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H I G H L I G H T S

• Fluorinated Tin Oxide (FTO) anodes with electro-active biofilm produced 1.1 Am−2.

• Impedance spectroscopy was used to quantify biofilm capacitance.

• Biofilm capacitance reached 450 μF cm−2 while FTO capacitance was 25 μF cm−2.

• Average biofilm yield of 0.55 g COD biomass/mol e− was determined.
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A B S T R A C T

Understanding the electrochemical properties of bio-anodes is essential to improve performance of bioelec-
trochemical systems. Electrochemical Impedance Spectroscopy (EIS) is often used to study these properties in
detail. Analysis of the EIS response, however, is challenging due to the interfering effect of the large capacitance
of typically used graphite and carbon-based electrodes. In this study, we used flat electrodes made of conductive
Fluorine-doped Tin Oxide (FTO) as anode, and monitored bio-anode performance. We show that with this
configuration, it is possible to accurately separate the distinct contributions to the electrical response of the bio-
anodes: charge transfer, biofilm and diffusion resistances, and biofilm capacitance. We observed that the ca-
pacitance of the biofilm increased from 2 μF cm−2 to 450 μF cm−2 during biofilm growth, showing a relationship
with current and total produced charge. These results suggest that biofilm capacitance is a measure for the
amount of active biomass in bioelectrochemical systems. At the end of the experiment, the biofilm was harvested
from the FTO electrode and an average yield of 0.55 g COD biomass/mol e− was determined.

1. Introduction

Bio-anodes play an essential role in Bioelectrochemical systems
(BESs) which can be used to recover electricity or produce chemicals
from wastewater [1–3]. These bio-anodes are capable of extracellular
electron transfer through direct and indirect mechanisms [4–6], and
also of temporary charge (energy) storage in the form of electrons in
multi-heme c-type cytochromes [7,8] or as organic polymeric molecules
inside the bacterial cell [9]. All these processes together determine the
rate and efficiency at which electrical current is produced. Quantifi-
cation of these processes, like biofilm capacitance, charge transfer,

biofilm and diffusion resistances [10–13], is essential for further de-
velopment of BESs.

Electrochemical Impedance Spectroscopy (EIS) is often proposed as
a powerful tool to separate these processes occurring in the bio-anode.
EIS is based on the measurement of the response of a small alternating
voltage (AC) perturbation at a given electrode potential. These EIS
measurements are performed at different frequencies to reveal the
characteristic response times of the different processes occurring in the
bio-anode. Although the EIS measurement itself is relatively simple and
can be performed in-situ, interpretation of the frequency dependent
response is challenging. For accurate analysis, it is essential that the
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equivalent circuit that is used to interpret the data is an accurate
physical representation of the system under study. Verification of the
suitability of the equivalent circuit, e.g. by changing experimental
settings and analyzing the response, is therefore crucial [10,12,14].

A special challenge in EIS analysis arises when the electrode under
study has a high capacitance. This electrode capacitance can be of such
magnitude that it is impossible to distinguish between biofilm capaci-
tance and electrode capacitance. Even more, it may result in an over-
lapping response of charge transfer and diffusion processes, so that their
separate contribution to the total impedance cannot be quantified [14].
So far, EIS studies on bio-anodes have been performed on porous
electrodes that have high capacitance such as carbon-based plates,
graphite felt, and carbon cloths [11,13,15]. Often, it remains unclear if
the reported values for biofilm capacitance are related to electro-active
biofilm, electrode, or the combination of both. In addition, the other
resistances in the system may not be analyzed correctly when electrode
capacitance is high, as high electrode capacitance will interfere with
ionic diffusion in the EIS spectrum.

The aim of this study was, therefore, to quantify bio-anode prop-
erties, more specifically biofilm capacitance, charge transfer, biofilm
and diffusion resistances, without interference of electrode capacitance.
For this purpose, Fluorinated Tin Oxide (FTO) was used as electrode
material to grow the electro-active biofilm on. Flat FTO is an attractive
electrode material for electrochemical analysis of bio-anodes, because it
is very stable and has a much lower capacitance, in the order of tens of
μF cm−2 [16], than typical carbon electrodes like graphite plates
(∼1mF cm−2) [11,17–19]. In this work, the development of an electro-
active biofilm on FTO was monitored using EIS and polarization ex-
periments. An equivalent circuit model is proposed to analyze the ex-
perimental data and to quantify electrochemical properties of the bio-
anodes. Two independent experiments were performed to confirm the
validity of the results.

