Catalysis Science & Technology, 2022, 4, 1257 – 1270.
García-Zaragoza, A.; Cerezo-Navarrete, C.; Mollar-Cuni, A.; Oña-Burgos, P.; Mata, J.A.; Corma, A.; Martínez-Prieto, L.M.
Tailoring graphene-supported Ru nanoparticles by functionalization with pyrene-tagged N-heterocyclic carbenes.
Article page: https://doi.org/10.1039/D1CY02063C
Pharmaceuticals, 2022, 15, 531.
Serrano-Aparicio, N.; Ferrer, S.; Świderek, K.
Covalent Inhibition of the Human 20S Proteasome with Homobelactosin C Inquired by QM/MM Studies.
ACS Catalysis, 2022, 12, 698-708.
Martí, S.; Arafet, K.; Lodola, A.; Mulholland, A.J.; Świderek, K.; Moliner, V.
Impact of Warhead Modulations on the Covalent Inhibition of SARS-CoV-2 Mpro Explored by QM/MM Simulations.
Int. J. Mol. Sci., 2022, 23, 300.
Silva, J.R.A.; Urban, J.; Araújo, E.; Lameira, J.; Moliner, V.; Alves, C.N.
Exploring the Catalytic Mechanism of the RNA Cap Modification by nsp16-nsp10 Complex of SARS-CoV-2 through a QM/MM Approach.
Chemical Science, 2022, 13, 4779.
Galmés, M.À.; Nödling, A.R.; He, K.; Luk, L.Y.P.; Świderek, K.; Moliner, V.
Computational design of an amidase by combining the best electrostatic features of two promiscuous hydrolases.
ACS Catalysis, 2022, 12, 14667–14678.
Akintola, O.; Farren-Dai, M.; Ren, W.; Bhosale, S.; Britton, R.; Świderek, K.; Moliner, V.; Bennet, A.J.
Glycoside Hydrolase Catalysis: Do Substrates and Mechanism-Based Covalent Inhibitors React via Matching Transition States?.
mathematics, 2022, 10, 4632.
Pérez, G.Alfonso; Castillo, R.
Identification of systemic sclerosis through machine learning algorithms and gene expression.
Int. J. Mol. Sci., 2022, 23, 7049.
Pla-López, A.; Castillo, R.; Cejudo-Marín, R.; García-Pedrero, O.; Bakir-Laso, M.; Falomir, E.; Carda, M.
Synthesis and Biological Evaluation of Small Molecule as Potential Anticancer Multitarget Agents.
Nanomaterials, 2022, 13 (1), 1-11.
Adl, H.Pashaei; Gorji, S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Suárez, I.; Martínez-Pastor, J.P.
Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna.
Article page: https://www.mdpi.com/2079-4991/13/1/11
Electrochimica Acta, 2022, 439, 141701.
Solis, O.E.; Fernández-Saiz, C.; Rivas, J.Manuel; Esparza, D.; Turren-Cruz, S.H.; Julián-López, B.; Boix, P.P.; Mora-Seró, I.
α-FAPbI3 powder presynthesized by microwave irradiation for photovoltaic applications.
Article page: https://www.sciencedirect.com/science/article/pii/S0013468622018576?via%3Dihub
Solar RRL, 2022, 6, 2200737.
Zheng, Y.; Xu, X.; Liu, S.; Bi, Z.; Zhu, Y.; Guerrero, A.; Xing, G.
Blade‐Coating High‐Quality Formamidinium‐Cesium Lead Halide Perovskites with Green Solvent for Efficient and Stable Solar Cells.
Article page: https://onlinelibrary.wiley.com/doi/10.1002/solr.202200737
The Journal of Physical Chemistry C, 2022, 126, 13560.
Gonzales, C.; Guerrero, A.; Bisquert, J.
Transition from capacitive to inductive hysteresis: A neuron-style model to correlate I-V curves to impedances of metal halide perovskites.
Article page: https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.2c02729
Physical Review Letters (PRL), 2022, 129, 255701.
Johnson, A.S.; Moreno-Mencía, D.; Amuah, E.B.; Menghini, M.; Locquet, J.P.; Giannetti, C.; Pastor, E.; Wall, S.E.
Ultrafast Loss of Lattice Coherence in the Light-Induced Structural Phase Transition of V2O3.
Advanced Materials, 2022, 35, 9, 2208293.
Chirvony, V.S.; Suárez, I.; Sánchez-Diaz, J.; Sánchez, R.S.; Rodríguez-Romero, J.; Mora-Seró, I.; Martínez-Pastor, J.P.
