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The diffusion length is a crucial parameter controlling the electron collection efficiency in dye-sensitized
solar cells (DSCs). In this work, we carry out a direct computation of this parameter for a DSC with a short
diffusion length by running a random walk numerical simulation with an exponential distribution of trap
states and explicit incorporation of recombination. The diffusion length and the lifetime are estimated from
the average distance traveled and the average survival time of the electrons between recombination events.
The results demonstrate the well-known compensation effect between diffusion and recombination that keeps
the diffusion length approximately constant on a wide range of illumination intensities or applied biases. The
assumptions considered in the present model indicate that the two alternative views described in the literature
to rationalize this effect (either “dynamic” or “static”) are equivalent. As a further development of the model,
we introduce a recombination probability that depends exponentially on the Fermi level. This leads to a
nonconstant diffusion length, as shown in recent experiments.

1. Introduction

Dye-sensitized solar cells (DSCs)1,2 are one of the most
studied photovoltaic devices nowadays due to their promising
features for low-cost solar energy production. A DSC device is
based on the combination of three main components: a nano-
structured semiconductor oxide (typically TiO2) that acts as an
electron conductor, an organic or metal-organic dye adsorbed
onto the oxide surface that absorbs light and injects electrons
into the oxide conduction band, and a hole conductor that
impregnates the semiconductor nanostructure so that it can
regenerate the dye and close the circuit. The good performance
of DSCs relies on the favorable dynamic competition3-5 between
these photoinduced processes and other recombination pathways
that cause a reduction of the collection efficiency. Among the
first, the transport of photogenerated electrons through the
semiconductor nanostructure is central for good performance.
For a DSC device to work efficiently, photogenerated electrons
traveling through the semiconductor nanostructure should be
collected to a fraction close to a 100%. The electron diffusion
length Ln represents the distance that electrons travel on average
before recombining with an electron acceptor. Hence, efficient
cells are characterized by Ln values that exceed the semiconduc-
tor film thickness.

The electron diffusion length is commonly determined from
independent measurements of the electron diffusion coefficient
Dn and the electron lifetime τn via

The diffusion length was first introduced by Amaldi and Fermi
in 1936 in the context of neutron diffusion in paraffin samples6 as

the distance that “a neutron will diffuse before it gets captured by
a proton.” In fact, the diffusion length appears in the solution of
the 1-D diffusion equation with a single recombination term
governed by a certain lifetime τn.7-10 The solution of this equation
is exponential, with the diffusion length occurring in the exponent:
exp(-x/Ln). Ln is also the first moment of the probability distribu-
tion function, which shows that this parameter corresponds to the
average value of the distance traveled by the particles before they
disappear by recombination.

Electron transport in nanostructured oxide films impregnated
with a highly concentrated electrolyte is believed to occur mainly
by diffusion.11,12 It is generally accepted that this diffusional
transport is influenced by the existence of electron localized
states or traps in the semiconductor.13 Trap-limited transport
can be described by means of the well-known multiple-trapping
(MT) model.14-16 In this model, transport is assumed to occur
via extended states combined with a succession of trapping and
detrapping events in localized states.

It has been observed experimentally in common DSCs that
the electron diffusion length remains approximately constant
on a wide range of illumination intensities or applied biases.17-19

This behavior arises from the opposite dependences of Dn and
τn with respect to the applied bias, which makes their product
approximately constant. Thus, the diffusion coefficient increases
when the illumination is augmented (or a more negative potential
is applied). This is easily understood in the context of the MT
model because electron injection into the semiconductor film
(either from the dye or from the back contact) raises the Fermi
level so that the rate of detrapping to the transport level is
enhanced. In contrast, the lifetime becomes shorter when the
light intensity or the negative applied potential is increased. This
is somehow a more complicated effect to rationalize, and two
different views can be found in the literature.