2. Materials & methods

2.1. Bioelectrochemical system set-up with the FTO anode

Two independent experiments were performed, in which electro-
active biofilms were grown on FTO electrodes. Bio-anode performance
was studied for 25 days in the first experiment, and for 52 days in the
second experiment. A two-chamber BES was used, each chamber having
a volume of 35mL and a projected (circular) surface area of 19 cm2.
The anode and cathode chamber were separated by a cation exchange
membrane (FumaTech GmbH, Germany). 3.2 mm thick glass plates
coated with fluorinated tin oxide (FTO) (provided by Xop Fisica, Spain)
with 15 Ω/sq sheet resistance was used as anode electrode. Graphite felt
of 2.8 mm thickness (CGT Carbon GmbH, Germany) was used as
cathode electrode. The current collector was a 0.3 mm platinum wire
for the anode, and a 0.8 mm titanium wire for the cathode. An Ag/
AgCl/3 M KCl (+0.205 V vs. SHE) reference electrode was placed in the
anode chamber, in between the electrode and the membrane. All po-
tentials are reported vs Ag/AgCl.

2.2. Inoculation and media composition

Both experiments were started with clean electrodes and mem-
branes and the BESs were inoculated with a mixed culture of anodic
microorganisms from a BES fed with acetate. The anolyte contained
820mg l−1 CH3COONa (10mM acetate), 0.2 g l−1 NH4Cl,
0.13 g l−1 KCl, 1 ml l−1 vitamin and 1ml l−1 mineral solution [20] in a
phosphate buffer solution (4.58 g l−1 Na2HPO4 and 2.77 g l−1

NaH2PO4·2H2O (50mM)). The anolyte was sparged with N2 for 30min
before introducing it into the BES. The catholyte contained 100mM
potassium hexacyanoferrate[III] in a 50mM phosphate buffer solution.
Both anolyte and catholyte were recirculated via a bottle (500mL) from
the bottom to the top of the chamber with pump speeds of 70mL min-1

and 100mL min-1 500mL of the 530mL total anolyte volume was
regularly replaced with fresh medium to ensure sufficient nutrients and
acetate, and stable pH (6.9–7.1). The reactor was operated inside a
temperature controlled cabinet at 30 °C.

2.3. Electrochemical control and measurements

In both experiments, the anode potential was controlled at −0.35 V
vs Ag/AgCl by a potentiostat (Ivium n-stat with IviumSoft v.2.462,
Eindhoven, The Netherlands) in a three electrode setup, with the anode
as working electrode, Ag/AgCl as the reference electrode, and the
cathode as counter electrode. The anode potential of −0.35 V was
chosen, as at this potential it is possible to observe the different con-
tributions to charge transfer without excessive interference from dif-
fusion in the EIS spectra. Bio-anode performance was characterized
using EIS measurements (typically repeated 3 times; in some cases 2 or
4 times) and polarization curves, both of which were recorded at least
once every 3 days. EIS measurements were performed at the same
controlled anode potential of −0.35 V. An amplitude of 10mV was
used for the AC signal in a frequency range of 10 kHz–50mHz. For some
experiments, lower frequencies down to 5mHz were used to visualize
the full spectrum, including diffusion. After each EIS measurement, a
polarization curve was measured. During the polarization curve, the
anode potential was increased from −0.45 V to −0.30 V with each step
of 0.05 V lasting for 5min. The current was recorded each second, and
the average current of the last 10 s at each anode potential was used for
presentation in the polarization curves.

2.4. Electro-active biofilm quantification

At the end of the second experiment, the electro-active biofilm was
removed from (scraped off) the FTO electrode to determine the total
biomass weight (in g of COD). The biomass was homogenised in 10mL
of mili-Q water by ultrasound treatment prior to analysis of the che-
mical oxygen demand (COD) with a cuvette test (Hach Lange).