Unusual Spectrally Reproducible and High Q-Factor Random Lasing in Polycrystalline Tin Perovskite Films.
Article page: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202208293
Angewandte Chemie International Edition, 2022, e202211587.
Pulignani, C.; Mesa, C.A.; Hillman, S.A.J.; Uekert, T.; Giménez, S.; Durrant, J.Robert; Reisner, E.
Rational design of carbon nitride photoelectrodes with high activity toward organic oxidations.
Article page: https://doi.org/10.1002/ange.202211587
Nature Catalysis, 2022, 5, 844-845.
Rao, R.; Mesa, C.A.; Durrant, J.Robert
Better together.
Article page: https://www.nature.com/articles/s41929-022-00861-9
ACS Energy Letters, 2022, 7, 3401–3414.
Sakhatskyi, K.; Guerrero, A.; Bisquert, J.; Kovalenko, M.V.
Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites.
Article page: https://pubs.acs.org/doi/full/10.1021/acsenergylett.2c01663
Chemical Physics Reviews, 2022, 3, 041305.
Bisquert, J.
Negative inductor effects in nonlinear two-dimensional systems: Oscillatory neurons and memristors.
Article page: https://aip.scitation.org/doi/full/10.1063/5.0124115
Polymers, 2022, 14, 5121.
Miralles-Comins, S.; Zanatta, M.; Sans, V.
Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing.
Article page: https://www.mdpi.com/2073-4360/14/23/5121#
Chemistry - Methods, 2022,
Iglesias, D.; Haddad, D.; Sans, V.
Recent Developments in Process Digitalisation for Advanced Nanomaterial Syntheses.
Article page: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmtd.202200031
RSC Advances, 2022, 12, 32630–32639.
Serafini, P.; Gualdrón-Reyes, A.F.; Sánchez, R.S.; Barea, E.M.; Masi, S.; Mora-Seró, I.
Balanced change in crystal unit cell volume and strain leads to stable halide perovskite with high guanidinium content.
Article page: https://pubs.rsc.org/en/Content/ArticleLanding/2022/RA/D2RA06473A
Chemical Communications, 2022, 58, 10564-10567 .
Gutiérrez-Peña, C.; Poyatos, M.; Peris, E.
A redox-switchable catalyst with an 'unplugged' redox tag.
Article page: https://pubs.rsc.org/en/content/articlelanding/2022/cc/d2cc02497g
Angewandte Chemie International Edition, 2022, 61, e202208189.
López-Moreno, A.; Ibáñez, S.; Da Silva, S.Moreno; Ruiz-González, L.; Sabanés, N.Martín; Peris, E.; Pérez, E.M.
Single-Walled Carbon Nanotubes Encapsulated within Metallacycles.
Article page: https://onlinelibrary.wiley.com/doi/10.1002/anie.202208189
Chemistry - A European Journal, 2022, 28, e202201384.
Ruíz-Zambrana, C.; Dubey, R.K.; Poyatos, M.; Mateo-Alonso, A.; Peris, E.
Redox-Switchable Complexes Based on Nanographene-NHCs.
Article page: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202201384
ACS Catalysis, 2022, 12, 4465–4472.
Ruíz-Zambrana, C.; Poyatos, M.; Peris, E.
A Redox-Switchable Gold(I) Complex for the Hydroamination of Acetylenes: A Convenient Way for Studying Ligand-Derived Electronic Effects.
Article page: https://pubs.acs.org/doi/pdf/10.1021/acscatal.2c00613
Tetrahedron Chem, 2022, 2, 100018.
Valencia, E.; Poyatos, M.; Peris, E.
‘Pincer-tweezer’ tetraimidazolium salts as hosts for halides.
Article page: https://www.tetrahedron-chem.com/article/S2666-951X(22)00014-6/fulltext
Solar RRL, 2022, 6, 12, 2200641.
Serafini, P.; Boix, P.P.; Barea, E.M.; Edvinson, T.; Sanchez, S.; Mora-Seró, I.
Photonic Processing of MAPbI3 Films by Flash Annealing and Rapid Growth for High-Performance Perovskite Solar Cells.
Article page: https://onlinelibrary.wiley.com/doi/full/10.1002/solr.202200641
ACS Applied Energy Materials, 2022, 5, 10, 12545–12552.
Torres, J.; Zarazua, I.; Esparza, D.; Rivas, J.Manuel; Saliba, M.; Mora-Seró, I.; Turren-Cruz, S.H.; Abate, A.