On the one hand, it can be assumed that, if the electron transport
becomes faster when the Fermi level is raised, then the probability
for an electron to find an electron acceptor is larger so that the
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electron lifetime is shortened. We call this interpretation the
“dynamic” view, and it can be found in the works of Nelson et
al.,20 Kopidakis et al.,21 Anta et al.,22 and Villanueva et al.23,24 Also,
Petrozza and co-workers25 discussed recombination in connection
with this “dynamic” view. On the other hand, a careful analysis of
the MT model under the assumption that the rates for trapping
and detrapping are much higher than the typical recombination rate,
demonstrates that free and trapped electrons maintain a common
equilibrium even if the system is perturbed by, for instance, a
recombination event. This result is due to Bisquert and Vikhrenko,15

and we call it the “static” view (in fact, this is usually referred to
as the “quasi-static approximation”). Within this formalism, the
following dependences can be derived for the diffusion coefficient
and the lifetime

where nc and nL are the concentrations of free and trapped electrons
(which depend on the Fermi level) and D0 and τ0 are the diffusion
coefficient and the lifetime for free electrons. Including eqs 2 and
3 into eq 1, we find that the lifetime is equal to a constant

The approximation of Bisquert and Vikhrenko demonstrates
that it is not necessary to resort to a dynamic, transport-limited
mechanism to explain the observed behavior of the lifetime and
the diffusion length because the mechanism involving the
variation of these quantities with the Fermi level is associated
with the trapping-detrapping of free carriers, and this process
is described in eqs 2 and 3 by a single trapping factor, ∂nL/∂nc,
that accounts for the change of the time constants due to the
fraction of the time that the free carriers spend in traps.

A recent study26 has further clarified the interpretation of eq
3, which has been formulated in the form

where τf is a free electron lifetime, which is the effective
probability of survival of electrons in the conduction band. In
general, τf depends on the specific recombination mechanism,
and it will be a constant if the rate of recombination of free
electrons is proportional to their density. However, the recom-
bination mechanism may involve a combination of charge
transfer channels, especially due to the contribution of a
distribution of surface states.27,28 In a first approximation, the
recombination rate is effectively observed to depend on a power
of the free electron density as follows9,23,29

where kr is a recombination kinetic constant. This model implies
that the free carrier lifetime shows a dependence on the Fermi
level given by9

with n0 and EF,0 being the equilibrium (dark) values of the
electron density and Fermi level, respectively, kB is the
Boltzmann constant, and T is the absolute temperature. Ac-
cording to this model, for 0 < � < 1, the recombination rate
increases more slowly with electron density than in the linear
case, and thus, the free carrier lifetime increases with the Fermi
level. This model has important implications for the variation
of the diffusion length with bias illumination or potential in
the solar cell.9 From eqs 1 and 5, we obtain

so that it is predicted that the diffusion length should increase with
the steady-state Fermi level. As a matter of fact, recent reports on
DSCs indicate that the electron diffusion length is not strictly
constant, but it increases with applied voltage.30-33 Specially, the
study by Peter and co-workers10 has carefully determined the
variation of Ln at different bias illuminations, and good agreement
has been found with the �-recombination model of eq 6. These
recent reports suggest that equilibration (trapping) factors present
in both diffusion coefficient and measured lifetime are essentially
the same number, ∂nL/∂nc, so that the asymmetry of these two
quantities refers to the free electron lifetime, which causes a
variation of the diffusion length.

The purpose of this paper is twofold. On the one hand, we
pursue to compute the electron lifetime and electron diffusion
length for a dye-sensitized solar cell, at potentiostatic conditions
(fixed Fermi level) by means of the random walk numerical
simulation (RWNS). On the other hand, we intend to cast some
light on the origin of the compensating behavior of the electron
diffusion length and to establish how the “dynamic” and the
“static” views mentioned above are related to each other. We
will see that the RWNS method employed here, although based
on dynamic postulates (random generation of detrapping and
recombination times), reaches a quasi-stationary state that
reproduces the theoretical dependences predicted for the diffu-
sion coefficient and the lifetime, hence, explaining the com-
pensation behavior. In addition, the introduction of a recombi-
nation probability that depends exponentially on the Fermi level
according to eq 7 leads to a nonconstant electron diffusion
length, as observed in some experiments.

2. Methodology

The RWNS method34,35 is a stochastic calculation that makes
it possible to obtain dynamic properties (electron mobilities,16

diffusion coefficients,21,36,37 photocurrent,20 and photovoltage
transients38) in disordered media, starting from basic assumptions
about the transport mechanism. In a RW numerical simulation,
a number of carriers are allowed to move at random in a three-
dimensional network of sites (see Figure 1). According to the
selected transport model, each site in the network is given a
certain release time that determines the jumping rate or
probability for a carrier to jump to another site. If we consider
the MT mechanism of charge transport discussed above and no
external electric fields, the release time depends only on the
energy of the starting site Ei according to the expression16,34
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where R is a random number uniformly distributed between 0
and 1, Ei is the energy of the site (definite-positive), and E0 is
the energy of the extended state through which transport is
assumed to occur, that is, the mobility edge or the conduction
band lower bound. In eq 9, t0 is an adjustable parameter that
controls the time scale of the simulation.