3. Results and discussion

3.1. Bio-anode performance on FTO

Two independent experiments were performed in order to confirm
the validity of our analyses. In both cases an electro-active biofilm was
grown on the FTO electrode, at constant anode potential of −0.35 V vs
Ag/AgCl. First of all, the general performance in terms of current
density and polarization behaviour is analyzed, to get a general insight
in performance of the electro-active biofilm on FTO electrodes.

Fig. 1A shows the current density as a function of time for both
experiments. In the first experiment, the onset of current production
was on day 5, followed by a steep rise in current on day 13. In the
second experiment, the onset of current production was on day 13,
followed by a steep rise in current on day 21. This delay in the onset
was attributed to the early replacement of medium and subsequent
dilution of inoculum. The maximum current density was 0.74 Am−2 for
experiment 1, and 1.1 Am−2 for experiment 2.

A selection of the polarization curves, obtained for experiment 2, is
presented in Fig. 1B. The polarization curves showed a similar increase
in bio-anode performance with time. In experiment 1, the maximum
current density reached in the polarization experiment was 1.1 Am−2

(day 26) at −0.30 V. In experiment 2, the maximum current density
was 1.6 Am−2 (day 51) at −0.30 V. The current achieved on this flat
surface with low capacitance is comparable to the current achieved on
other, more capacitive electrode materials, like 2D graphite-based
electrodes [21]. FTO is thus a suitable electrode material to grow highly
active electro-active biofilms, despite its low specific surface area and
smooth surface.
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3.2. Analysis of biofilm capacitance from EIS spectra

EIS measurements were done to gain insight in bio-anode properties
and the development of the electro-active biofilm during growth. Thus,
EIS spectra were measured and analyzed at different growth stages of
the electro-active biofilms at −0.35 V. The trends observed in the
Nyquist plots for both experiments are similar (detailed plots for ex-
periment 1 are provided in Figure S2, ESI). In the first days after in-
oculation when no current was produced yet, a nearly straight line was
observed (Fig. 2A), that evolved to a large arc in the next few days (see
Figure S2, ESI) [22]. This line has its origin in a high total internal
resistance, that is related to limited charge transfer reactions, as there is
no active biofilm yet present on the electrode. As time advanced, and
current production by the biofilm increased, the formation of a de-
formed arc was observed, its total width decreasing with time. With
increasing time (and current generation), this deformed arc at high
frequency splits in two different features, see Fig. 2B, which allows the
identification of new phenomena occurring in the active biofilm. These
three arcs were observed in several other measurements, once the
biofilm was sufficiently matured (Figure S3, ESI).

EIS spectra were fitted with the equivalent circuit presented in
Fig. 3, that combines processes occurring in the biofilm, electrode, the
electrolyte and their interfaces. Rel and Rb represent the electric re-
sistance of the FTO electrode and the ionic resistance of the bulk ano-
lyte, the sum of which will be measured as a single ohmic resistance in
series with the rest of the elements, see Figure S3A. This series re-
sistance, Rs,= Rel + Rb provides the intersection with Z’ axis at high
frequencies, see Fig. 2B.

The high frequency arc is associated with the parallel combination
of a capacitance, CFTO, which accounts for charge accumulation at the
interface of the FTO electrode and the solution interface, and a resistor,
Rbio. This Rbio has two possible contributions: the charge transfer

resistance at the interface between the FTO electrode and the electro-
active biofilm and the transport resistance of electrons in this electro-
active biofilm. The second arc at intermediate frequencies is associated
with the combination of the biofilm capacitance (Cbio) and the charge
transfer resistance (Rct) between solution and electro-active biofilm,
which is related to acetate oxidation. The low frequency arc is related to
diffusion of reacting species in the vicinity of the electro-active biofilm,
most importantly acetate and protons. It is described by the diffusion
term of the impedance (Zd):

Fig. 1. (A) Evolution of current density with time for the
two experiments. The steep drops in current are the result
of medium replacements that were done to prevent lim-
itations in nutrients, acetate and buffer capacity. Later
start-up of the bio-anode in experiment 2 could be caused
by earlier medium replacement and possible washout of
active microorganisms. (B) Polarization curves (selected
time points of experiment 2) show increase in biofilm
activity with time.

