Semiconductor materials are in the basis of the technological development without precedents experienced by mankind from the second half of the 20th century. The development of these materials has allowed the production of multiple devices optoelectronic devices, transistors, LED., laser, solar cells..., that has changed dramatically our interaction with the world. In the last years, new and advanced technological developments have permitted to prepare and manipulate, under controlled conditions, materials in the nanoscale, where new and fascinating properties, arising from the quantum confinement, are observed, and also hybrid materials exhibiting both properties from organic and from inorganic worlds. Hybrid organic-inorganic perovskite semiconductors or semiconductor Quantum Dots (quantum confinement in 3D), or Quantum Rods or Wires (quantum confinement in 2D), offer a tremendous potential for the development of a new generation of optoelectronic devices with enhanced properties. In addition the tailoring possibilities of new functionalities and applications are multiplied when different material families are combined and new synergistic interactions are created. Our Research Division, focus its research in the development of advanced hybrid and nanostructured materials, as halide perovskites and colloidal quantum dots, in order to take advantage of their properties on optoelectronic devices, especially focusing on: the synthesis of the materials, the preparation of photovoltaic devices and LEDs but also for light amplifiers and lasers, the study of new semiconductor materials or nanostructured configurations, the systematic structural, electrical and optical characterization of the materials devices, the final modeling of the device working principles identifying the different physical processes responsible of the final performance, unveiling the limiting processes in order to focus the optimization effort.

Short Biography of Ass. Prof. Mora-Seró

Iván Mora Seró (1974, M. Sc. Physics 1997, Ph. D. Physics 2004) is researcher at Universitat Jaume I de Castelló (Spain). His research during the Ph.D. at Universitat de València (Spain) was centered in the crystal growth of semiconductors II-VI with narrow gap, setting up the first laboratory in Spain dedicated to the research with the epitaxial growth technique MOCVD (MetalOrganic Chemical Vapour Deposition). On February 2002 he joined the University Jaume I (UJI). At 2006 he started his own research line on quantum dot sensitized solar cells. Currently he is leading the Research Division F4 at Institute of Advanced Materials (INAM) of UJI. He have been granted with a 'Juan de la Cierva' and 'Ramon y Cajal' Fellowship both from the Spanish government and 'Idea Award' (2011) in the category of physico-chemical sciences, awarded by the Foundation of the city of Arts and Sciences and the Valencia government. He had been granted with a fellowship at Weizmann Institute, Israel (2016).

His research has been focused on crystal growth, nanostructured devices, transport and recombination properties, photocatalysis, electrical characterization of photovoltaic, electrochromic, and water splitting systems, making both experimental and theoretical work. Recent research activity is focused on new concepts for photovoltaic conversion and light emission (LEDs and light amplifiers) based on nanoscaled devices and semiconductor materials following two mean lines: semiconductor quantum dots and lead halide perovskites, been this last line probably the current hottest topic in the development of new optoelectronic devices. He has publish more than 150 papers. He is included in the 2016 and 2017 list of Highly Cited Researchers of the Web of Science, list that just includes the 3000 highly cited researchers, in last 11 years, around the whole world in all the Science categories. He is currently granted with an ERC-Consolidator project 'No-Limit' on the interaction of perovskites and quantum dots..

