þ Yss ð39Þ
and

Yss ¼ NssC
ðcbÞ
l bcð1� �f ssÞ � ðbc �nc þ erÞ

f̂ ss

n̂c

" #
ð40Þ

If we apply Eqs. (14) and (29), Eq. (40) becomes identical with
(37). Eq. (40) shows that the trap subcircuit is totally determined
by the kinetic equation of the trap (which gives f̂ ss=n̂c), indepen-
dently of the specific mechanism whereby the external potential
modulates the free carrier concentration (this may involve diffu-
sion or other processes, in more complex device models). Therefore
the results obtained here for Zss can be applied in more general IS
device models.

2.5. Equivalent circuit representations and low frequency limit

Eq. (35) implies that the impedance of the model of Eq. (12)
consists of three parallel contributions, as indicated in Fig. 2a.



J. Bisquert / Journal of Electroanalytical Chemistry 646 (2010) 43–51 47
The first is the capacitance of the conduction band, that describes
potentiostatic charging of the transport states, as illustrated in
Fig. 2d. The second element is the resistance for charge transfer
from the conduction band. These two elements are standard for
all solar cells [23,28]. The third element is the impedance of the
traps, Eq. (37), that can be written as

Zss ¼ rðssÞ
td þ

1

rðssÞ
p

h i�1
þ ixCðssÞ

lp

ð41Þ

Here, the resistance for trapping–detrapping rðssÞ
td is defined by

Eqs. (27) and (30),

rðssÞ
td

h i�1
¼ q2L

kBT
Nssðer þ kssÞ�f ss ð42Þ

and

CðssÞ
lp ¼ B�1CðssÞ

leq ð43Þ

rðssÞ
p ¼ BrðssÞ

rec ð44Þ

B ¼ 1� kss

xt

� �
ð45Þ

Eq. (41) shows the structure of the impedance of the surface
states. It is given by the resistance of trapping–detrapping, in series
with two parallel elements, a capacitance and a resistance, defined
in Eqs. (43) and (44). This is indicated in Fig. 2b and d.

The representation of Zss in Fig. 2b is not unique, and the equiv-
alent subcircuit for the trap impedance can be expressed in several
equivalent ways. For example we can write Eq. (37) also as

Zss ¼
1

rðssÞ
rec

h i�1
þ ixCðssÞ

leq

þ 1

rðssÞ
td

h i�1
þ kss

rðssÞ
td

ix

ð46Þ

This is a series of two parallel circuits, Fig. 2c, and the upper one
consists on a resistance and an inductor with the value

Lss ¼
rðssÞ

td

kss
¼ kBT

q2LNss

1
�f sskssðer þ kssÞ

ð47Þ

The presence of an inductor in the equivalent circuit, noted by
Cardon in 1972 (who provides yet another equivalent circuit
[10]), introduces the possibility that the impedance takes values
in the fourth quadrant of the complex plot, i.e. �Z00 ¼ �ImðZÞ < 0.
It also appears at first sight that if kss > xt both CðssÞ

lp and rðssÞ
p in

Eqs. (43) and (44) can be negative. However, using the form of
the trap frequency, Eq. (30), it is found that the factor B is always
positive

B ¼ 1
1þ kss

erþbcnc

¼ er þ �f sskss

er þ kss
ð48Þ

and takes, approximately, the following values:

B � er

kss
if EF < Et ð49Þ

B � 1 if EF > Et ð50Þ

Since the impedance can be expressed in terms of (positive)
resistors and capacitors, it will be restricted to the first quadrant,
½Z0 ¼ ReðZÞ > 0;�Z00 > 0�. To further investigate this point, let us
calculate the low frequency value of the impedance. At low
frequency