Fig. 2. (A) First days, the total internal resistance is very
large and the arc does not close, resulting in a straight
upward line. Inset: after growth of the biofilm, im-
pedance is represented by the three smaller and deformed
arcs accounting for the complex equivalent circuit pre-
sented in (B) Nyquist plot reveals three characteristic arcs
that relate to the response at different frequencies. Data
taken from day 40 of experiment 2 at −0.35 V vs Ag/
AgCl.

Fig. 3. The equivalent circuit that represents the bio-anode, which is used to
analyze the EIS spectra and its relation to the different frequency ranges.
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where Rd is the diffusion resistance, j= −1 , ω is the (angular) fre-
quency of the measurement and ωd=D/L2 the diffusion frequency,
with D the diffusion coefficient and L the thickness of the diffusion
boundary layer. While Zd is not always clearly visible, under certain
conditions, its characteristic spectrum is clearly observed (see Figure
S1, ESI).

The equivalent circuit proposed in Fig. 3 is an evolution of a pre-
vious equivalent circuit used to fit EIS data of biofilms deposited onto
carbon electrodes [11,18,22]. Carbon electrodes present very high ca-
pacitances (∼1mF cm−2) and this fact effectively masks other capa-
citive processes occurring in the biofilm. The intentional use of a low
capacitance electrode as FTO reveals a higher complexity in the elec-
trical response of biofilm than the simple charge transfer resistance
(R'ct) used in these previous models based on Randles equivalent circuit,
see Figure S4. While Zd presents values similar to those found in pre-
vious paper [22], the fact that the high frequency arc becomes more
and more deformed until allowing distinguishing two arcs, indicates the
presence of a new capacitor that increases with time and biofilm ac-
tivity. At the same time this new capacitance allows decoupling R'ct in
several contributions. Under these premises, the most likely equivalent
circuit found substitutes R'ct by the combination of Rbio, Rct and Cbio

shown in Fig. 3. Alternative equivalent circuits such those presented in
Figures S3C and S3D were also tested, but results obtained did not
follow the behaviour expected during the growth of the biofilm.

Analysis of these data showed that biofilm capacitance (Cbio) could
be separated from electrode (FTO) capacitance (CFTO) in the EIS
spectra. A control experiment, with an FTO electrode without electro-
active biofilm showed a value of CFTO of 22 μF cm−2. Without biofilm
(CFTO≫ Cbio), the equivalent circuit in Fig. 1B reduces to a Randles
circuit as used previously [11,18]; as Cbio becomes negligible and dis-
appears from the equivalent circuit. After inoculation, and onset of
current generation, the value for Cbio starts increasing. For current >
0.1 Am−2, the EIS spectrum in the Nyquist plot presented up to three
characteristic arcs as shown in Fig. 2B and therefore a separate value for
Cbio could be distinguished. This distinction became more clear after
biofilm growth continued and Cbio became larger than 10 μF cm−2,
(2 μF cm−2 in some cases) clear distinction was observed. In addition,
at this point it becomes possible to decouple and quantify the different
contibutions of Rbio and Rct.

The results for FTO capacitance and biofilm capacitance are shown
in Fig. 4. The FTO capacitance was quite constant at a value of 0.5 mF,
corresponding to 25 μF cm−2. This value was similar to the capacitance
of the control experiment without biofilm (22 μF cm−2). It also agrees
well with the Helmholtz capacitance at the interface between FTO
electrode and solution [23]. The fact that CFTO remains constant and at
a value similar to the one of bare FTO electrode confirms the validity of
equivalent circuit used. The biofilm capacitance showed a clear 2 orders
of magnitude increase with time, starting from 2 μF cm−2 and reaching
250 μF cm−2 in experiment 1 and 450 μF cm−2 in experiment 2. Note
that shifting the analysis of the first experiment by 8.5 days, to align the
start of current production in both experiments (Figure S5, ESI), we see
that biofilm capacitance development is very similar for both experi-
ments.