In this work, we run the random walk simulation on a three-
dimensional network of traps distributed randomly and homo-
geneously in space. The energies of the sites are taken from
the usual exponential distribution39

where NL is the total trap density and kBT0 is the width of the
distribution (the mean value of the energy).

Details on the organization of an RW simulation based on
times are given elsewhere.16,35,36,38 In the calculation, electrons
are given release times according to eq 9 for the energies and
positions of the sites they visit. Waiting times are defined as
the difference between the release time of the carrier and the
time already spent by the carrier in a particular site. For each
simulation step, the carrier with the shortest waiting time (tmin)
is allowed to move to a neighboring trap, chosen at random,
within the specified cutoff. The waiting times for the rest of
the carriers are then reduced by tmin; the process is repeated, so
the simulation advances by time steps of length tmin. This
procedure permits sampling efficiently systems characterized
by a huge dispersion of site energies, as those derived from eq
10. The computation of the mean square displacement from the
electron positions permits obtaining the jump diffusion coef-
ficient for each simulation time.36

In this work, we have introduced recombination in the basic
RW algorithm. Following classic4,21,40 and recent literature,10,41

we assume that recombination is mainly determined by trapped
electrons. Hence, we give a recombining character to an
arbitrary amount of traps so that, when an electron reaches one
of these traps, it may undergo recombination and be removed
from the sample (see Figure 1). In addition, a probability of
recombination is implemented for electrons once they reach a
recombining trap. Hence, we work with two adjustable param-
eters, one to compute the relative concentration of recombining
traps and the other to compute the probability of recombination
once the electron has reached one of these traps. It must be
noted that the final result for the electron diffusion length, once
the stationary state is reached, depends, as a matter of fact, on
the product of these two probabilities and not on the individual
values. However, by separating the concentration of recombining
traps from the probability of recombination with a single trap,
we can easily implement different recombination mechanisms,
as it will be shown below.

Taking into account this procedure, we compute both the
average time and the average distance that an electron is moving
until it recombines. To simulate a cell at open-circuit conditions
and under illumination (fixed Fermi level), a constant electron
density is maintained in the sample. This is achieved by
imposing the restriction that, when an electron has just
recombined, another one is immediately injected into the system
to take its place. For this fresh electron, both time and distance
are reset so that the average time and distance between
recombination events can be computed, stored, and represented
versus total simulation time. As the probability of recombination
is small (see below), no significant bias is observed in the results
when the new electron is generated close to a recombining trap.
Finally, these magnitudes are renormalized by the total number

Figure 1. Illustration of the random walk numerical procedure utilized in this work to compute the electron diffusion length Ln. A three-dimensional
network of traps is distributed randomly and homogeneously in space. The energies of the sites are taken from an exponential distribution G(E)
given by eq 10. A recombining character is given to an arbitrary amount of traps (solid circles) so that, when an electron reaches one of these traps,
it may undergo recombination (reaction with I3

-) and be removed from the sample. See text for more details.

G(E) )
NL

kBT0
exp[-(E - E0)/kBT0] (10)
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of electrons and the total number of recombination events so
that the result is effectively an average time and distance for
one single electron. We will show below that these averaged
quantities effectively correspond to the lifetime and diffusion
length of electrons in the sample.

The procedure outlined above permits us to run a multielec-
tron calculation at a fixed density or Fermi level. However, to
approach conditions similar to those typical of an operational
cell, a huge amount of computer time is required. To save time
when computing the electron diffusion length at realistic
conditions, most of the simulations presented in this work are
carried out with a single electron moving on a truncated
exponential distribution. For this modified distribution, all traps
below the Fermi level EF are ignored (see the Supporting
Information). In this way, we assume that electrons occupying
deep traps are effectively immobilized. We have demonstrated
elsewhere36,10,41 that this procedure reproduces the electron
diffusion coefficient of the full calculation with reasonable
precision.

