LOW DIMENSIONAL QUANTUM MATERIALS FOR ADVANCED SOLUTIONS IN OPTOELECTRONICS

Summary/Abstract

Q-Solutions proposes a multidisciplinary and multilevel study of low dimensional quantum materials from their fundamental properties, to the final optoelectronic device optimization, considering also the synthesis, the surface functionalization, the systematic characterization, the synergies with other materials, the development of industrial friendly deposition techniques and the life cycle sustainability assessment of the different devices, including cost, social and environmental impact and recyclability facing to the sustainability of the final device and system. The project is focused mostly in halide perovskite nanocrystals due to the relatively easy synthesis, the versatility of this family of materials, making it possible to tune the band gap in near IR, visible and UV, and their very high PLQY. However, other families of quantum dots (QDs) as chalcogenides or IV-VI semiconductor will be also investigated locking for synergies in combination with halide perovskites, Q-Solutions is applied to the fabrication of solar cells (e.g. agrivoltaics), LEDs and photocatalytic systems (e.g. decontamination and solar fuel production.). Final devices and application will be analyzed by life cycle sustainability assessment (LCSA) looking for reducing environmental impacts and production cost.


Principal researchers

IVÁN MORA-SERÓ

Principal researcher

Beatriu Escuder

Principal researcher

Investigation Group

Eva Mª Barea

Involved researcher

Beatriz Julian-Lopez

Involved researcher

Sofia Masi

Involved researcher

Rosario Vidal

Involved researcher

Juan Ignacio Climente

Involved researcher

  • -

Josep Hilari Planelles Fuster

Involved researcher

  • -

Staff

Gabriel Marius Burcea

Iván Perez Franco

Past members

Marina Calcagnotto Mascarello

Fabián Pino

Rafael Sánchez

Jesus Alberto Sanchez

Paul Subir

Alexis Villanueva


Funding entity



2025

  1. Advanced Energy Materials, 2025, 15,

    Bhattacharyya, S.; Vidal, R.; Alhashim, S.H.; Chen, X.; Ajayan, P.M.

    Comparative Assessment & Environmental Impacts ofLixiviants for Hydrometallurgical Lithium-Ion BatteryRecycling.

    Article page: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/aenm.202405348

2024

  1. Advanced Optical Materials, 2024, 13 (4), 2402270.

    Paul, S.; Adhikari, S.Das; Pareja-Rivera, C.; Masi, S.; Julián-López, B.; Martínez-Pastor, J.P.; Escuder, B.; Mora-Seró, I.

    Impact of Peptide-Based Supramolecular Gels on the Passivation and Optical Properties of CsPbBr3 Nanocrystals for Photocatalytic Dye Degradation in Water.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/adom.202402270

  2. ChemSusChem, 2024, e202402073, 1-8.

    Reyes-Francis, E.; Julián-López, B.; Echeverría-Arrondo, C.; Rodríguez-Pereira, J.; Esparza, D.; Lopez-Luke, T.; Espino-Valencia, J.; Prochowicz, D.; Mora-Seró, I.; Turren-Cruz, S.H.

    Enhancing Stability of Microwave-Synthesized Cs2SnxTi1-xBr6 Perovskite by Cation Mixing.

    Article page: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402073

  3. ACS Applied Materials and Interfaces, 2024, 16 (46), 64123−64135.

    Eledath-Changarath, M.; Gualdrón-Reyes, A.F.; Rodríguez-Romero, J.; Mora-Seró, I.; Suárez, I.; Canet-Albiach, R.; Asensio, M.C.; Martínez-Pastor, J.P.; Boichuk, A.; Boichuk, T.; Sánchez-Royo, J.F.; Krečmarová, M.

    Origin of Persisting Photoresponse of One-Year Aged Two-Dimensional Lead Halide Perovskites Stored in Air under Dark Conditions.

    Article page: https://pubs.acs.org/doi/10.1021/acsami.4c11096?ref=PDF

  4. Advanced Energy Materials, 2024, 15 (5), 2403981.

    Vidal, R.; Lamminen, N.; Holappa, V.; Alberola-Borràs, J.A.; Franco, I.P.; Grandhi, K.; Vivo, P.

    Assessing the Environmental Impact of Pnictogen-based Perovskite-Inspired Materials for Indoor Photovoltaics.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403981

  5. Energy & Environmental Materials, 2024, 8 (1), e12810.

    da Silva, T.Caroline A.; Sánchez, R.S.; Alberola-Borràs, J.A.; Vidal, R.; Mora-Seró, I.; Julián-López, B.

    Advancing Scalability and Sustainability of Perovskite Light-Emitting Diodes Through the Microwave Synthesis of Nanocrystals.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/eem2.12810

  6. Advanced Optical Materials, 2024, 13 (31), 2401475.

    Uribe-Vegas, P.; Villanueva-Antolí, A.; Segura, C.; Werlinger, F.; Aliaga, K.R.; Caprile, R.; Trofymchuk, O.S.; Flores, M.E.; Osorio-Román, I.O.; Echeverría-Arrondo, C.; Adhikari, S.Das; Selmi, O.; Mora-Seró, I.; Rodríguez-Pereira, J.; Pradhan, B.; Paulus, M.; Sternemann, C.; Hofkens, J.; Martinez, J.; Masi, S.; Gualdrón-Reyes*, A.F.

    The Role of Alkylammonium Bromides on the Surface Passivation of Stable Alcohol-Dispersed CsPbX3 Nanocrystals and on the Stability Enhancement in Light-Emitting Applications.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/adom.202401475

  7. Nanoscale, 2024, 16, 10262–10272.

    Luangwanta, T.; Turren-Cruz, S.H.; Masi, S.; Adhikari, S.Das; Recalde, I.B.; Zanatta, M.; Iglesias, D.; Rodríguez-Pereira, J.; Gené-Marimon, S.; Martinez-Ferrero, E.; Kaowphong, S.; Palomares, E.; Sans, V.; Gualdrón-Reyes, A.F.; Mora-Seró, I.

