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ABSTRACT: CsPbBr3 single crystals have potential for application in ionizing-radiation
detection devices due to their optimal optoelectronic properties. Yet, their mixed ionic−
electronic conductivity produces instability and hysteretic artifacts hindering the long-term
device operation. Herein, we report an electrical characterization of CsPbBr3 single crystals
operating up to the time scale of hours. Our fast time-of-flight measurements reveal bulk
mobilities of 13−26 cm2 V−1 s−1 with a negative voltage bias dependency. By means of a guard
ring (GR) configuration, we separate bulk and surface mobilities showing significant qualitative
and quantitative transport differences. Our experiments of current transients and impedance
spectroscopy indicate the formation of several regimes of space-charge-limited current (SCLC)
associated with mechanisms similar to the Poole−Frenkel ionized-trap-assisted transport. We
show that the ionic-SCLC seems to be an operational mode in this lead halide perovskite,
despite the fact that experiments can be designed where the contribution of mobile ions to
transport is negligible.

The all-inorganic cesium lead tribromide perovskite
(CsPbBr3) is an attractive material with several

perspective applications in photovoltaics,1 photodetectors,2,3

and light emitting devices4,5 due to its optoelectronic
properties6,7 and various fabrication methods.8−10 Particularly,
in the field of ionizing energy detection, many studies have
been focused on thin film approaches,9,11 yet the use of
millimeter-thick single crystals has gained more attention
recently.2,3 Importantly, most of the reported studies in the
literature focus on the optical properties and the fast
optoelectronic response from the material and the devices,
respectively. However, little is discussed about the current
density−voltage characteristics (J−V) which typically show
nonlinearities and bias-sweep-direction-dependent features
(hysteresis)12 due to the dual electronic−ionic conductivity
of these materials,13,14 similar to other organo-metal-halide
perovskite thin film devices.15,16

In dark conditions, the J−V curve is typically analyzed in
symmetrically contacted samples to identify different transport
regimes. Commonly, the ohmic region (J ∝ V) and a transition
toward the classic mobility regime of space-charge-limited
current (SCLC) are found, where the latter follows the Mott−
Gourney law17,18
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Here L is the distance between electrodes, ϵ0 is the vacuum
permittivity, ϵr is the dielectric constant (∼40 for CsPbBr3),

19

L is the distance between electrodes, and μ is the mobility of

the electronic charge carriers. Moreover, a trap-filled-limited
region can occur when J ∝ Vn, with n > 2,18,20 and a ballistic-
like voltage-dependent mobility (BVM)21 regime can also take
place when n = 3/2. The BVM regime resembles the Child−
Langmuir law22,23 in terms of the current trend above the
threshold voltage V0 with a law as
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However, unlike the classic ballistic transport, where no
mobility can be defined, the BVM model describes the case of
a field-dependent mobility μ μ ξ= V L/0 0 with threshold
value μ0 at V0. This modifies the classic definition of the drift
velocity as a function of the electric field ξ. Phenomenolog-
ically, the BVM regime constitutes a particular case of Poole−
Frenkel ionized-trap-assisted transport24−26 with a field-
dependent distribution of charge carriers.21 Recently, the
BVM model has been found to describe the long-term kinetics
of electronic transient currents in MAPbBr3 single crystals.27

Over all SCLC types, few reports28,29 have identified these
regimes with clarity in CsPbBr3 single crystals. More often, the

Received: March 18, 2022
Accepted: April 11, 2022

Letterpubs.acs.org/JPCL

© XXXX The Authors. Published by
American Chemical Society

3824
https://doi.org/10.1021/acs.jpclett.2c00804
J. Phys. Chem. Lett. 2022, 13, 3824−3830

D
ow

nl
oa

de
d 

vi
a 

85
.1

36
.1

67
.7

2 
on

 A
pr

il 
25

, 2
02

2 
at

 1
4:

17
:2

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Osbel+Almora"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gebhard+J.+Matt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Albert+These"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrii+Kanak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ievgen+Levchuk"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shreetu+Shrestha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andres+Osvet"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andres+Osvet"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christoph+J.+Brabec"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Germa%CC%80+Garcia-Belmonte"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpclett.2c00804&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00804?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00804?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00804?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00804?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00804?fig=tgr1&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c00804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