It may be argued that the one-electron calculation does not
correctly capture the slowing down of the lifetime by the
trapping-detrapping process, that is, described in the model
by the factor ∂nL/∂nc. However, it must be observed that the
main limiting factor in the trapping-detrapping dynamics is
detrapping from deep traps, and the fastest of such occupied
traps are, on average, those at the Fermi level. Therefore, the
convenient truncation procedure still keeps the main aspect of
the collective dynamics. This conclusion is further supported
when the results are compared with those of the time decay of
the full population by recombination, as it will be discussed
below (see the Supporting Information, Figure S2).

The RWNS procedure devised here allows for simultaneous
computation of the electron diffusion coefficient and the electron
lifetime and electron diffusion length at the same Fermi level
position. We have taken into account parameters reported in
the literature42,30,36 for a DSC with a solid-state hole conductor
to carry out our calculations. Hence, we take t0 ) 10-14 s, T0 )
1100 K, and T ) 300 K. The total trap concentration is assumed
to be38,43 NL ) 1027 m-3. In addition, one recombining trap is
introduced per 64 000 normal traps and a further recombination
probability of 0.05 is imposed. Finally a cutoff radius of 2.5

nm is introduced in the computation so that jumps to neighbor-
ing traps beyond this distance are not considered. With these
parameters, the simulation predicts an electron diffusion length
of 1.6 µm, which is consistent with the values reported in the
literature42,30 for this kind of cell.

3. Results and Discussion

In Figure 2, the time evolution of the derivative of the mean
square displacement (related to the jump diffusion coefficient),
the lifetime, and the electron diffusion length are reported. It is
observed that the simulation reaches rapidly a stationary situation
in which the mean square displacement behaves linearly with
time (constant time derivative) within the statistical uncertainty
of the simulation (normal diffusion). This has been shown to
correspond, in multielectron simulations, to the situation in
which the electron population reproduces Fermi-Dirac statis-
tics.36 On the contrary, the lifetime and the diffusion length are
found to reach the stationary state at longer times. This is easy
to understand if we bear in mind that the characteristic times
for detrapping (as derived from eq 9 for electrons sitting at the
Fermi level) are much shorter than the characteristic time for
recombination (the lifetime). In Table 1, values obtained for
these characteristic times are reported. The results demonstrate
that the assumptions on which the quasi-static approximation
is based (that is, equilibration between free and trapped electrons
much faster than recombination) hold in this case. On the other
hand, the simulation time is long enough to sample efficiently
many recombination events so that the values of the lifetime
and the electron diffusion length are estimated correctly.

Results for the diffusion coefficient, the lifetime, and the
diffusion length as a function of Fermi level can be found in
Figure 3. The RW simulation provides a nice demonstration of

Figure 2. Time evolution of the derivative of the mean square displacement (upper panel), lifetime (middle panel), and electron diffusion length
(lower panel) in a typical RWNS calculation carried out in this work. Data shown correspond to a multielectron calculation with 50 electrons in a
simulation box of 18 × 18 × 18 nm3.

TABLE 1: Characteristic Times for the One-Electron
RWNS Calculations Performed in This Work

EF/eV
release time
from EF (s)

average
lifetime τn (s)

total simulation
time (s)

0.35 7.7 × 10-9 (8.13 ( 3.50) ·10-5 0.05
0.45 3.7 × 10-7 (1.38 ( 0.22) ·10-3 0.5
0.55 1.8 × 10-5 (2.22 ( 0.46) ·10-2 1
0.65 8.5 × 10-4 (3.75 ( 0.63) ·10-1 50
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the compensation effect discussed in the Introduction. The
diffusion coefficient scales exponentially with Fermi level, as
reported before.36,44 The slopes obtained from the simulated data
were 31.86 and 28.09 eV-1 for Dj and τn, respectively. These
values compare favorably with the predictions of the theoretical
formula derived in the context of the MT model44

where N0 is the density of states in the conduction band.
This equation predicts 28.15 eV-1 for T ) 300 K and T0 )

1100 K. As a consequence of the equal, but opposite, behaviors
of DJ and τn, the electron diffusion length remains constant
within the statistical uncertainty of the simulation, in accordance
with the predictions of the diffusion-limited model or the quasi-
static approximation.