Zssðx ¼ 0Þ ¼ rðssÞ
td þ rðssÞ

p ¼ rðssÞ
rec ð51Þ

To identify the low frequency capacitance we take the
admittance
Y ¼ ixCðcbÞ
l þ rðcbÞ

rec

� ��1 þ Z�1
ss ð52Þ

and calculate the low frequency limit of Z�1
ss . The result is

Yðx! 0Þ ¼ 1

rðcbÞ
rec

þ 1

rðssÞ
rec

þ ixCðcbÞ
l þ ixBCðssÞ

leq ð53Þ

The low frequency limit is a parallel ðrrec;Clf Þ circuit. The total
resistance is a parallel of the recombination resistances of the
two charge transfer channels, as indicated in Eq. (20) and illus-
trated in Fig. 2c:

r�1
rec ¼ kcbCðcbÞ

l þ kssC
ðssÞ
l ð54Þ

The low frequency capacitance is

Clf ¼ C 0ðx! 0Þ ¼ CðcbÞ
l þ BCðssÞ

leq ð55Þ

and it is positive, so that the impedance spectrum approaches the
real axis from above, and no inductive loop is present in this model.
The effect of the inductor is to increase the value of capacitance and
increase the resistance, as indicated in Eqs. (43) and (44). Therefore,
the presence of charge transfer reduces the value of the low fre-
quency trap capacitance from the equilibrium value CðssÞ

leq, to

CðssÞ
llf ¼

er þ �f sskss

er þ kss
CðssÞ

leq ð56Þ

Note also that if kss ¼ 0 both circuits in Fig. 2b and c for the trap
with charge transfer reduce to the standard circuit for a trap, which
is a series ðrðssÞ

td ;CðssÞ
leqÞ [9,20]. Finally, we calculate the apparent elec-

tron lifetime which is given by Bisquert et al. [23]

sn ¼ rrecClf ¼
CðcbÞ

l þ BCðssÞ
leq

kcbCðcbÞ
l þ kssC

ðssÞ
leq

ð57Þ
2.6. Exponential distribution of surface states

Let us consider a distribution of surface states gðEÞ and calculate
the corresponding capacitance. If we assume that the trapping con-
stant bc is the same for all the states in the distribution, then the
rate constant for electron release erðEÞ increases rapidly at increas-
ing energies. If kss is constant or decreases upwards in energy, there
is a point where berðEdÞ ¼ kss that is called the demarcation energy,
Ed [17].

Since the impedances of the different surface states are con-
nected in parallel, we can add the frequency-dependent capaci-
tance, C�ssðxÞ ¼ 1=ixZssðxÞ, corresponding to each interval of
energy dE, as follows [20]:

C�ssðxÞ ¼
Z Ec

Ev

CðssÞ
leqðEÞ

1þ kss=ix
1þ ix=xt

dE ð58Þ

where CðssÞ
leqðEÞ is the equilibrium chemical capacitance per unit en-

ergy in the interval of energy dE,

CðssÞ
leqðEF ; EÞ ¼

q2

kBT
gðEÞ�f ssð1� �f ssÞ ð59Þ

The low frequency capacitance will be given by

CðssÞ
llf ðEFÞ ¼

Z Ec

Ev

erðEÞ þ �f sskss

erðEÞ þ kss
CðssÞ

leqðEÞdE ð60Þ

and the dc resistance is

rðssÞ
rec

� ��1 ¼ q2L
kBT

Z Ec

Ev

kssgðEÞ�f ssð1� �f ssÞdE ð61Þ

We assume the specific case of an exponential distribution
[8,23] defined as
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gðEÞ ¼ Nss

kBT0
exp½�ðEc � EÞ=kBT0� ð62Þ

Here, T0 is a parameter with temperature unit that defines the
depth of the distribution below Ec .
Fig. 4. Representation of (a) capacitances (b) resistances and (c) apparent electron
lifetime, as a function of the free electron Fermi level, for a surface state at
Et ¼ 0:5 eV (Nss ¼ 1020 cm�3) and conduction band at Ec ¼ 1 eV (Nc ¼ 1020 cm�3) at
T ¼ 300 K. Two cases are shown according to the factor between the rate of charge
3. Discussion

We first analyze the occupancy of the surface state as a function
of the free electron Fermi level, EF , see Fig. 3. If the rate of charge
transfer is low, with respect to detrapping time (kss � er), the sur-
face state follows the usual statistics so that the occupancy in-
creases at EF ¼ Et . However, if kss � er , the trap is filled only
when EF is substantially higher than Et [16].