Mott−Gourney law is misused in ohmic-like saturation
regimes at higher voltages (see Table S1 in the Supporting
Information).30−32 Likewise, hysteresis control and reproduci-
bility of the results are often missing. Notably, in thin film
devices the current pathways are mostly throughout the grain
boundaries and/or the bulk material. Accordingly, the charge
carriers effectively travel a distance L from one electrode to the
other. However, in thick single crystals the charge carriers can
travel a distance L across the bulk material with either a bulk
resistivity ρb or a distance Ls throughout the surface (single-
crystal grain boundaries) with surface resistivity ρs.
In classic semiconductors, the ohmic surface electronic

currents Js can be significantly higher than bulk currents Jb
when ρsLs < ρbL due to the presence of significant
unintentional doping at the surface. However, the question
arises on how the transport evolves regarding the mixed
electronic−ionic conductivity of lead halide perovskites.
Depending on the polarization history of a sample, a field-
induced redistribution of free mobile ions dominates the long-
term evolution of the electrical response. Still, it is not clear
whether the mobile ions are mostly distributed along the
surface, along the bulk, or at the vicinity of the electrodes.33,34

The matter of avoiding surface leakage currents can be
tackled by using the guard ring (GR) configuration. In this
arrangement, not only is the sample geometry prevented from
affecting the J−V characteristics, but one can also discern
between surface and bulk contributions. The active electrode is
surrounded by a closed metallic connection line on top of the
surface (the guard ring) with the same electrostatic potential ϕ
of the electrode. Consequently, no electric current will flow
between the top electrode (HI) and the GR, as depicted in
Figure S1. The current between the GR and the bottom (LO)
contact is driven by a unity gain buffer with a high input
impedance. With this arrangement, just the direct current
through the bulk of the crystal is measured, since the local
electric potential difference between the HI and the GR is zero
(Δϕ = 0). Notably, in Figure S1 L is the distance between the
HI and the LO and Ls> L is an alternative pathway for the
charge carriers to travel without the GR. This approach has
successfully been applied in X-/γ-ray detectors based on, for
example, CdTe,35,36 CdZnTe,37,38 Si,39−43 and SiC.44 More
recently, Wei et al.45 showed that using GR reduces the crystal
surface leakage current and device dark current in
CH3NH3PbBr3−xClx-based γ-ray detectors.
In this work, the surface and bulk contributions to the

current density throughout 1−3-mm-thick CsPbBr3 single
crystals are quantified using the GR configuration. The samples
are tested via long-time current transients and impedance
spectroscopy (IS) for illustrating the time scale of the
electronic and ionic kinetics. We show that the long-time
ionic relaxation kinetics and many of the often-found SCLC
regimes are mostly surface phenomena. We estimate values for
ion-affected electronic mobilities by analyzing the steady-state
currents and the leakage low frequency resistances. Further-
more, we propose prebiasing experiments that allow the
estimation of the transient concentration of mobile ions
toward the electrodes creating transient depletion layer
capacitances.
Field-Dependent Mobility f rom Time-of-Flight Experiments.

For a start, the ToF measurements are presented in Figure 1
characterizing the transport of bulk-photogenerated charge
carriers across the bulk of the sample. This is a condition close
to equilibrium since the bias pulses have periods up to

hundreds of microseconds. The transit time between electro-
des was between 15 and 50 μs, resulting in mobility values
ranging 13−26 cm2 V−1 s−1 with a seemly negative bias
dependency as μ ∝ V−1/2 (solid line in Figure 1b) in the
electric field (ξ) range 100−900 V cm−1. Among lead halide
perovskites, the negative field dependency of mobility (∂μ/∂ξ
< 0) has been previously reported in CH3NH3PbBr3 for a
similar field range,46 whereas the positive case (∂μ/∂ξ > 0) has
been predicted by classical molecular dynamics simulations of
halide ionic mobilities in CH3NH3PbI3 for ξ > 1 MV cm−1.47

The field dependency of the charge carrier mobility is an
intensively reported and modeled behavior in inorganic and
organic semiconductors, as summarized in Table S2. Either by
hopping48−50 or by the trap-mediated Poole−Frenkel51,52
effect, several Monte Carlo simulations suggest that the
negative field dependency of the mobility may appear in
some limit cases of transport and morphology properties.
Notably, the experimental trend μ ∝ V−1/2 is in agreement

with the BVM model,21 if ξ = V/L (top axis in Figure 1b) is
considered. This may relate to mobile ions which modify the
electronic transport properties upon biasing, even for the fast
pulse perturbation in the ToF experiment. More importantly,
the bias-dependent mobility implies major changes in the way
space charges distribute, which subsequently modifies the
current. This suggests that one can no longer define a “true”