It is important to establish whether the average lifetime and
average diffusion length extracted from the simulations cor-
respond to the real quantities occurring in eqs 1 and 3. As
mentioned above, the diffusion length appears in the solution
of the 1-D diffusion equation with a first-order recombination
term.7,8 On the other hand, the lifetime is the parameter
controlling the exponential time decay of a first-order recom-
bination reaction. To clarify this point, we have computed the
distribution of survival times and distances traveled by the
electrons before they recombined (see Figure 4). It is found that
these distributions do indeed follow an exponential behavior.
However, the results obtained for the distribution of distances
do not fit to an exponential in the short length region. Ignoring
this region in the fitting, we obtain a reasonable agreement
between the average value of the diffusion length (1.62 ( 0.15
µm) and that derived from the fitting (1.44 µm). The agreement
is more remarkable for the lifetimes: 1.38 ( 0.22 ms (average)
versus 1.23 ms (fitting).

The result of this analysis indicates that the average value
obtained from the simulation corresponds to the real diffusion
length of eq 1. A similar assumption can be established for the

lifetime. However, it must be borne in mind that this is normally
introduced as a collective magnitude, defined from kinetic
equations based on total densities. We should then distinguish
between the individual magnitudes (computed by the simulation)
and collective parameters in analogy with the distinction
between “jump” and “chemical” diffusion coefficients intro-
duced by Bisquert.45 Note, in this regard, that a simple
relationship is found for the chemical diffusion coefficient if
the trap distribution is exponential, Dn ) (T0/T)DJ. This relation
states that the Fermi level dependence of both diffusion
coefficients is the same, at least for an exponential distribution.
We might think that the same relation holds for the lifetimes
because an exponential behavior with respect to the Fermi level
is obtained.

However, as it will be shown below by multielectron
calculations, this lifetime is observed to correspond to the
collective lifetime τn. Hence, we can compare directly the
electron diffusion length obtained from the simulation average
to that derived from eq 1. Results can be found in Table 2.

We observe that the diffusion length obtained “indirectly”
does not preserve the constancy with respect to the Fermi level.
This is a consequence of the fact that, due to the statistical
uncertainty of the simulation, the slopes obtained for Dj and τn

Figure 3. Jump diffusion coefficient (upper panel), electron lifetime
(middle panel), and electron diffusion length (lower panel) vs Fermi
level. In the middle panel, two methods to compute the electron lifetime
are plotted: average of survival times (circles) and time decays
(triangles). Note that, due to the logarithmic scale, the error bars fall
within the symbol size in the case of the diffusion coefficient and the
lifetime.

DJ )
N0

NL
e[(EF-E0)(

1

kBT
-

1

kBT0
)]D0 (11)

Figure 4. Distribution of survival times (upper panel) and distances
traveled by the electrons before recombination (lower panel) as obtained
from one-electron RWNS calculations at EF ) 0.45 eV. The solid lines
stand for fittings to an exponential function. The data are normalized
with respect to the first point in the distribution.

TABLE 2: Values of the Chemical Diffusion Coefficient and
Lifetime at Different Fermi Levels As Obtained from RW
Simulationa

EF/eV Dn/cm2 s-1 τn/s Ln/µm (eq 1) Ln/µm (RWNS)

0.35 (5.17 ( 0.08) ·10-4 (8.13 ( 3.50) ·10-5 2.05 ( 0.46 1.61 ( 0.21
0.45 (2.80 ( 0.42) ·10-5 (1.38 ( 0.22) ·10-3 1.97 ( 0.30 1.62 ( 0.15
0.55 (1.37 ( 0.37) ·10-6 (2.22 ( 0.46) ·10-2 1.74 ( 0.42 1.61 ( 0.18
0.65 (3.45 ( 1.18) ·10-8 (3.75 ( 0.36) ·10-1 1.14 ( 0.29 1.62 ( 0.20

a Values of Ln have been obtained from eq 1 and RW simulation.
Note that the diffusion coefficients shown are extracted from the
simulated ones according to Dn ) (T0/T)DJ.
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are not exactly equal. In any case, our results show that the
individual quantities maintain the same behavior that their
“chemical” counterparts, hence, the compensation behavior
predicted by the theories.