Publications

2021

  1. Solar RRL, 2021, 2100401, 1-48.
    Ling, J.K.; Kizhakkedath, P.Kumar Koya; Watson, T.M.; Mora-Seró, I.; Schmidt-Mende, L.; Brown, T.M.; Jose, R.
    A Perspective on the Commercial Viability of Perovskite Solar Cells.
  2. The Journal of Physical Chemistry C, 2021, 125, 28, 15614–15622.
    Macias-Pinilla, D.F.; Planelles, J.; Mora-Seró, I.; Climente, J.I.
    Comparison between Trion and Exciton Electronic Properties in CdSe and PbS Nanoplatelets.
  3. Catalysts, 2021, 11, 957, 1-13.
    Lee, C.H.; Lee, S.Jeong; Shin, Y.J.; Woo, Y.; Han, S.H.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Yoon, S.Joon
    Synthetic and Post-Synthetic Strategies to Improve Photoluminescence Quantum Yields in Perovskite Quantum Dots.
  4. Advanced Optical Materials, 2021, 202101024, 1-9.
    Adhikari, S.Das; Masi, S.; Echeverría-Arrondo, C.; Miralles-Comins, S.; Sánchez, R.S.; Fernandes, J.Alves; Chirvony, V.S.; Martínez-Pastor, J.P.; Sans, V.; Mora-Seró, I.
    Continuous-Flow Synthesis of Orange Emitting Sn(II)-Doped CsBr Materials.
  5. ACS Applied Nano Materials, 2021, 4, 6170−6177.
    Chirvony, V.S.; Suárez, I.; Rodríguez-Romero, J.; Vázquez-Cárdenas, R.; Sanchez-Diaz, J.; Molina-Sánchez, A.; Barea, E.M.; Mora-Seró, I.; Martínez-Pastor, J.P.
    Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium)2PbI4 Perovskite Thin Films: Implications for Optoelectronics.
  6. Advanced Optical Materials, 2021, 2100807, 1-11.
    Navarro-Arenas, J.; Suárez, I.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Bisquert, J.; Martínez-Pastor, J.P.
    Recycled Photons Traveling Several Millimeters in Waveguides Based on CsPbBr3 Perovskite Nanocrystals.
  7. ACS Nano, 2021, 15, 7, 10775–10981.
    Hoye, R.L.Z.; Polavarapu, L.; Dey, A.; Ye, J.; Debroye, E.; Ha, S.Kyun; Yin, J.; Yan, F.; Shamsi, J.; Scheel, M.A.; Steele, J.A.; Han, C.; Korgel, B.A.; Mora-Seró, I.; Pérez-Prieto, J.; Bakr, O.M.; Müller-Buschbaum, P.; Stranks, S.D.
    State of the Art and Prospects for Halide Perovskite Nanocrystals.
  8. Trends in Chemistry, 2021, 3, 499-511.
    Gualdrón-Reyes, A.F.; Masi, S.; Mora-Seró, I.
    Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield.
  9. Advanced Energy & Sustainability Research, 2021, 2000088, 1-17.
    Vidal, R.; Alberola-Borràs, J.A.; Sánchez-Pantoja, N.; Mora-Seró, I.
    Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment.
  10. Applied Surface Science, 2021, 551, 149387.
    MinYoo, S.; YiLee, S.; Kim, G.; Song, M.K.; Mora-Seró, I.; Yoon, S.Joon; Shin, T.; Lee, S.H.; f, S.Ahn; Song, M.K.; Kim, M.; Lee, H.Joong
    Preparation of nanoscale inorganic CsPbIxBr3-x perovskite photosensitizers on the surface of mesoporous TiO2 film for solid-state sensitized solar cells.
  11. Physical Chemistry Chemical Physics, 2021, 23, 4646-4657.
    Faizan, M.; Xie, J.; Murtaza, G.; Echeverría-Arrondo, C.; Alshahrani, T.; Bhamu, K.Chandra; Laref, A.; Mora-Seró, I.; Khan, S.Haidar
    A first-principles study of the stability, electronic structure, and optical properties of halide double perovskite Rb2Sn1xTexI6 for solar cell applications.
  12. Advanced Optical Materials, 2021, 2001786.
    Vallés-Pelarda, M.; Gualdrón-Reyes, A.F.; Felip-León, C.; Angulo-Pachón, C.A.; Agouram, S.; Muñoz-Sanjosé, V.; Miravet, J.F.; Galindo, F.; Mora-Seró, I.
    High Optical Performance of Cyan-Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels.
  13. ACS Energy Letters, 2021, 6, 710–712.
    Yu, Y.; Mora-Seró, I.; Hicks, J.C.
    Advances in Storage Batteries, Layered Hybrid Perovskites and Organic Photovoltaics, and Plasma Activated Ammonia Synthesis.
  14. Journal of Materials Chemistry C, 2021, 9, 1555-1566.
    Gualdrón-Reyes, A.F.; Macias-Pinilla, D.F.; Masi, S.; Echeverría-Arrondo, C.; Agouram, S.; Muñoz-Sanjosé, V.; Rodríguez-Pereira, J.; Macak, J.M.; Mora-Seró, I.
    Engineering Sr-doping for enabling long-term stable FAPb1xSrxI3 quantum dots with 100% photoluminescence quantum yield.
  15. Nature Energy, 2021,
    Hernandez, E.Velilla; Jaramillo, F.; Mora-Seró, I.
    High-Throughput analysis of ideality factor to evaluate outdoor performance of perovskite solar mini modules.
  16. Chemistry of Materials, 2021, 33, 1, 420–429.
    Macias-Pinilla, D.F.; Echeverría-Arrondo, C.; Gualdrón-Reyes, A.F.; Agouram, S.; Muñoz-Sanjosé, V.; Planelles, J.; Mora-Seró, I.; Climente, J.I.
    Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material.