The trap characteristic frequency has been given in Eq. (31) and
is shown in Fig. 3 as a function of EF . The trap frequency is com-
posed of the reciprocal of three time constants for trapping, detrap-
ping, and charge transfer, and the shorter time constant dominates
xt . When the occupancy is fss < 1=2, xt is governed by the larger of
either er or kss. When fss > 1=2, the fastest process is detrapping, so
that xt ¼ bcnc and it increases rapidly with increasing EF .

Interpretation of experimental IS results requires the determi-
nation of equivalent circuit parameters as a function of bias volt-
age. Fig. 4 shows the predicted evolution of such parameters.
First, Fig. 4a shows the shape of the chemical capacitance. For
the low charge transfer rate (kss � er), the low frequency capaci-
tance simply follows the shape of the equilibrium chemical capac-
itance. Such shape, as is well known, consists on a peak at the point
of the half occupation of the surface state and a further exponential
increase due to the conduction band capacitance. However, at high
charge transfer rate (kss � er), we find a different result. Here the
capacitance measured at low frequency is, at low occupation
(fss < 1=2), considerably less than the equilibrium capacitance of
the trap. This result was expressed in Eq. (56) and is well illus-
trated in Fig. 4a. The reason for this decrease is that the response
of the trap is controlled by charge transfer, as mentioned above,
and therefore a displacement of the Fermi level produces a loss
of carriers, in comparison to the case in which the number of car-
riers is conserved. Therefore, this result is not exclusively related to
the IS measurement, but quite generally, the measurement of the
quasi-equilibrium capacitance by any method will provide a depar-
ture from the equilibrium capacitance of Eq. (24).

The recombination (charge transfer) resistance in Fig. 4b also
shows interesting features. The general tendency of rðssÞ

rec is an expo-
Fig. 3. (a) Representation of the occupancy of the trap state (top axis) at Et ¼ 0:5 eV
and the characteristic trap frequency (bottom axis) as a function of the Fermi level
of free electrons (left axis) at T ¼ 300 K. Two cases are shown according to the
factor between the rate of charge transfer kss and the time constant for detrapping,
er ¼ 103 s�1.

transfer kss and the time constant for detrapping, e ¼ 103 s�1: The rate of transfer
from the conduction band is kcb ¼ 100kss .
nential decrease and later increase, with the minimum at the point
where the surface state is half occupied [16]. In accordance with
Fig. 3 the minimum shifts to higher voltage when the charge trans-
fer rate constant increases. If kss � er , in the decreasing part, i.e. at
fss < 1=2, the recombination resistance is controlled by the trap-
ping resistance, rðssÞ

rec � rðssÞ
td , see Eq. (42).

The changes in low frequency capacitance and recombination
resistance produce also variations in the apparent electron lifetime,
defined in Eq. (57), see Fig. 4c. If the rate of charge transfer is low,
the lifetime makes a simple transition from the value of surface
states to the value of conduction band electrons. But if kss � er ,
there is an additional increase at low voltage due to the fact that
the low frequency capacitance is lower than equilibrium capaci-
tance. These results are based on an apparent lifetime sn ¼ rrecClf

which must be regarded as an operational definition. Indeed we
will see below that the frequency response of the model is not a
simple RC arc, which means that the small perturbation decay
[23] is not an exponential; it contains additional features, and
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the issue of the lifetime must be carefully defined if required. The
physical reason for this is the following. In the simplest model of a
solar cell (which is described by RC arc [23]), the measurement of
the electron lifetime means the discharge of the chemical capaci-
tance via the recombination resistance, and this clearly provides
the exponential decay of excess carrier density. If the solar cell is
composed of a distribution of bandgap states, but their equilibra-
tion with the conduction band is fast, we have also an RC arc
implying exponential decay, although the capacitance is increased,
and also the lifetime, by the capacitance of the bandgap states; this
is the basis for the quasistatic approximation [23,34]. However in
the situation of Fig. 2b, the traps dynamics is not trivialized, and
additional effects may happen. If the resistance for trapping–
detrapping is not small, part of the dynamics is the flow of the
charges from the conduction band capacitance to the trap capaci-
tance, and another part is the discharge via the recombination
resistances.

