Research Overview

The main interest of the group is to develop advanced photoactive materials for applications in energy, photonics and catalysis. The team integrates a balanced expertise on the design, synthesis and functional characterization of different materials and energy conversion devices. Especially relevant to our research is understanding the formation mechanisms of materials structure to provide systems with enhanced functional properties. Our current efforts focus on applications spanning from advanced light emission, green H2 production, environmental remediation and waste valorization.

Group's research interests

  • (Photo)electrocatalytic H2 production using earth-abundant materials.

  • Biomass electrolysis (glycerol oxidation).

  • Design and development of (photo)electrolyzers.

  • Sustainable synthesis of metal halide perovskites for photovoltaics and optoelectronics.

  • Spectral conversion and photoactive nanoparticles and hybrid organic-inorganic systems for photocatalysis, energy conversion and integrated optics..

  • Sol-gel approaches, Soft Chemistry and self-assembly processes.

Members

Ana María Gutierrez Blanco's picture
Ana María Gutierrez Blanco

Research Scientist

Lakshman Sundar Arumugam's picture
Lakshman Sundar Arumugam

Doctoral Candidate

Gabriel Marius Burcea Mutcu's picture
Gabriel Marius Burcea Mutcu

Doctoral Candidate

Thais Caroline de Almeida da Silva's picture
Thais Caroline de Almeida da Silva

Doctoral Candidate

Lorenzo Forzanini's picture
Lorenzo Forzanini

Doctoral Candidate

Samiksha Mukesh Jain's picture
Samiksha Mukesh Jain

Doctoral Candidate

Luis Lisintuña's picture
Luis Lisintuña

Doctoral Candidate

Eva Ng's picture
Eva Ng

Doctoral Candidate

Neeraja Puthuparambil's picture
Neeraja Puthuparambil

Doctoral Candidate

Christian Robles's picture
Christian Robles

Doctoral Candidate

Radeya Vasquez's picture
Radeya Vasquez

Doctoral Candidate

María Minguela Sáez's picture
María Minguela Sáez

Undergraduate Student

Raquel Rodríguez's picture
Raquel Rodríguez

Undergraduate Student

Publications

2025

  1. ChemSusChem, 2025,

    Robles, C.; Montañés, L.; Mesa, C.A.; Iglesias, D.; Rabelo, H.; Spadaro, M.Chiara; Arbiol, J.; Schiller, F.; Barja, S.; Julián-López, B.; Gutierrez-Blanco, A.; Sans, V.; Giménez, S.

    Continuous-Flow Synthesis of BiVO4 Nanoparticles: From Laboratory Scale to Practical Systems.

  2. The Journal of Physical Chemistry Letters, 2025, 16, 2785.

    Gutierrez-Blanco, A.; Mejuto, C.

    Understanding Biomass Valorization through Electrocatalysis: Transformation of Glycerol and Furan Derivatives.

    Article page: https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03553

2024

  1. Advanced Optical Materials, 2024, 13 (4), 2402270.

    Paul, S.; Adhikari, S.Das; Pareja-Rivera, C.; Masi, S.; Julián-López, B.; Martínez-Pastor, J.P.; Escuder, B.; Mora-Seró, I.

    Impact of Peptide-Based Supramolecular Gels on the Passivation and Optical Properties of CsPbBr3 Nanocrystals for Photocatalytic Dye Degradation in Water.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/adom.202402270

  2. ChemSusChem, 2024, e202402073, 1-8.

    Reyes-Francis, E.; Julián-López, B.; Echeverría-Arrondo, C.; Rodríguez-Pereira, J.; Esparza, D.; Lopez-Luke, T.; Espino-Valencia, J.; Prochowicz, D.; Mora-Seró, I.; Turren-Cruz, S.H.

    Enhancing Stability of Microwave-Synthesized Cs2SnxTi1-xBr6 Perovskite by Cation Mixing.

    Article page: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402073

  3. Energy & Environmental Materials, 2024, 8 (1), e12810.

    da Silva, T.Caroline A.; Sánchez, R.S.; Alberola-Borràs, J.A.; Vidal, R.; Mora-Seró, I.; Julián-López, B.

    Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/eem2.12810

  4. APL Energy, 2024, 2, 016106.

    Mesa, C.A.; Garcés-Pineda, F.Andrés; García-Tecedor, M.; Yu, J.; Khezri, B.; Plana-Ruiz, S.; López, B.; Iturbe, R.; López, N.; Giménez, S.; Galán-Mascarós, J.R.

    Experimental evidences of the direct influence of external magnetic fields on the mechanism of the electrocatalytic oxygen evolution reaction.

    Article page: https://pubs.aip.org/aip/ape/article/2/1/016106/3262919/Experimental-evidences-of-the-direct-influence-of

  5. Science, 2024, 384 (6702), 1373-1380.

    Ram, R.; Xia, L.; Benzidi, H.; Guha, A.; Golovanova, V.; Manjón, A.Garzón; Rauret, D.Llorens; Berman, P.Sanz; Dimitropoulos, M.; Mundet, B.; Pastor, E.; Celorrio, V.; Mesa, C.A.; Das, A.M.; Pinilla-Sánchez, A.; Giménez, S.; Arbiol, J.; López, N.; de Arquer, P.García

    Water-hydroxide trapping in cobalt tungstate for proton exchange membrane water electrolysis.

    Article page: https://www.science.org/doi/10.1126/science.adk9849

  6. Nature Communications, 2024, 15, 3908.

    Mesa, C.A.; Sachs, M.; Pastor, E.; Gauriot, N.; Merryweather, A.J.; Gomez-Gonzalez, M.A.; Ignatyev, K.; Giménez, S.; Rao, A.; Durrant, J.R.; Pandya, R.

    Correlating activities and defects in (photo) electrocatalysts using in-situ multi-modal microscopic imaging.

    Article page: https://www.nature.com/articles/s41467-024-47870-9

  7. Angewandte Chemie International Edition, 2024, 63, e202407817.

    Gutiérrez-Peña, C.; Gutierrez-Blanco, A.; Gusev, D.G.; Poyatos, M.; Peris, E.

    Lone-Pair-p Bond Strength Unveiled by a Combined Experimental and Computational Study.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/anie.202407817

  8. APL Energy, 2024, 2, 016106 .

    Mesa, C.A.; Garcés-Pineda, F.Andrés; García-Tecedor, M.; Yu, J.; Khezri, B.; Plana-Ruiz, S.; López, B.; Iturbe, R.; López, N.; Giménez, S.; Galán-Mascarós, J.Ramón

    Experimental evidences of the direct influence of external magnetic fields on the mechanism of the electrocatalytic oxygen evolution reaction.

    Article page: https://pubs.aip.org/aip/ape/article/2/1/016106/3262919

  9. Chemistry of Materials, 2024, 36 (3), 1728–1736.

    Reyes-Francis, E.; Echeverría-Arrondo, C.; Esparza, D.; Lopez-Luke, T.; Soto-Montero, T.; Morales-Masis, M.; Turren-Cruz, S.H.; Mora-Seró, I.; Julián-López, B.

    Microwave-Mediated Synthesis of Lead-Free Cesium Titanium Bromide Double Perovskite: A Sustainable Approach.

    Article page: https://pubs.acs.org/doi/10.1021/acs.chemmater.3c03108?ref=pdf

  10. Nature Reviews Chemistry, 2024,

    Pastor, E.; Lian, Z.; Xia, L.; Ecija, D.; Galán-Mascarós, J.Ramón; Barja, S.; Giménez, S.; Arbiol, J.; López, N.; de Arquer, P.Garcia

    Complementary probes for the electrochemical interface.

2023

  1. Energy & Environmental Science, 2023, 16, 1644-1664.

    Ampelli, C.; Giusi, D.; Miceli, M.; Merdzhanova, T.; Smirnov, V.; Chime, U.; Astakhov, O.; Martin, A.Jose; Veenstra, F.Louise Pet; Pineda, F.Andrés Ga; González-Cobos, J.; Garcia-Tecedor, M.; Giménez, S.; Jaegermann, W.; Centi, G.; Pérez-Ramírez, J.; Galán-Mascarós, J.Ramón; Perathoner, S.

