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ABSTRACT
Memristor devices have been investigated for their properties of resistive modulation that can be used in data storage and brain-like com-
putation elements as artificial synapses and neurons. Memristors are characterized by an onset of high current values under applied voltage
that produces a transition to a low resistance state or successively to different stable states of increasing conductivity that implement synaptic
weights. Here, we develop a nonlinear model to explain the variation with time of the voltage and the resistance and compare it to exper-
imental results on ionic–electronic halide perovskite memristors. We find separate experimental signatures of the capacitive discharge and
inductive current increase. We show that the capacitor produces an increase step of the resistance due to the influence of the series resis-
tance. In contrast, the inductor feature associated with inverted hysteresis causes a decrease of the resistance, as observed experimentally. The
chemical inductor feature dominates the potentiation effect in which the conductivity increases with the voltage stimulus. Our results enable
a quantitative characterization of highly nonlinear electronic devices using a combination of techniques such as time transient decays and
impedance spectroscopy.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153289

I. INTRODUCTION

The continuous development of artificial intelligence powered
by neural networks, which can receive physical inputs from a wide
range of sensors, has paved the way for the creation of various
applications capable of performing numerous automated tasks. For
instance, autonomous vehicles utilize various sensors, such as cam-
eras, radars, and lidars, to perceive their environment and make
decisions accordingly. In the healthcare industry, wearable devices
can track vital signs and provide alerts in the case of abnormal read-
ings. Similarly, in the manufacturing sector, machines equipped with
sensors can detect anomalies in the production process and take
corrective measures automatically.

However, there is a concern that the expansion of artificial
intelligence for improved efficiency and productivity across various
industries is accompanied by a significant amount of energy con-
sumption. Accordingly, new computational systems that mimic the
natural brain are being developed.1 Well suited for perception, cog-
nition, and motor tasks, these methods are adaptive, fault-tolerant,

and scalable and process information using energy-efficient, asyn-
chronous, and event-driven techniques. One candidate for the
development of brain-like neuromorphic systems is the memristor
element that can be formed in several material platforms for the
functions of synapses and neurons.2–9 Memristors are highly nonlin-
ear systems that show resistive switching under voltage cycling.10,11

One type of system shows an abrupt jump to a low resistance state
where an ohmic response is observed at high voltages.12,13 These are
useful as volatile memories and only show two states of current: the
highly resistive state during the sweep in the forward direction of the
I–V curve and the low resistive state in the backward direction. On
the other hand, to use a memristor as a synapse, it is necessary to
program it with distinct non-volatile resistive states that can support
spike timing-dependent plasticity, as shown in Fig. 1.10,14–17

By construction, memristors show intense hysteresis and mem-
ory effects that have been the topic of current investigations espe-
cially for the multistate memristors for synaptical functions.17,18 One
central property of a memristor is the temporal evolution of the
resistance that is described in Fig. 2 for a halide perovskite CsPbBr3
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FIG. 1. (a) Schematic of the CsPbBr3
nanocrystalline film device structure. (b)
I–V characteristics of the device showing
a pinched hysteresis loop. (c) Memris-
tive characteristics of the device under
consecutive positive bias scanning. The
scanning rate is 0.1 V s−1. (d) Grad-
ual setting and resetting of the device
resistance by sequentially increasing or
decreasing the pulse voltages at a step
of 100 mV. Reproduced with permis-
sion from Liu et al., “Solution-processed
synaptic memristors based on halide
perovskite nanocrystals,” J. Phys. Chem.
Lett. 13, 10994–11000 (2022). Copy-
right 2022 licensed under a Creative
Commons Attribution (CC BY) license.

FIG. 2. Resistance of a CsPbBr3 nanocrystalline film extracted from the potentiostatic measurements at (a) and (b) room temperature (300 K) and (c) and (d) low temperature
(100 K). The dashed lines in (a) and (c) represent exponential fittings of the slow ionic inductive component and the fast trap-related capacitive component, respectively.
Insets of (b) and (d) show the equivalent circuit. (e) Voltage-dependent resistance of the CsPbBr3 nanocrystalline film extracted from the potentiostatic measurements at
room temperature. The black solid lines represent exponential fittings of the slow ionic inductive component under different voltages. Reproduced with permission from Liu
et al., “Solution-processed synaptic memristors based on halide perovskite nanocrystals,” J. Phys. Chem. Lett. 13, 10994–11000 (2022). Copyright 2022 licensed under a
Creative Commons Attribution (CC BY) license.
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nanocrystalline film device.9 The experimental results show the
dominant effect of a chemical inductor19,20 in the temporal response
of the memristor. In this paper, we apply a recently developed
nonlinear memristor model21–23 for a quantitative description and
interpretation of the current transients and the peaks of memristor
resistance under voltage pulses.