Figure 1. Time-of-flight measurements of a CsPbBr3 single crystal:
(a) photocurrent transients and (b) corresponding mobilities as a
function of bias. The solid line in part b corresponds to an allometric
fitting, following the trend of the BVM model,21 as indicated. No GR
connection was used for this experiment.
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absolute mobility for the material at a given temperature.
Instead, a mobility value can be taken for a given condition or
as an average effective value within voltage and temperature
ranges. Moreover, the question arises on the influence of ionic
effects when comparing bulk and surface transport.
Hysteresis and Long-Term Current Transients with and without

a Guard Ring. Typical J−V characteristics were measured for
several crystals, in different polarization routines. In every
experiment, the surface current values (without a GR)
exceeded those of the bulk (with a GR), as shown in Figure
S2. For some extreme cases, not only the current was reduced
with the GR connection, but also the hysteresis, as presented in
Figure 2a. Interestingly, the hysteretic J−V curves without a
GR behave like a sequence of regimes as J ∝ Vn, where the
power 1 < n < 3.2 varies with the bias range and polarization
time, which could be understood in terms of the formalism of
SCLC, as a consequence of an effective field-dependent
mobility with μ ∝ ξn−2.21 On the other hand, the bulk related
currents measured with the GR show ohmic behavior with a
specific resistivity ρ = 0.7 GΩ cm, in agreement with reports by
Stoumpos et al.53

In a subsequent experiment, the long-term current evolution
was explored at different DC biases, as indicated in the
sequence of Figure 2b. At each voltage value (between the HI
and the LO) the current is monitored, first during 2.5 ks
without a GR and, subsequently, when the GR is connected
and the current is sensed for another 2.5 ks. The procedure
was continuously repeated up to 10 V. In this bias range and
time window, the bulk currents (with a GR) contributed only
20−40% of the total bulk + surface currents (without a GR),
meaning that surface currents are contributing 60−80%. The
current transients (Figure 2b) were fitted to exponential
relaxation models (see Figure S3) whose characteristic times
are summarized in Figure 2c. Neglecting faster processes, the
ionic bulk kinetics seems to achieve steady-state current after
τi‑b∼ 500 s (with a GR), regardless of the applied voltage.
Differently, without a GR, the bulk + surface currents show
ionic relaxations with τi‑bs > 3 ks.
The saturation steady-state currents (Js) are always larger

than those in typical voltage sweeps, and the resulting trends
may indicate different SCLC mechanisms with or without a
GR, as shown in Figure 2d. Across the bulk (with a GR), a
typical Mott−Gurney law17 of the mobility regime of SCLC
could be assumed from the behavior J ∝ V2, resulting in the
mobility μGR = 53 cm2 V−1 s−1. This bulk mobility is between
two and three times larger than that extracted from the ToF
experiment, partly because of the different field range (see
extrapolation in Figure 1b) but mostly due to the conductivity
and space-charge modification during the prebiasing period.
On the other hand, the surface contribution (no GR)
introduces an important component J ∝ V3/2. This may relate
to a BVM regime of SCLC,21 from which a higher mobility of
μ0,nGR = 414 cm2 V−1 s−1 can be estimated. This presumably
surface mobility surpasses all the estimations for bulk mobility
(μnGR ≫ μGR > μ) with a value somehow closer to previous
reports in nonstabilized J−V curves.30

Impedance Spectroscopy with and without a Guard Ring.
Simultaneously to the chronoamperometry experiment, the IS
spectra with and without a GR were measured after the current
stabilization at each voltage bias (see marks ‡ and † in Figure
2b). The full set of data in the Nyquist representation and the
fitting parameters can be found in Figure S4 and Table S3,
respectively, and an illustrative plot is shown in Figure 3a along

with the equivalent circuit model used to simulate the spectra.
There, R0 is the equilibrium resistance (under 0 V DC bias),
which is kept constant during all the simulations.