More porous, graphite-based electrodes have a typical capacitance
of 1–3mF cm−2 [11,17–19], while the highest value found here for
biofilm capacitance is roughly one order of magnitude lower. The se-
paration between biofilm capacitance and electrode capacitance is
more difficult when using electrodes with higher capacitance, in which
case the biofilm capacitance may not be visible in the EIS spectra. In
one other study using low capacitance gold electrodes, in which a
biofilm was formed over a non-conductive gap [7], biofilm capacitance
was determined using EIS. Biofilm capacitance was 620 μF cm−2, a
value in the same order of magnitude as found here. Other studies have

analyzed bio-anode properties, among which anode capacitance, with
and without biofilm. For example, Borole et al. [24] used EIS to char-
acterize resistances of a graphite felt anode and reported an increase in
electrode capacitance when the biofilm was present. No separation
between electrode capacitance and biofilm capacitance was reported;
and the equivalent circuit used did not allow such a separation between
electrode and biofilm capacitance.

3.3. Relationship between current, total charge and biofilm capacitance

During both experiments, an increase in biofilm capacitance with
time was found, in combination with an increase in current density (and
total charge) with time. Biofilm capacitance is shown as a function of
the current that was recorded during EIS in Fig. 4B and Figure S6, ESI,
and as a function of total charge in Fig. 4C and D. In both experiments,
biofilm capacitance increased linearly with current density, providing
very similar values in the full range of measurements. This reveals the
close relationship between current and biofilm capacitance. The same
holds for total charge and biofilm capacitance, although the biofilm
capacitance levels off at higher total charge. Current production, total
charge, and biofilm capacitance are related to electroactive compounds
inside the biofilm. The increase in biofilm capacitance seems related to
an increase in total biofilm, or in the electroactive compounds inside
the biofilm, and therefore seems related to biofilm growth. In BESs,
biofilm growth is linked to the total produced charge. In the lag and
exponential growth phase of BESs start-up, the increase in total charge
thus coincides with the increase in biofilm and its electroactive com-
ponents. These results are in line with the study on analysis of biofilm
quantity on FTO electrodes in-situ using optical coherence tomography
(OCT) [25]. We observed that the amount of biofilm keeps increasing
linearly at constant yield, even far beyond the exponential growth
phase, when the current has stabilized. This indicates that only part of
the biomass is involved in current production or that a larger amount of
biomass produces current less efficiently. Possibly, a combination of
OCT measurements with EIS analysis to gain more insights in the ratio
between active and inactive biomass, and the presence of electro-active
components.

Data from capacitance are in accordance with the observation that
electrons are accumulated in the bacterial membrane surface, i.e. stored
in redox active components, like multi-heme c-type cytochromes as
reported for Geobacter sulfurreducens [7,8], rather than in organic
polymeric molecules inside the bacterial cell, where electrical pertur-
bations to measure capacitance would have more difficulties to access.
It is therefore likely that the accumulated charge in the cytochromes is
compensated by ions in the solution, forming an electrical double layer
that results in the measured capacitance. The measured capacitance
seems to be a measure for the amount of electroactive biomass present
on the electrode surface. These results open the possibility of detailed
electrical study on electron storage in bacterial membranes.

3.4. Analysis of other biofilm properties from EIS spectra

In addition to biofilm capacitance, information on charge transfer
resistance, biofilm resistance, and diffusion resistance can be obtained
from the EIS spectra. These results are shown in Figure S7A-D, see ESI.
As time proceeded, all resistances decreased, and an inverse linear re-
lationship between current density and Rct and Rbio was found. The
linear relationship between the inverse of Rct and current density was
already described in previous work [22], however, this behaviour is
much more evident here.

Fig. 5 shows the relationship between Cbio and the inverse of charge
transfer resistance Rct and biofilm resistance Rbio. There is a clear link
between Cbio and 1/Rct, showing that charge transfer resistance (related
to conversion of substrate) decreases with increasing Cbio. This is in
accordance with the finding that Cbio increases with increasing current
density; whereas current density is a direct measure of biofilm activity,
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Cbio is an indirect measure of biofilm activity. At the same time, Cbio

also shows a clear link to 1/Rbio and shows that with increasing biofilm
activity (that is linked to Cbio), the biofilm resistance decreases. The
decrease in Rbio may be related to the increase in the surface connec-
tions between the biofilm and the FTO electrode, which would con-
tribute in three ways: (i) an increase in the contact surface between

biofilm and the FTO electrode; (ii) the increase in the number of elec-
tron conductive connections within the biofilm, that connect the in-
creasing numbers of electro-active bacteria to each other and to the
FTO electrode. This last effect could be partially compensated by an
increase in transport resistance as the increasing biofilm thickness in-
creases the distance between the bacteria in contact with the electrolyte

Fig. 4. (A) FTO capacitance is constant, while biological capacitance increases as a function of time. (B) Biofilm capacitance increased linearly with current density.
(C) Biofilm capacitance also shows a relationship with total charge, which seems linear (D) especially in the first stage of biofilm growth.