II. THE MEMRISTOR MODEL
We describe the memristor by the dynamical equations of the

total current Itot with respect to the applied voltage Vapp,21

Vapp = RsItot + u, (1)

Itot = Cm
du
dt
+ u
Rb
+ ic, (2)

τk
dic
dt
= ic0

1 + e−(u−VT)/Vm
− ic. (3)

Here, Rs is a series resistance and u is the voltage in the active
layer of the device. The model is nonlinear and cannot be repre-
sented as a linear circuit; hence, we use the scheme of Fig. 3(a).
The current Itot has three components: a capacitive charging with
capacitance Cm, an ohmic current of constant resistance Rb (the
intrinsic high resistance of the system), and the slow internal cur-
rent described by the variable ic, which produces the transition to
the high conduction state. As explained before,21 Eq. (3) represents
a diffusion or reaction time of ions18,24 that introduces a delay of ic
with respect to the external perturbation by the characteristic time
constant τk. In the steady state, the slow current has the sigmoidal
form,

ic = ic0 fss(u), (4)

FIG. 3. (a) Scheme of the dynamical model showing total current Itot and volt-
age Vapp, internal voltage u, and conduction (ib, ic) and capacitive (Cm) currents
between the current collector plates. (b) Corresponding equivalent circuit model
for small signal ac perturbation in impedance spectroscopy.

fss = 1
1 + e−(u−VT)/Vm

. (5)

Thus, ic varies from 0 at low voltage to a saturation value ic0 at
high voltage, with the activation potential VT and an ideality factor
Vm with dimension of voltage. The physical mechanisms governing
the change of fss are the filamentary conductive pathway6,25 or the
decrease of a surface barrier between the perovskite layer and the
contacts.26,27

The steady state current and voltage shown in Figs. 4(a)
and 4(b) (gray line) is described by the following equation, where
uapp is obtained from Eq. (1):

Idc = uapp
Rb
+ 1

1 + e−(uapp−VT)/Vm
ic0. (6)

III. AC IMPEDANCE PROPERTIES
By linearization of Eqs. (1)–(3) at a steady-state point, the

impedance spectroscopy response function in terms of the variable
s = iω can be obtained, where ω is the angular frequency of the small
perturbation. The impedance function is22,23

Z(s) = Rs + [Cms + Rb
−1 + 1

Ra + Las]
−1

, (7)

FIG. 4. (a) Logarithmic current–voltage curve for the model memristor, show-
ing the two component currents and the total equilibrium dc current (gray line).
The red points indicate the voltages at which the impedance response is ana-
lyzed. (b) The gray line is the equilibrium current–voltage curve, and the green
lines are the current when the external voltage is cycled at a constant scan rate
bs = 0.05. Parameters Rs = 0.01, Rb = 2, Cm = 10, τk = 10, ic0 = 50, VT = 1, and
Vm = 0.05.
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R−1
a = dic

du
= ic0
Vm

fss(1 − fss), (8)

La = τkRa. (9)

The model of Eq. (7) is the recently described impedance of
a chemical inductor.19 It is characteristically observed in halide
perovskite devices in the high voltage domain.28,29 The equivalent
circuit is shown in Fig. 3(b), and the impedance parameters are
represented in Fig. 5(a). These elements are changing by orders of
magnitude under the application of voltage corresponding to the
highly nonlinear nature of the system.

The interpretation of the equivalent circuit (EC) elements of
Fig. 3(b) is as follows. Cm is a capacitance element as already men-
tioned. In halide perovskites, the large low frequency capacitance is
of ionic nature.21,29,30 The elements resistance Ra and inductor La are
the components of the chemical inductor branch in the equivalent
circuit. These elements are formed by the delay equation [Eq. (3)],19

which in the case of halide perovskites is interpreted as an electronic
current that depends on ionic displacement.21,31 In the model, the
memristor is characterized by an increase of current, Fig. 4, and a
decrease of resistance, Fig. 5(a), due to the activation of the chem-
ical inductor line of Fig. 3(b) (decrease of Ra) when the voltage
approaches the threshold value VT . The dc resistance is