Degradation Analysis of Triple-Cation Perovskite Solar Cells by 2 Electrochemical Impedance Spectroscopy.
Article page: https://pubs.acs.org/doi/full/10.1021/acsaem.2c02161
ACS Energy Letters, 2022, 7 (10), 3653–3655.
Vescio, G.; Sánchez-Diaz, J.; Frieiro, J.Luis; Sánchez, R.S.; Hernández, S.; Cirera, A.; Mora-Seró, I.; Garrido, B.
2D PEA2SnI4 Inkjet-Printed Halide Perovskite LEDs on Rigid and Flexible Substrates.
Article page: https://pubs.acs.org/doi/10.1021/acsenergylett.2c01773?ref=pdf
ACS Applied Materials and Interfaces, 2022, 14, 33200−33210 .
Barawi, M.; Gomez-Mendoza, M.; Oropeza, F.E.; Gorni, G.; Villar-García, I.J.; Giménez, S.; O’Shea, V.A. de la P.; Garcia-Tecedor, M.
Laser-Reduced BiVO4 for Enhanced Photoelectrochemical Water Splitting.
Article page: https://pubs.acs.org/doi/full/10.1021/acsami.2c07451
International Journal of Energy Research, 2022, 46, 12608–12622.
Shaddad, M.N.; Arunachalam, P.; Amer, M.S.; Al-Mayouf, A.M.; Hezam, M.; AlOraij, H.A.; Giménez, S.
Exploiting the synergistic catalytic effects of CoPi nanostructures on Zr-doped highly ordered TiO2 nanotubes for efficient solar water oxidation.
Article page: https://onlinelibrary.wiley.com/doi/full/10.1002/er.8030
Advanced Functional Materials, 2022, 2207136,
Cui, J.; Daboczi, M.; Regue, M.; Chin, Y.C.; Pagano, K.; Zhang, J.; Isaacs, M.A.; Kerherve, G.; Mornto, A.; West, J.; Giménez, S.; Kim, J.S.; Eslava, S.
2D Bismuthene as a Functional Interlayer between BiVO4 and NiFeOOH for Enhanced Oxygen-Evolution Photoanodes.
Article page: https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202207136
Nanoscale, 2022, 14, 15596-15606.
Pastor, E.; Montañés, L.; Gutierrez-Blanco, A.; Hegner, F.S.; Mesa, C.A.; López, N.; Giménez, S.
The role of crystal facets and disorder on photoelectrosynthesis.
Article page: https://pubs.rsc.org/en/content/articlepdf/2022/NR/D2NR03609F
Nano Letters, 2022, 22, 18, 7621–7627.
Canet-Albiach, R.; Kreĉmarová, M.; Bailach, J.Bosch; Gualdrón-Reyes, A.F.; Rodríguez-Romero, J.; Gorji, S.; Pashaei-Adl, H.; Mora-Seró, I.; Pastor, J.P.Martine; Sánchez-Royo, J.Francisco; Muñoz-Matutano, G.
Revealing Giant Exciton Fine-Structure Splitting in Two-Dimensional Perovskites Using van der Waals Passivation.
Article page: https://pubs.acs.org/doi/10.1021/acs.nanolett.2c02729?ref=pdf#
physica status solidi (RRL) , 2022, 16, 2200336.
Almora, O.; Miravet, D.; Gelmetti, I.; Garcia-Belmonte, G.
Long-term Field Screening by Mobile Ions in Thick Metal Halide Perovskites: Understanding Saturation Currents.
Article page: https://onlinelibrary.wiley.com/doi/abs/10.1002/pssr.202200336
Advanced Photonics Research, 2022, 3, 2200136.
García-Batlle, M.; Deumel, S.; Huerdler, J.E.; Tedde, S.F.; Almora, O.; Garcia-Belmonte, G.
Effective Ion Mobility and Long-Term Dark Current of Metal Halide Perovskites with Different Crystallinities and Compositions.
Article page: https://onlinelibrary.wiley.com/doi/10.1002/adpr.202200136
Current Opinion in Electrochemistry, 2022,
Mesa, C.A.; Pastor, E.; Francàs, L.
UV–Vis operando spectroelectrochemistry for (photo)electrocatalysis: Principles and guidelines.
Article page: https://www.sciencedirect.com/science/article/pii/S2451910322001636?dgcid=coauthor
ACS Energy Letters, 2022, 7, 2602–2610.
Hernández-Balaguera, E.; Bisquert, J.
Negative Transient Spikes in Halide Perovskites.
Article page: https://pubs.acs.org/doi/full/10.1021/acsenergylett.2c01252
Frontiers in Energy, 2022, 10, 914115.