The determination of the lifetime, above, has been obtained
from direct computation of the survival time of the electron
population. However, experimentally, the lifetime is usually
obtained by monitoring the decay of the Fermi level. To provide
further support to the method employed here to compute the
electron lifetime, we have carried out multielectron random walk
simulations aimed to resemble a typical open-circuit voltage
decay experiment.46,47 Hence, we have run simulations with an
initial number of electrons that corresponds approximately to
the Fermi levels studied in Table 2 and with no energy cutoff
in the trap energy distribution. The calculation is performed with
the same recombination features as in the one-electron simula-
tions (same concentration of recombining traps and same
probability of recombination). However, in this case, no new
electrons are introduced after recombination so that the con-
centration of electrons in the sample decreases with time (see
the Supporting Information). This is a random walk method
analogous to that used by Petrozza et al.25 The analysis of this
decay at short times shows that it is exponential, and the
numerical fitting yields an approximate value of the lifetime at
the corresponding value of the Fermi level. Results are shown
in Figure 3 (middle panel, triangles) and in the Supporting
Information. It is observed that the lifetimes reproduce quite
accurately the values obtained from the “average” method. The
new diffusion lengths shown in Table S1 (Supporting Informa-
tion) also remain approximately constant, within the statistical
error, upon Fermi level variation.

At this point, it is important to discuss the two “views”
presented at the beginning of this paper. We must take into
account that the RWNS procedure is a dynamic method in which
electrons move on a random network of traps within a certain
time span. If the Fermi level is raised, the electrons move faster
on average, and therefore, they are more likely to encounter a
recombining trap. This explains why the lifetime becomes
shortened when the Fermi level is raised and supports apparently
the “dynamic” view of the recombination process. However, it
must be taken into account that the simulation reaches, at a
certain time, a stationary situation in which the diffusion
coefficient (earlier) and the lifetime (later) remain constant for
the same Fermi level. In multielectron calculations, this situation
is found to correspond to a situation in which the electron
population relaxes to the equilibrium Fermi distribution.36 Hence,
the results provided by the simulation arise from the fact that
the system is at internal equilibrium with a trapping-detrap-
ping rate that is much faster than the characteristic recom-
bination time. Therefore, the “static” view in which diffusion
coefficient and lifetime arise from a quasi-equilibrium with
a well-defined Fermi level is in accordance with the results
analyzed here.

On the basis of the preceding results, we can further discuss
the interpretation of transport and recombination in a DSC
according to the two approaches that have been used in the
literature. The transport-limited recombination is a statement
that recombination becomes faster (shorter lifetime) as transport
becomes faster. Inherent to multiple-trapping mechanisms is a
displacement of electrons in the conduction band. Given a
distribution of recombining traps, the only factor causing an
acceleration of recombination at higher Fermi levels is the
progressive filling of deep traps, but this is precisely the same
process causing the acceleration of the transport rate. Indeed,

transport-limited recombination and the quasi-static model
describe a unique model, although the latter approach has the
advantage that the dependence is quantified via eqs 2 and 3. In
none of the approaches it is suggested that recombination
depends on the velocity of free carriers (as in Langevin
recombination). This mechanism should propose that the rate
constant for recombination depends on D0, and this has not been
contemplated so far in the literature because the role of traps
indeed provides the main influence on the measured quantities.

As discussed in the Introduction, recombination shows
additional features (i.e., a power-law dependence on free electron
density) to those derived from the simple multiple-trapping
description.9,10,23,25 This means that the compensation effect that
we have just demonstrated will be only partly satisfied and the
electron diffusion length is not a constant. With the aim of
reproducing this experimental feature, we have modified our
model by introducing an additional feature: a recombination
probability that depends on Fermi level position. Therefore, we
assume, according to eq 7, that the Fermi-level-dependent
probability of recombination for an electron reaching a recom-
bining trap is given by

and � is adjusted to � ) 0.77.26 On the other hand, the prefactor
A is adjusted to give a diffusion length of approximately30 3
µm at EF - E0 ) 0.45 eV. According to this expression,
electrons are less likely to recombine when the Fermi level
approaches the conduction band. As a consequence, the diffusion
length increases accordingly, as shown in Figure 5. The slope
obtained from the log Ln - EF plot is 4.36 eV-1, which is very
close to the value predicted in ref 26: �/(2kBT) for T ) 300 K
and � ) 0.77.