Rdc = Rs + [Rb
−1 + R−1

a ]−1
. (10)

In the following, we explore the interplay of capacitance and
inductance in synaptic memristors based on the nonlinear neuron-
style model developed in perovskite solar cells, Eqs. (1)–(3).20,32

Capacitive transients have been already described for semiconduc-
tor LEDs,33 and the potentiation of synapses was explained based on
the same model.34

The connection between the impedance features and hystere-
sis properties under voltage scan has been elucidated in halide
perovskites32,35 and related areas.36 In capacitive hysteresis, the

FIG. 5. (a) Equivalent circuit parameter
dependence of applied voltage para-
meters. (b) Time constants. The red
points indicate the voltages at which
impedance response is shown. (c)–(e)
Impedance spectra at the indicated
applied voltages. Parameters ic0 = 50,
VT = 1, Vm = 0.05, Rs = 0.01, Rb = 2,
Cm = 10, and τk = 10.
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current increases at a higher scan rate. However, when the low fre-
quency impedance is dominated by a chemical inductor, the current
decreases at a higher scan rate and the inverted hysteresis pattern
of Fig. 1(b), which is a frequent characteristic of memristors, is
obtained. Figure 4(b) shows the result of continuously cycling the
applied voltage in the model of Eqs. (1)–(3) at a constant scan rate bs.
The current–voltage curves are characterized by inverted hysteresis
due to the effect of the inductor.32,37

Let us consider the characteristic impedance spectra. At low
applied voltage, the impedance spectra are fully capacitive, Fig. 5(c).
As in Fig. 5(a), the inductor La is activated at a certain bias volt-
age. Therefore, as shown in Figs. 5(d) and 5(e), at higher voltage, the
inductive feature is developed in the fourth quadrant of the com-
plex impedance plane. For a quantitative control of this change, let
us define the time constants

τa = RaCm, (11)

τd = La
Ra

. (12)

In this case the inductor time constant equals the kinetic para-
meter τk. It can be shown19 that the crossing to the fourth quadrant
occurs when the condition

τd > τa (13)

is satisfied. The crossing of the time constants that marks the
appearance of the inductive feature is shown in Fig. 5(b). Another
significant time constant for the charging of the capacitor is

τs = RsCm. (14)

IV. TIME TRANSIENT RESPONSE
The current response of a perovskite memristor to a voltage

step pulse to the value Vapp can be understood from the equivalent
circuit. The best way for explaining this response is to separate it into
different moments, as indicated in Fig. 6(a).

The very first moment corresponds to the high frequency part
of the impedance spectrum. At this point, the parallel capacitance
is shorted, and therefore, the parallel resistances Rb and Ra have no
current going through them. The total resistance of the system is
reduced only to the series resistance Rs. Accordingly, the memristor
will initially take the current value corresponding to the gray line,
ΔI = Vapp/Rs, point A, which corresponds to the minimum value of
impedance, as in the spectrum of Fig. 5(d).

Immediately after, the capacitance gets charged. Then, the cur-
rent starts decreasing by the time constant τs, until the value of the
ac resistance is maximum, point B. This can be clearly seen through
the impedance spectrum: at intermediate frequencies, the spectrum
crosses the real axis at the maximum value of the resistance. If the
time constant of the R–L branch τd is large enough, the inductor will
take a long time to charge and will initially behave as an open circuit;
therefore, the total resistance of the system at this intermediate step
will be close to Rs + Rb (green line), i.e., all the current goes through
Rb. The current response will follow its minimum value, point B; see
Fig. 6(b).

FIG. 6. (a) Transient charging current for the memristor model for a square volt-
age pulse Vapp = 1.5. Parameters Rb = 103; Rs = 100; Cm = 10−3, ic0 = 10−2;
VT = 1; Vm = 0.05; τk = 1; τs = 0.1. The gray line is ΔI = Vapp/Rs, the magenta
line is Vapp/Rdc , and the green line is Vapp/(Rs + Rb). (b) Transient for
Cm = 0.05 × 10−3, τs = 0.005.