2020

  1. Nature Sustainability, 2020,
    Vidal, R.; Alberola-Borràs, J.A.; Habisreutinger, S.N.; Gimeno-Molina, J.L.; Moore, D.T.; Schloemer, T.H.; Mora-Seró, I.; Berry, J.J.; Luther, J.M.
    Assessing health and environmental impacts of solvents for producing perovskite solar cells.
  2. Advanced Optical Materials, 2020, 2001508, 1-6.
    Rad, R.Rafiei; Gualdrón-Reyes, A.F.; Masi, S.; Ganji, B.Azizollah; Taghavinia, N.; Gené-Marimon, S.; Palomares, E.; Mora-Seró, I.
    Tunable Carbon–CsPbI3 Quantum Dots for White LEDs.
  3. ACS Photonics, 2020, 7, 11, 3152–3160.
    Adl, H.Pashaei; Gorji, S.; Habil, M.Karimi; Suárez, I.; Chirvony, V.S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Valencia, L.M.; de la Mata, M.; Hernández-Saz, J.; Molina, S.I.; Zapata-Rodríguez, C.J.; Martínez-Pastor, J.P.
    Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3 Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials.
  4. Advanced Energy Materials, 2020, 2002422, 2-9.
    Sánchez-Godoy, H.Emmanuel; Erazo, E.Ansisar; Gualdrón-Reyes, A.F.; Khan, A.Hossain; Agouram, S.; Barea, E.M.; Rodriguez, R.Arturo; Zarazua, I.; Ortiz, P.; Cortés, M.Teresa; Muñoz-Sanjosé, V.; Moreels, I.; Masi, S.; Mora-Seró, I.
    Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for Stable, Reproducible, and Efficient Solar Cells.
  5. Frontiers in Materials, 2020, 7, 273.
    Vallés-Pelarda, M.; Sánchez, R.S.; Barea, E.M.; Mora-Seró, I.; Julián-López, B.
    Up-Converting Lanthanide-Doped YAG Nanospheres.
  6. Nanomaterials, 2020, 10 (8), 1586.
    Erazo, E.Ansisar; Sánchez-Godoy, H.E.; Gualdrón-Reyes, A.F.; Masi, S.; Mora-Seró, I.
    Photo-Induced Black Phase Stabilization of CsPbI3 QDs Films.
  7. ACS Applied Electronic Materials, 2020, 2, 8, 2525–2534.
    Salim, K.M.Muhamme; Hassanabadi, E.; Masi, S.; Gualdrón-Reyes, A.F.; Franckevicius, M.; Devižis, A.; Gulbinas, V.; Fakharuddin, A.; Mora-Seró, I.
    Optimizing Performance and Operational Stability of CsPbI3 Quantum-Dot-Based Light-Emitting Diodes by Interface Engineering.
  8. Advanced Energy Materials, 2020, 2001774.
    Mora-Seró, I.
    Current Challenges in the Development of Quantum Dot Sensitized Solar Cells.
  9. Resources Policy, 2020, 68, 101792.
    Vidal, R.; Alberola-Borràs, J.A.; Mora-Seró, I.
    Abiotic depletion and the potential risk to the supply of cesium.
  10. Nanoscale, 2020, x, x.
    Hassanabadi, E.; Latifi, M.; Gualdrón-Reyes, A.F.; Masi, S.; Yoon, S.Joon; Poyatos, M.; Julián-López, B.; Mora-Seró, I.
    Ligand & band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbI3 quantum dots.
  11. ACS Energy Letters, 2020, 5, 1974-1985.
    Masi, S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.
    Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3.
  12. ACS Energy Letters, 2020, 5, 1013-1021.
    Rodríguez-Romero, J.; Sanchez-Diaz, J.; Echeverría-Arrondo, C.; Masi, S.; Esparza, D.; Barea, E.M.; Mora-Seró, I.
    Widening the 2D/3D Perovskite Family for Efficient and Thermal-Resistant Solar Cells by the Use of Secondary Ammonium Cations.
  13. Nature Energy, 2020,
    Mora-Seró, I.
    Turn defects into strengths.
  14. Nanomaterials, 2020, 10, 872.
    Marand, Z.Rezay; Kermanpur, A.; Karimzadeh, F.; Barea, E.M.; Hassanabadi, E.; Anaraki, E.Halvani; Julián-López, B.; Masi, S.; Mora-Seró, I.
    Structural and Electrical Investigation of Cobalt-Doped NiOx/Perovskite Interface for Efficient Inverted Solar Cells.
  15. ACS Energy Letters, 2020, 5, 1662-1664.
    Lu, J.; Ma, D.; Mora-Seró, I.
    Energy Spotlight.
  16. ChemSusChem, 2020, 13, 1-7.
    Yoo, S.M.; Lee, S.Y.; Hernandez, E.Velilla; Kim, M.; Kim, G.; Shin, T.; Nazeeruddin, M.K.; Mora-Seró, I.; Lee, H.Joong
    Nanoscale Perovskite-Sensitized Solar Cell Revisited: Dye-Cell or Perovskite-Cell?.
  17. Physica Status Solidi (a), 2020, 217, 2000065.
    Moreels, I.; Brovelli, S.; Ribierre, J.C.; Mora-Seró, I.
    Semiconductor Nanostructures for Electronic and Opto-Electronic Device Applications.
  18. Solar RRL, 2020, 4, 1900563 .
    Mora-Seró, I.; Saliba, M.; Zhou, Y.
    Towards the Next Decade for Perovskite Solar Cells.
  19. APL Materials, 2020, 8, 021109.
    Suárez, I.; Wood, T.; Pastor, J.P.Martine; Balestri, D.; Checcucci, S.; David, T.; Favre, L.; Claude, J.B.; Grosso, D.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Abbarchi, M.; Gurioli, M.
    Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas.
  20. Journal of Luminescence , 2020, 221, 117092.
    Chirvony, V.S.; Sekerbayev, K.S.; Adl, H.Pashaei; Suárez, I.; Taurbayev, Y.T.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Martínez-Pastor, J.P.
    Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films .
  21. ACS Energy Letters, 2020, 5, 418-427.
    Masi, S.; Echeverría-Arrondo, C.; Salim, K.M.Muhamme; Ngo, T.Tuyen; Mendez, P.F.; Lopez-Fraguas, E.; Macias-Pinilla, D.F.; Planelles, J.; Climente, J.I.; Mora-Seró, I.
    Chemi-Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded Quantum Dots.
  22. ACS Applied Materials and Interfaces, 2020, 12, 914−924.
    Gualdrón-Reyes, A.F.; Rodríguez-Pereira, J.; Amado-Gonzalez, E.; Rueda-P, J.; Ospina, R.; Masi, S.; Yoon, S.Joon; Tirado, J.; Jaramillo, F.; Agouram, S.; Muñoz-Sanjose, V.; Giménez, S.; Mora-Seró, I.
    Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States.