Fig. 5. Analysis of EIS spectra resulted in quantification of Rct and Rbio (A) With increase in Cbio, charge transfer resistance decreases. (B) Biofilm resistance decreases
with increasing Cbio.
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and those in contact with the anode. (iii) The increase in the con-
centration of redox active components (e.g. c-type cytochromes) in the
bacteria, easing charge transfer from bacteria to FTO. This last possi-
bility, together with the increase in carrier concentration of redox ac-
tive components (both related to Cbio) would result in the increase of
the overall conductivity of the biofilm and thus the decrease in Rbio.
Finally, while out of the scope of this paper, it is worth to comment on
the decrease of diffusion resistance shown in Figure S5A as time and
biofilm growth progresses. Possible origins of this behaviour could be a
decrease in diffusion length, linked to local increase in conductivity, or
an increase of diffusing species in solution close to the bacteria, both
associated to the increasing biofilm activity.

3.5. Biofilm quantification

At the end of the second experiment, the cell was disassembled, and
a well-developed biofilm was observed (Figure S8, ESI). The biofilm
was removed from the electrode to determine biofilm weight, and a
total COD of 19mg was measured. In combination with the total cou-
lombs of charge transferred during the entire experimental time
(34.3 mmol e−), an average yield of 0.55 g COD biomass/mol e− was
found. This can be translated into a yield per substrate (8mol e−/mol
acetate) of 0.069 g COD biomass/g COD acetate. The theoretical max-
imum biomass yield is 0.10 g COD biomass/g COD acetate, calculated at
the used anode potential of −0.35 V vs Ag/AgCl (−0.15 V vs SHE)
using the thermodynamic approach from Picioranu et al. [26] The
average yield determined after harvesting from the FTO anode is thus
slightly lower than the theoretical yield. Likely, our measurement un-
derestimates the actual yield, as only the biomass that remained at-
tached to the electrode throughout the 52 days experimental period was
harvested and analyzed. More accurate biomass determination is un-
derway to get more insights in biomass yields of electro-active biofilms.

3.6. Outlook for future use of FTO electrodes

FTO electrodes are not only a suitable material to quantify capaci-
tance in combination with EIS, they also provide a means to easily
remove biofilms from the electrode for further chemical or microbial
analysis. In addition, their transparent nature offers new possibilities
for in-situ spectroscopic analyses like Confocal Resonance Raman
Microscopy, as has been shown for electro-active biofilms on similar
Indium Tin Oxide (ITO) electrodes [8,27]. EIS on FTO electrodes might
be a suitable tool for non-invasive measurements of biofilm density, via
the analysis of capacitance. To use EIS for biofilm density measurement,
a more detailed calibration between biofilm amount and biofilm ca-
pacitance is required. Combining in-situ measurements of capacitance
using EIS and spectroscopic analyses, in combination with biofilm
characterization, provides exciting new opportunities to gain further
insights in electron transfer mechanisms and other factors that de-
termine performance of electro-active biofilms.

4. Conclusions

In summary, we have proposed a new configuration using FTO
electrodes to quantify electrochemical properties of bio-anodes with
high accuracy. Using this FTO electrode, the interference from the
electrode capacitance was minimized. As a result, biofilm capacitance,
charge transfer, biofilm and diffusion resistances could be analyzed
separately. During biofilm growth, biofilm capacitance increased from
2 μF cm−2 to 450 μF cm−2, while FTO capacitance was 25 μF cm−2.
Biofilm capacitance showed a relationship with total produced charge,
which was linear in the early stage of biofilm growth. In addition, FTO

provides a means to analyze biofilm yields on electrodes. This proce-
dure opens the possibility of more detailed studies about electrical in-
teractions in biofilms in general, and charge storage in biofilms in
particular.
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