    Enabling white color tunability in complex 3Dprinted composites by using lead-free self-trapped exciton 2D perovskite/carbon quantum dot inks.

    Article page: https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr00707g

  8. Chemistry of Materials, 2024, 36 (3), 1728–1736.

    Reyes-Francis, E.; Echeverría-Arrondo, C.; Esparza, D.; Lopez-Luke, T.; Soto-Montero, T.; Morales-Masis, M.; Turren-Cruz, S.H.; Mora-Seró, I.; Julián-López, B.

    Microwave-Mediated Synthesis of Lead-Free Cesium Titanium Bromide Double Perovskite: A Sustainable Approach.

    Article page: https://pubs.acs.org/doi/10.1021/acs.chemmater.3c03108?ref=pdf

  9. Solar RRL, 2024, 8 (5), 2300892 (1-15).

    Salim, K.Mangott Mu; Muscarella, L.A.; Schuringa, I.; Gamboa, R.Alejandro; Torres, J.; Echeverría-Arrondo, C.; Gualdrón-Reyes, A.F.; Rodríguez-Pereira, J.; Rincon, M.E.; Ehrler, B.; Mora-Seró, I.; Masi, S.

    Tuning the Optical and Structural Properties of Halide Perovskite by PbS Quantum Dot Additive Engineering for Enhanced Photovoltaic Performances.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/solr.202300892

2023

  1. Nano Letters, 2023, 23 (15), 7180–7187.

    Alo, A.; Barros, L.W.T.; Nagamine, G.; Lemus, J.C.; Planelles, J.; Movilla, J.L.; Climente, J.I.; Lee, H.June; Bae, W.Ki; Padilha, L.A.

    Beyond Universal Volume Scaling: Tailoring Two-Photon Absorption in Nanomaterials by Heterostructure Design.

    Article page: https://pubs.acs.org/doi/10.1021/acs.nanolett.3c02131

  2. Nanoscale, 2023, 15, 4962-4971.

    Miralles-Comins, S.; Zanatta, M.; Gualdrón-Reyes, A.F.; Rodríguez-Pereira, J.; Mora-Seró, I.; Sans, V.

    Polymeric ionic liquid-based formulations for the fabrication of highly stable perovskite nanocrystal composites for photocatalytic applications.

    Article page: https://pubs.rsc.org/en/content/articlelanding/2023/NR/D2NR07254H

  3. Chemical Science, 2023, 14, 8984-8999.

    Adhikari, S.Das; Gualdrón-Reyes, A.F.; Paul, S.; Torres, J.; Escuder, B.; Mora-Seró, I.; Masi, S.

    Impact of core–shell perovskite nanocrystals for LED applications: successes, challenges, and prospects.

    Article page: https://pubs.rsc.org/en/content/articlelanding/2023/sc/d3sc02955g

  4. ACS Energy Letters, 2023, 8 (10), 4488−4495.

    Lee, S.Y.; Serafini, P.; Masi, S.; Gualdrón-Reyes, A.F.; Mesa, C.A.; Rodríguez-Pereira, J.; Giménez, S.; Lee, H.Joong; Mora-Seró, I.

    A Perovskite Photovoltaic Mini-Module- CsPbBr3 Photoelectrochemical Cell Tandem Device for Solar-Driven Degradation of Organic Compounds.

    Article page: https://pubs.acs.org/doi/10.1021/acsenergylett.3c01361?ref=PDF

  5. Journal of Sol-Gel Science and Technology, 2023, 06171-1.

    da Silva, T.Caroline A.; Fernández-Saiz, C.; Sánchez, R.S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Julián-López, B.

    A sustainable soft-chemistry route to prepare halide perovskite nanocrystals with tunable emission and high optical performance.

    Article page: https://link.springer.com/article/10.1007/s10971-023-06171-1

  6. Chemistry of Materials, 2023, 35 (10), 3998–4006.

    Serafini, P.; Villanueva-Antolí, A.; Adhikari, S.Das; Masi, S.; Sánchez, R.S.; Rodríguez-Pereira, J.; Pradhan, B.; Hofkens, J.; Gualdrón-Reyes, A.F.; Mora-Seró, I.

    Increasing the Performance and Stability of Red-Light-Emitting Diodes Using Guanidinium Mixed-Cation Perovskite Nanocrystals.

    Article page: https://pubs.acs.org/doi/full/10.1021/acs.chemmater.3c00269

  7. Advanced Optical Materials, 2023, 11 (12), 2203096 (1-11).

    Gualdrón-Reyes, A.F.; Fernández-Climent, R.; Masi, S.; Mesa, C.A.; Echeverría-Arrondo, C.; Aiello, F.; Balzano, F.; Uccello-Barretta, G.; Rodríguez-Pereira, J.; Giménez, S.; Mora-Seró, I.

    Efficient Ligand Passivation Enables Ultrastable CsPbX3 Perovskite Nanocrystals in Fully Alcohol Environments.

    Article page: https://onlinelibrary.wiley.com/doi/10.1002/adom.202203096?af=R

  8. Advanced Materials, 2023, 35 (11), 2207993 (1-14).

    Sánchez, R.S.; Villanueva-Antolí, A.; Bou, A.; Ruiz-Murillo, M.; Mora-Seró, I.; Bisquert, J.

    Radiative recombination processes in halide perovskites observed by light emission voltage modulated spectroscopy.

    Article page: https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202207993