We turn our attention to the parameters that are measured for
an exponential distribution of states. For simplicity we assume that
kss is the same for all the states in the distribution, so that we may
focus on the features that depend on the occupation of the surface
state. We recall that the equilibrium capacitance of the distribu-
tion, is given approximately by the density of states [30]
Fig. 5. Representation of (a) low frequency capacitance (b) recombination resis-
tance and (c) apparent electron lifetime, as a function of the free electron Fermi
level, for an exponential distribution of surface state states. Three cases are shown
according to the value of the rate of charge transfer kss , which is independent of
energy. Parameters used in the calculation: T ¼ 300 K, Ec ¼ 1 eV, T0 ¼ 1000 K
(a ¼ T=T0 ¼ 0:33), Nc ¼ 1018 cm�3, Nss ¼ 1020 cm�3, b ¼ 10�10 cm2 s�1 .
CðssÞ
leqðEFÞ ¼

Z Ec

Ev

CðssÞ
leqðEF ; EÞdE � q2gðEFÞ ð63Þ

In Fig. 5a, we readily notice that below the demarcation level,
the low frequency capacitance is considerably less than the equi-
librium value of Eq. (63), and Fig. 5b shows that the charge transfer
resistance is higher than the value obtained when the occupation
of the state is low. These variations produce a step in the apparent
electron lifetime, as shown in Fig. 5c.

Another central tool for the experimental interpretation of IS is
the analysis of the frequency spectra. We show in Fig. 6 the simu-
lated spectra of the impedance model in the complex impedance
plane, and the situation of the characteristic frequencies of the
model in the spectra. First Fig. 6a shows the features of the surface
state subcircuit, Zss. The model circuit of Fig. 2b indicates that the
spectrum is an RC arc that is shifted along the real axis by the trap-
ping–detrapping resistance. At the top of the arc is the frequency of
the recombination rate constant kss. When we include the Zss in the
framework of the general equivalent circuit, we obtain different
types of spectra according to the slowest characteristic frequency.
If kss is small we observe the relaxation of the trap at low fre-
quency, and the arc of the conduction band at the high frequency
part of the spectra, Fig. 7b. However if kss is large, there is a single
skewed arc, due to the relaxation of conduction band electrons,
modified by the surface state at high frequencies.

As mentioned in the previous section, the model of recombina-
tion via bandgap states, consistent with detailed balance, cannot
produce a negative capacitance at any frequency, despite the
appearance of inductors in the equivalent circuit. This is consistent
with very general equivalent circuits for recombination in semi-
conductors developed long ago [35]. Recently, the observation of
the negative capacitance in organic photovoltaic devices was
attributed to recombination [36]. However, in my view a proper
model of the negative capacitance based on the known properties
of recombination of carriers in semiconductors is not available. The
above calculations in this paper show that recombination alone
does not produce this behaviour, and another process is required
that produces the loop of the impedance at low frequency. Models
for the charge injection at the metal–organic interface do produce
the negative capacitance, but such effect requires a mechanism of
displacement of the energetics of the surface state [37,38].
Even though the full thermodynamic-kinetic model for the
recombination via surface states does not provide a negative
capacitance, we can still explore B < 0 in Eq. (43) as a formal pos-
sibility that may be eventually validated in some different kind of
model. The resulting impedance spectra are shown in Fig. 7. The
trap impedance occurs in the fourth quadrant, Fig. 7a, and the full
impedance model including conduction band components, may
consist on either a normal positive response in the first quadrant,
Fig. 7c, or an arc that loops in the fourth quadrant at the lowest
measurement frequencies, Fig. 7b. This last shape is quite charac-
teristic of the IS measurements in some types of DSC [24,27].