Munoz-Diaz, L.; Rosa, A.J.; Bou, A.; Sánchez, R.S.; Romero, B.; John, R.Abraham; Kovalenko, M.V.; Guerrero, A.; Bisquert, J.
Inductive and Capacitive Hysteresis of Halide Perovskite Solar Cells and Memristors Under Illumination.
Article page: https://www.frontiersin.org/articles/10.3389/fenrg.2022.914115/full
Green Chemistry, 2022, 24, 3300-3308.
Valverde, D.; Porcar, R.; Zanatta, M.; Alcalde, S.; Altava, B.; Sans, V.; García-Verdugo, E.
Towards highly efficient continuous-flow catalytic carbon dioxide cycloadditions with additively manufactured reactors.
Article page: https://pubs.rsc.org/en/content/articlehtml/2022/gc/d1gc04593h
Nature Communications, 2022, 13, 4341.
Yu, J.; Garces, F.Andres; González-Cobos, J.; Peña-Díaz, M.; Rogero, C.; Giménez, S.; Spadaro, M.Chiara; Arbiol, J.; Barja, S.; Galán-Mascarós, J.Ramón
Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4.
Article page: https://www.nature.com/articles/s41467-022-32024-6
Materials Letters, 2022, 325, 132799.
Shaddad, M.N.; Hezam, M.; Arunachalam, P.; AL-Saeedan, N.M.; Giménez, S.; Bisquert, J.; Al-Mayouf, A.M.
Improved Solar Water Splitting Performance of BiVO4 Photoanode by the Synergistic Effect of Zr-Mo co-doping and FeOOH Co-catalyst layer.
Article page: https://www.sciencedirect.com/science/article/pii/S0167577X22011521#ak005
ACS Applied Materials and Interfaces, 2022, xx, xx.
Barawi, M.; Gomez-Mendoza, M.; Oropeza, F.; Gorni, G.; Villar-Garcia, I.J.; Giménez, S.; O'Shea, Vde la Peñ; García-Tecedor, M.
Solar RRL, 2022, 6, 2200173.
García-Batlle, M.; Zia, W.; Aranda, C.; Saliba, M.; Almora, O.; Guerrero, A.; Garcia-Belmonte, G.
Observation of Long-Term Stable Response in MAPbBr3 Single Crystals Monitored through Displacement Currents under Varying Illumination.
Article page: https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.202200173
Physical Chemistry Chemical Physics, 2022, 24, 15657-15671.
Riquelme, A.J.; Valadez-Villalobos, K.; Boix, P.P.; Oskam, G.; Mora-Seró, I.; Anta, J.A.
Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation.
Article page: https://pubs.rsc.org/en/Content/ArticleLanding/2022/CP/D2CP01338J
Molecules, 2022, 27, 3699.
Ibáñez, S.
The New Di-Gold Metallotweezer Based on an Alkynylpyridine System.
Article page: https://www.mdpi.com/1420-3049/27/12/3699
Journal of American Chemical Society, 2022,
Bozal-Ginesta, C.; Rao, R.R.; Mesa, C.A.; Wang, Y.; Zhao, Y.; Hu, G.; Antón-García, D.; Stephens, I.E.L.; Reisner, E.; Brudvig, G.; Wang, D.; Riquelme, A.J.
Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts.
Article page: https://pubs.acs.org/doi/10.1021/jacs.2c02006
APL Materials, 2022, 10, 051104.
Bou, A.; Pockett, A.; Cruanyes, H.; Raptis, D.; Watson, T.M.; Carnie, M.J.; Bisquert, J.
Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells.
Article page: https://aip.scitation.org/doi/10.1063/5.0087705
Advanced Optical Materials, 2022, 10, 15, 2200458.
Suárez, I.; Chirvony, V.S.; Sánchez-Diaz, J.; Sánchez, R.S.; Mora-Seró, I.; Martínez-Pastor, J.P.
Directional and Polarized Lasing Action on Pb-free FASnI3 Integrated in Flexible Optical Waveguides.
Article page: https://onlinelibrary.wiley.com/doi/10.1002/adom.202200458
The Journal of Physical Chemistry Letters, 2022, 13, 3130–3137.
Sahamir, S.Razey; Ripolles, T.S.; Segawa, H.; Shen, Q.; Bisquert, J.; Hayase, S.
Enhancing the Electronic Properties and Stability of High-Efficiency Tin–Lead Mixed Halide Perovskite Solar Cells via Doping Engineering.
Article page: https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00699