When time reaches the order τd, the inductor starts passing
current. The essential property of the inductor is that once the capac-
itor has already been fully charged, the current still increases with
time, as shown in Fig. 6(a).20 These effects are well known in solid-
state electronics.38–41 When it is completely activated, the current
reaches the magenta line, point C. Here, the inductor behaves as a
short circuit and the total ac resistance of the system decreases from
its maximum point. Looking at the impedance spectrum, at lower
frequencies, the impedance decreases from the maximum resistance
to a lower value through the arc of the fourth quadrant, Fig. 5(d).
At zero frequency, the impedance gets the Rdc value, which is the
series resistance Rs plus the resulting resistance of parallel Rb and Ra,
Eq. (10).

Finally, we observe the inversion of the current when the volt-
age is set to 0. If the internal voltage at the moment of switch off
is u f , the voltage in the resistance must be −u f = ItotRs. Hence,
the negative current increment is the same as the initial step,
point D.

To sum up, we have described transient patterns that are well
observed in the potentiation of perovskite synapses.5 In applying a
step, we have a maximum at the very first moment, when the total
resistance is only the series resistance. Then, the current decreases
to its minimum, when the resistance maximizes due to the slow
response of the inductor. Finally, the inductor permits the flow of
current and the total resistance reduces. At this point, the current
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FIG. 7. Photoresponse of four mixed
halide perovskite single crystal photode-
tectors. The illumination power varied
from 0.13 to 780 μW. Reprinted with
permission from Ding et al., “Unraveling
the effect of halogen ion substitution
on the noise of perovskite single crys-
tal photodetector,” J. Phys. Chem. Lett.
13, 7831–7837 (2022). Copyright 2022
American Chemical Society.

gradually increases to its steady-state value. A negative current is
observed upon disconnecting the voltage.33 These patterns consist-
ing of slow charging features due to a chemical inductor property
can be observed in the transient behavior of different types of
devices, as in photoswitching experiments in light detectors and
photoelectrochemical cells.42,43 In Fig. 7, the feature is shown for
halide perovskite photodetectors.42 It is observed that the current
rises after the initial spike in cases (b) and (c), while (a) and (d) show
a different type of response.

We have described here a single charge–discharge cycle. In the
potentiation of synapses over multiple steps, the system remembers
the voltage of the previous cycle5,42,44–49 and the current increases
gradually, as shown in Fig. 1(c). We conclude that the chemical
inductor is an essential feature for the gradual rise of the synap-
tic conductivity.18,24 These properties have been recently explained
elsewhere.34

V. RESISTANCE TRANSIENTS
We next analyze the transients of the total resistance as those

shown in Fig. 2. Results are obtained by integrating Eqs. (1)–(3), as
shown in Fig. 8. In (a), we apply a low voltage in which the inductor
feature is negligible. The transient current shown in Fig. 8(a) is fully
capacitive as discussed in Fig. 6(a). The resistance shown in Fig. 8(b)
is calculated as Vapp/I. This resistance makes a transition from the
initial value Rs to the final value given by

R f = Vapp

Idc
. (15)

We conclude that in the capacitive transient, the resistance
increases. Note that R f > Rdc with respect to the small perturbation
value R f indicated by the magenta line, Eq. (10).

When the applied voltage pulse is larger in Figs. 8(c) and 8(d),
the inductor is stimulated. The small parallel resistance Ra is acti-
vated, and the total resistance decreases in the inductive domain,
as shown in Fig. 8(d). Overall, there is a peak shape in the resis-
tance vs time: the rising capacitive part and the decreasing inductive
part. These features are, indeed, reported in Fig. 2 9 and in the
supplementary material of Ref. 5.

The previous analysis in Figs. 8(b)–8(d) shows that the resis-
tance measured as instantaneous V/I is, in general, different from
the small ac perturbation resistance, that is, the low frequency value
of the impedance, obtained as Rdc = Z(ω = 0), Eq. (10). The use of
V/I is convenient for transient measurement, as it is well defined at
any moment. In contrast to this, ac impedance gives more general
information, but it needs to be measured at stationary points. This
is not feasible, in general, as the memristor has an internal dynamics
of the state variable x that cannot be controlled externally. There-
fore, it is not warranted that one can measure the full ac impedance
up to very low frequency unless the I–V curve can be stabilized, as
explained elsewhere.50

For the sake of the analysis, let us assume that Z(ω) can be
obtained in a wide frequency range while the step voltage is applied.
Then, one can define the instantaneous total ac resistance as

Rtot(t) = Rs + [Rb
−1 + Ra(t)−1]−1

. (16)