    An artificial leaf device built with earth-abundant materials for combined H 2 production and storage as formate with efficiency> 10%.

  2. Surfaces and Interfaces, 2023, 38, 102813.

    Keshavarzi, R.; Mousavian, M.; Omrani, M.K.; Mirkhani, V.; Afzali, N.; Mesa, C.A.; Mohammadpoor-Baltork, I.; Giménez, S.

    Photoelectrochemical water splitting with dual-photoelectrode tandem and parallel configurations: Enhancing light harvesting and carrier collection efficiencies.

    Article page: https://www.sciencedirect.com/science/article/pii/S2468023023001839

  3. ACS Catalysis, 2023, 13, 10457-10467.

    Fernández-Climent, R.; Redondo, J.; Garcia-Tecedor, M.; Spadaro, M.Chiara; Li, J.; Chartrand, D.; Schiller, F.; Pazos, J.; Hurtado, M.F.; O'Shea, Vde la Peñ; Kornienko, N.; Arbiol, J.; Barja, S.; Mesa, C.A.; Giménez, S.

    Highly Durable Nanoporous Cu2−xS Films for Efficient Hydrogen Evolution Electrocatalysis under Mild pH Conditions.

    Article page: https://pubs.acs.org/doi/10.1021/acscatal.3c01673

  4. ACS Applied Materials and Interfaces, 2023, 15, 52436-52447.

    Nomenelli, chiara; Polo, A.; Mesa, C.A.; Pastor, E.; Marra, G.; Grigioni, I.; Dozzi, M.Vitroria; Giménez, S.; Selli, E.

    Improved Photoelectrochemical Performance of WO3/BiVO4 Heterojunction Photoanodes via WO3 Nanostructuring.

    Article page: https://pubs.acs.org/doi/full/10.1021/acsami.3c10869

  5. ACS Energy Letters, 2023, 8 (10), 4488−4495.

    Lee, S.Y.; Serafini, P.; Masi, S.; Gualdrón-Reyes, A.F.; Mesa, C.A.; Rodríguez-Pereira, J.; Giménez, S.; Lee, H.Joong; Mora-Seró, I.

    A Perovskite Photovoltaic Mini-Module- CsPbBr3 Photoelectrochemical Cell Tandem Device for Solar-Driven Degradation of Organic Compounds.

    Article page: https://pubs.acs.org/doi/10.1021/acsenergylett.3c01361?ref=PDF

  6. ACS Catalysis, 2023,

    Fernández-Climent, R.; Redondo, J.; Garcia-Tecedor, M.; Spadaro, M.Chiara; Li, J.; Chartrand, D.; Schiller, F.; Pazos, J.; Hurtado, M.F.; O'Shea, Vde la Peñ; Kornienko, N.; Arbiol, J.; Barja, S.; Mesa, C.A.; Giménez, S.

    Highly Durable Nanoporous Cu2–xS Films for Efficient Hydrogen Evolution Electrocatalysis under Mild pH Conditions.

    Article page: https://pubs.acs.org/doi/10.1021/acscatal.3c01673#

  7. Inorganic Chemistry Frontiers, 2023,

    Romero, N.; Fenoll, D.A.; Gil, L.; Campos, S.; Creus, J.; Martí, G.; Heras-Domingo, J.; Collière, V.; Mesa, C.A.; Giménez, S.; Francàs, L.; Rodríguez-Santiago, L.; Solans-Monfort, X.; Sodupe, M.; Bofill, R.; Phillippot, K.; García-Antón, J.; Sala, X.

    Ru-based nanoparticles supported on carbon nanotubes for electrocatalytic hydrogen evolution: structural and electronic effects.

    Article page: https://pubs.rsc.org/en/content/articlelanding/2023/QI/D3QI00698K

  8. Journal of Sol-Gel Science and Technology, 2023, 06171-1.

    da Silva, T.Caroline A.; Fernández-Saiz, C.; Sánchez, R.S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Julián-López, B.

    A sustainable soft-chemistry route to prepare halide perovskite nanocrystals with tunable emission and high optical performance.

    Article page: https://link.springer.com/article/10.1007/s10971-023-06171-1

… … next › last »