Figure 2. Dark current−voltage characteristics of CsPbBr3 single
crystals with and without a guard ring: (a) continuous bias sweep at
150 mV s−1, (b) stepwise sequence with a 2.5 ks delay at each voltage
bias, (c) characteristic relaxation times, and (d) steady-state saturation
currents for current transients in part b from exponential fittings (see
Figure S3). The solid, dashed, and dash-point lines in parts a and d
indicate allometric fittings as indicated. The ‡ and † symbols in part b
indicate when the IS measurements were performed with and without
guard rings, respectively (see Figure 3 and Figure S4).
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Toward higher frequencies, the dielectric capacitance Cg and
a coupled seemly ohmic resistance Rρ form a first arc. This
high frequency section of the spectrum behaves independently
of whether the GR is connected or not. Here the dielectric
capacitance is practically the geometrical contribution Cg ≈
ε0εr/L of the sample, although some minor contributions of
depletion layer capacitance (Cdl) cannot be fully discarded.
The applied DC voltage and the GR connection make no
significant variation on Rρ and Cg. Accordingly, these high
frequency parameters are associated with the transport in the
bulk.
Toward lower frequencies, a second arc appears (see Figure

3a) which is simulated with an ionic−electronic capacitance
Ci−e in addition to the space-charge-related resistance Rsc.
Below V0 = 4 V of DC bias, the impedance is mostly defined by
R0 and Cg, and then a transition occurs above V0 (see Figure
S4). Afterward, the ratio between Rsc and Rρ (both ≪ R0) with
Ci−e defines the bias- and surface/bulk-transport properties.
Above V0, the Rsc results are larger with a GR than that without

a GR; that is, the more available the surface is for transport, the
smaller the resistance. Furthermore, either with or without a
GR, the trend Rsc ∝ V−1/2 is observed, which agrees with the
BVM regime of SCLC. Applying the differential resistance R =
(dJ/dV)−1 definition to the current of eq 2 and neglecting ∂μ/
∂V components in the derivative, one can find21

μ
=

ϵ ϵ
−R

L
V

V
2

3 r

3

0 0 0

1/2

(3)

Equation 3 was used to fit the Rsc behavior (solid lines in
Figure 3b), resulting in mobilities of μ0,GR = 98 cm2 V−1 s−1

and μ0,nGR = 137 cm2 V−1 s−1, with and without a GR,
respectively. Once again, our mobility parametrization shows
smaller values for the experiment with a GR (bulk-related) in
comparison to that without a GR (bulk + surface-related).
Interestingly, the fact that the BVM regime of SCLC relates to
the low frequency-related part of the measured IS spectra
suggests the main contribution of the mobile ions to the charge
density profile.
Notably, the discrepancy of the mobility values between the

DC (transient Js, previous section) and the AC (Rsc from IS)
experiments is related to two main factors. First, the GR
connection for the IS measurement is set for the DC bias,
while the AC perturbation includes both bulk and surface
currents. This is probably why the SCLC mode of Rsc is the
BVM with a GR, instead of the Mott−Gurney law. Second, Rsc
includes both the surface and bulk contributions to the space-
charge effect, meaning an overestimation of the resistance.
Separating the Rsc components is not a trivial task; thus, the
mobilities from the IS measurements should be considered as
minimum values.
Further evidence of ionic-mediated space-charge regions can

be found by analyzing the high frequency dielectric capacitance
in different prebiasing experiments. For instance, using the
Mott−Schottky (MS) analysis54,55 after periods of prebiasing,
one can obtain capacitance steps depending on the sign of the
previous poling (see Figure S5). Moreover, if a sufficiently long
prebias is applied, e.g. 2.5 h at 10 V, clear MS plots are
obtained such as those of Figure 3b when the bias sweep is fast
enough so that the space charge does not relax back to
equilibrium before the measurement is done.
In the MS formalism, the depletion layer of width Wdl

decreases with the external bias and the depletion layer
capacitance is expressed as = − ϵ ϵ− −C V V q N2( )( )dl bi r