As final remarks we should indicate additional important ef-
fects that occur in the application of the model in DSC devices,
but have been neglected in the former discussions to simplify
the treatment. The first is the influence of a constant capacitance
at the surface of the nanostructured semiconductor, which is
combined in series to the chemical capacitances discussed above.
This may originate in the Helmholtz capacitance that is always



Fig. 6. Representation of the impedance in the complex plot, indicating selected
frequencies. (a) The traps subcircuit, Zss , Fig. 2b for parameters rðssÞ

rec ¼ 1X, CðssÞ
leq ¼ 1 F,

B ¼ 0:8, (kss ¼ 1 s�1; xt ¼ 5 rad s�1). (b and c) The total impedance, including
capacitance and charge transfer resistance of the conduction band, Fig. 2a.
Parameters: (b) rðcbÞ

rec ¼ 1X, CðcbÞ
l ¼ 0:1 F (kcb ¼ 10 s�1). (c) rðcbÞ

rec ¼ 1X, CðcbÞ
l ¼ 10 F

(kcb ¼ 0:1 s�1).

Fig. 7. Representation of the impedance in the complex plot, indicating selected
frequencies. (a) The traps subcircuit, Zss , Fig. 2b for parameters rðssÞ

rec ¼ 1X, CðssÞ
leq ¼ 1 F,

B ¼ �0:9, (kss ¼ 1 s�1; xt ¼ 0:52 rad s�1). (b and c) The total impedance, including
capacitance and charge transfer resistance of the conduction band, Fig. 2a.
Parameters: (b) rðcbÞ

rec ¼ 1X, CðcbÞ
l ¼ 0:1 F (kcb ¼ 10 s�1). (c) rðcbÞ

rec ¼ 1X, CðcbÞ
l ¼ 10 F

(kcb ¼ 0:1 s�1).
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present at the semiconductor/electrolyte interface, with possible
contribution from the organic layer constituted by the photoac-
tive dye and other coabsorbants, or additionally, by inorganic cov-
ering thin layers that are used to improve the performance of the
device. A charging of the surface state in the presence of the
dielectric capacitance fixes the Fermi level in the bandgap, and
a variety of behaviours are possible, depending on the values of
the chemical capacitance for the bulk semiconductor, of the sur-
face states, and of the dielectric capacitance. One important situ-
ation is that in which the capacitance remains constant until the
surface states are completely filled. These effects were recently
discussed in detail in connection with quantum dot-sensitized so-
lar cells [24].

Since the effects of surface states appear in the low frequency
side of the IS measurements, it is very likely that they become
mixed with the diffusion in the electrolyte (especially if it is highly
viscous) or hole conductor, since the hole transport rate in these
media tends to be low [27]. This problem may become complex,
as the interfacial charge transfer is coupled with the diffusion of
both electrons and holes. Especially important in order to evaluate
modelling results is to determine the distribution of the applied
potential in different contributions either for driving transport or
increasing the Fermi level.

4. Conclusions

We have outlined a model for the electronic behaviour of a
nanostructured semiconductor permeated with a highly conduct-
ing hole transport material, to evaluate the kinetic (frequency)
behaviour and quasistatic quantities due to charge transfer via sur-
face states. Solving the model for steady state as well as ac condi-
tions, shows that dc resistances, can be simply guessed from steady
state recombination current. The ac response of this system allows
for different pictures in terms of equivalent circuits, but all of them
introduce a parallel resistance to the standard RC series circuit of a
trap that only communicates with the conduction band (in the ab-
sence of charge transfer). At each value of the steady state Fermi
level, the characteristic frequency of the trap is determined by
the fastest time constant, either trapping, detrapping or interfacial
charge transfer. Another major conclusion is that if the rate of
charge transfer is large, the low frequency (measurable) capaci-
tance of the trap is less than the thermodynamic equilibrium
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capacitance. Finally, it is shown that the complete circuit for the
recombination via surface state, based on detailed balance kinetics
and standard semiconductor statistics, cannot provide negative
capacitance components. Nonetheless, a formal extension of the
model shows impedance spectra that are quite similar to those
measured in several kinds of dye-sensitized solar cells.
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