The one-electron calculations utilized here to obtain realistic
values of the electron diffusion length and its voltage depen-
dence correspond, in reality, to an effective procedure in which
the Fermi level is fixed and taken as an input to the calculation.
A more fundamental way of computing the lifetime and the
diffusion length would require running multielectron calculations
on the full trap distribution with energy-dependent recombina-
tion probabilities. As mentioned above, this computation is quite
costly from the numerical point of view (around 40 h of CPU
time for a single run, with around 50-100 runs required to get
good statistics).. However, in order to test the feasibility of the
multielectron simulation with explicit consideration of recom-

Figure 5. Electron diffusion length extracted from the RWNS
calculation with a probability of recombination that depends on the
Fermi level according to eq 12.

Prec(EF) ) Ae(1-�)(EF-E0)/kBT (12)
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bination, a preliminary calculation has been performed for a
total electron density that corresponds approximately to EF -
E0 ) 0.45 eV. In this calculation, the probability of recombina-
tion is made to depend exponentially on the trap energy, as in
eq 12. We have found that it is possible to reproduce the same
electron diffusion length (see the Supporting Information, Figure
S3) as in the one-electron calculation by adjusting the A and �
parameters in this expression. This preliminary result encourages
us to perform an extensive study with multielectron calculations
and explicit recombination mechanisms on the behavior of the
electron diffusion length for different electrode materials,
electrolyte compositions, etc.

4. Conclusion

One-electron random walk simulations within the multiple-
trapping approach have been carried out. Direct computation
of the diffusion length has been implemented, and values of
the order of micrometers have been obtained for realistic
parameters extracted from recent literature. We find that the
diffusion length maintains a constant value upon Fermi level
variation. Electron lifetimes at different densities have also been
computed, and we have obtained an exponential dependence
with respect to the Fermi level, producing linear log plots with
slopes quite similar, although with opposite sign, also in
agreement with previous experimental and theoretical studies.
The numerical method and the results obtained in this work
indicate that both the “dynamic” and the “static” views to
explain recombination in DSCs are indeed equivalent. By
introducing, as an additional feature, a probability of recombina-
tion that depends exponentially on the Fermi level, a nonconstant
electron diffusion length can be reproduced, as observed in
recent experiments. Extensive multielectron RWNS calculations
that take into account this effect from a more fundamental point
of view and with explicit consideration of different molecular
recombination mechanisms are now carried out in our group
and will be reported in a subsequent publication.
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(9) Bisquert, J.; Mora-Seró, I. J. Phys. Chem. Lett. 2010, 1, 450–456.

(10) Villanueva-Cab, J.; Wang, H.; Oskam, G.; Peter, L. M. J. Phys.
Chem. Lett. 2010, 1, 748–751.

(11) Sodergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. E. J. Phys.
Chem. 1994, 98, 5552–5556.

(12) van de Lagemaat, J.; Benkstein, K. D.; Frank, A. J. J. Phys. Chem.
B 2001, 105, 12433–12436.

(13) deJongh, P. E.; Vanmaekelbergh, D. Phys. ReV. Lett. 1996, 77,
3427–3430.

(14) Tiedje, T.; Rose, A. Solid State Commun. 1981, 37, 49–52.
(15) Bisquert, J.; Vikhrenko, V. S. J. Phys. Chem. B 2004, 108, 2313–

2322.
(16) Anta, J. A.; Nelson, J.; Quirke, N. Phys. ReV. B 2002, 65, 125324.
(17) Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.;

Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949–958.
(18) Peter, L. M.; Wijayantha, K. G. U. Electrochem. Commun. 1999,

1, 576–580.
(19) Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida,

S. J. Phys. Chem. B 2003, 107, 8607–8611.
(20) Nelson, J.; Haque, S. A.; Klug, D. R.; Durrant, J. R. Phys. ReV. B

2001, 63, 205321.
(21) Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J.

J. Phys. Chem. B 2003, 107, 11307–11315.
(22) Anta, J. A.; Casanueva, F.; Oskam, G. J. Phys. Chem. B 2006,

110, 5372–5378.
(23) Villanueva-Cab, J.; Oskam, G.; Anta, J. Sol. Energy Mater. Sol.

Cells 2010, 94, 45–50.
(24) Villanueva, J.; Anta, J. A.; Guilleń, E.; Oskam, G. J. Phys. Chem.
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