2
0

1,
where N is the concentration of mobile ions creating the
transient built-in voltage Vbi. Notably, the application of the
MS analysis to the experiment of Figure 3b requires the
depletion layer width to be smaller than the device thickness
(Wdl= ϵ0ϵr/Cdl≤ L) in order to be measurable. Accordingly, a
capacitance correction factor of 3.16 was considered
accounting for possible smaller parasitic capacitances in series.
Subsequently, the concentration values resulted as NGR = 6.7 ×
108 cm−3 and NnGR = 9.3 × 108 cm−3, with and without a GR,
respectively. The larger transient doping concentration without
a GR suggests that more ions are able to accumulate across the
surface during the time window of the experiment. Once more,
the surface is shown to favor the ion migration in these
materials, in agreement with the previous experiments, as
summarized in Table 1.
In summary, the electrical response of millimeter-thick

CsPbBr3 single crystals was characterized via fast ToF
measurements, long-term DC current transients, and IS

Figure 3. Impedance spectroscopy characterization of 3-mm-thick
CsPbBr3 single crystals with and without a guard ring: (a) impedance
Nyquist plot at 6 V; (b) resistances resulting from fitting to the
equivalent circuit model inset in part a; and (c) Mott−Schottky plots
at 100 kHz after 2.5 h at 10 V of prebiasing.
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measurements with/without the use of GR connections. Our
findings suggest a strong dependency of the electronic mobility
on the space-charge distribution of mobile ions upon biasing.
In the classic sense, the bulk mobility from the ToF results in
between 13 and 26 cm2 V−1 s−1 with a negative voltage bias
trend as μ ∝ V−1/2. We strongly recommend these as the most
appropriate values to use for device simulations and material
comparisons. Nevertheless, the apparent field dependency of
the mobility should be considered. The origin of this behavior
is most likely due to a conductivity modification, such as the
Poole−Frenkel ionized-trap-assisted transport,24−26 which
cannot be experimentally discerned from the mobility.
Accordingly, different mobility values can be found depending
on the polarization routines which create different regimes of
SCLC. Importantly, even though one can design experiments
to discard the mobile-ion-formed space charges, the ionic-
mediated SCLC seems to be the operational mode.
In the time scale of hours, the current showed a slow

relaxation upon biasing that is shortened to a few minutes
when a GR connection is used, suggesting that surface and
grain boundary defects are the main pathway for ionic
migration. The steady-state values of the current for the
explored bias range are associated with SCLC mobility
regimes. In the time scale up to seconds, after hours of
relaxations, the IS measurements showed how the surface
transport is related to the slower ionic component. In addition,
transient depletion layer capacitance experiments were shown
to create built-in fields due to accumulation of mobile ions
toward the surfaces with concentrations in the order of 108

cm−3.

■ EXPERIMENTAL SECTION
The studied CsPbBr3 crystal samples were fabricated with the
Bridgman−Stockbarger56,57 method, following the procedure
reported by Stoumpos et al.53 with the specific conditions
described in Section S4 of the Supporting Information. The
resulting single crystals had cylindric shapes with ∼1.1 cm
diameter and 0.3 cm thickness, as illustrated in Figures S1 and
S6. The morphology, stoichiometry, and crystallinity of the
sample were checked via electron scanning microscope (SEM)
images and energy-dispersive X-ray (EDX) and X-ray
diffraction (XRD) spectra, as presented in Figure S6. The
optical properties of the samples are summarized in Figure S7,
where the absorbance, transmittance, photoluminescence
(PL), and Tauc plot spectra illustrate the optical band gap of
2.2 eV and two PL peaks at 561 nm (2.2 eV) and 523 nm
(2.38 eV). Particularly, the double PL peak emission has been
reported by several authors9,53,58−61 and associated with the
contribution from localized or free excitons59 and recombina-
tion involving Br vacancy centers.60 The samples were

contacted with sputtered platinum. Pt was chosen as contact
material due to the inert nature of this metal and the fact that
the high work function provides a hole selective contact. Time-
of-flight (ToF) measurements were conducted with a nano-
second Nd:YAG laser in the setup described by Shrestha et
al.62 for a range from 25 to 159 V of pulsed biases.
For the measurement of dark continuous current (DC)

mode J−V curves, a Keithley 236 was utilized at room
conditions. Several protocols of impedance spectroscopy (IS)
characterizations were used in this work by means of a
bipotentiostat PGSTAT302N-FRA32M, from Metrohm His-
pania AUTOLAB. The alternating current (AC) mode voltage
perturbation was 150 mV. The GR connection was via an
AUTOLAB’s BA unit, which provides a second working
electrode. The temperature was controlled with a microprobe
system with a Peltier device heating and a cooling sample
stage, from Nextron.
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