The calculation of the current and resistance response is shown
in Fig. 9 for the same decays as in Fig. 8. In Fig. 9(a), we observe
that the charging of the capacitor by the voltage step activates Ra
and produces the stepping down of the total dc resistance toward
the equilibrium value Rdc. When the applied voltage pulse is larger,
the inductor is stimulated. As a consequence, in Fig. 9(b), after
the capacitive decrease of the resistance, another feature appears in
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© Author(s) 2023

 
0
8
 
N
o
v
e
m
b
e
r
 
2
0
2
3
 
1
3
:
1
1
:
3
6

https://scitation.org/journal/aml


APL Machine Learning ARTICLE scitation.org/journal/aml

FIG. 8. Time transient response of cur-
rent (I) and total resistance (R) to a volt-
age step Vapp in the memristor model.
(a) and (b) Vapp = 0.6. (c) and (d) Vapp

= 1.5. The gray line in the current graphs
is the initial target value Vapp/Rs when
all the voltage is at the series resis-
tance. The magenta line is the steady
state value of the current and the low fre-
quency ac impedance value. Parameters
ic0 = 50, VT = 1, Vm = 0.05, Rs = 0.01,
Rb = 2, Cm = 10, and τk = 10.

FIG. 9. Small perturbation resistance val-
ues during a voltage step Vapp in the
memristor model; same transient cur-
rents as in Fig. 5. The magenta line
is the steady state value. Parameters
ic0 = 50, VT = 1, Vm = 0.05, Rs = 0.01,
Rb = 2, Cm = 10, and τk = 10.

which it increases and then decreases with time. Therefore, it must
be remarked that the ac measurements should be made once the
system is stabilized, and the impedance value is constant with time.

VI. GENERAL SIGNIFICANCE
The model of Eqs. (2) and (3) can be generalized as follows:

Itot = Cm
du
dt
+ f (u, x), (17)

τk
dx
dt
= g(u, x). (18)

Here, f is a conductivity function, and the changes of the
“slow” state variable x are controlled by a driven adaptation function
g(u, x) with the characteristic time τk. The above system of equa-
tions corresponds to the general structure of a voltage-controlled
memristor,51 where impedance and stability properties have been
recently described.19,23,52,53 For any combinations of configurational
functions [ f (u, x), g(u, x)], the equivalent circuit in Fig. 3(b) is
obtained in every case. Hence, the transient properties discussed in
Sec. IV can be obtained in very different circumstances.

However, there are different possibilities according to the time
constant and specific form of configurational functions. The pro-
posed model is applicable in a wide range of systems, providing
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accurate fittings where a saturation current (ic0) is observed at high
voltages, such as in Fig. 4. These systems gradually increase their
current with the applied voltage with a representative non-ohmic
response. The actual saturation current values depend on the con-
ditioning steps applied to the sample (i.e., voltammetry cycles), and
multiple current states may be reached that are useful for analog
computing systems.5,9,18,24,54 This saturation current is not to be
confused with the compliance current that is typically programmed
during the measurement to avoid the damage of the sample.

As mentioned before, other resistive switching systems instead
present a sudden jump to a low resistance state with ohmic charac-
teristic at high voltages.12,13 They are useful as volatile memories and
only show two states of current, the highly resistive state during the
sweep in the forward direction of the I–V curve and the low resistive
state in the backward direction. The second type of systems will not
be fitted adequately with the proposed model.

VII. CONCLUSION
It has been previously observed that the electrical response of

halide perovskite memristors shows different stages according to
the stationary applied potential. It evolves from a totally capacitive
response at low applied voltage to a dominant inductive feature at
the onset of the low resistance state. The latter feature causes the
typical inverted hysteresis feature of the memristor.21,37,50 Here, we
showed a nonlinear neuron-style memristor model that enables a
simultaneous analysis of small signal ac impedance and the transient
behavior after a voltage pulse. The current in the capacitive domain
is a decay after an initial peak. Correspondingly, the total resistance
increases to the resistance value characteristic of the stationary state
of the memristor. However, when the voltage pulse is higher, it acti-
vates the inductive feature. Accordingly, after the initial capacitive
increase, the current rises again and the resistance traces a peak.
The chemical inductor causes an increase of the current with time
that explains the positive potentiation feature in which a high con-
ductivity is achieved in successive voltage cycles. These observations
provide a new tool for the quantitative interpretation of memris-
tive synaptic dynamics by the combination of frequency and time
domain electrical measurements.
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