2019

  1. Nanoscale, 2019, 11, 22378.
    Chulia-Jordan, R.; Fernández-Delgado, N.; Juárez-Pérez, E.J.; Mora-Seró, I.; Herrera, M.; Molina, S.I.; Martínez-Pastor, J.P.
    Inhibition of light emission from the metastable tetragonal phase at low temperatures in island-like films of lead iodide perovskites.
  2. Solar Energy, 2019, 189, 94-102.
    Soto-Navarro, A.; Alfaro, A.; Soto-Tellini, V.Hugo; Moehl, T.; Barea, E.M.; Fabregat-Santiago, F.; Pineda, L.W.
    Co-adsorbing effect of bile acids containing bulky amide groups at 3β-position on the photovoltaic performance in dye-sensitized solar cells.
  3. ACS Applied Energy Materials, 2019, 2, 12, 8381-8387.
    Lopez-Fraguas, E.; Masi, S.; Mora-Seró, I.
    Optical Characterization of Lead-Free Cs2SnI6 Double Perovskite Fabricated from Degraded and Reconstructed CsSnI3 Films.
  4. The Journal of Physical Chemistry Letters, 2019, 10, 6389-6398.
    Navarro-Arenas, J.; Suárez, I.; Chirvony, V.S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Martínez-Pastor, J.P.
    Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX3 (X = Br, I) Perovskite Nanocrystals.
  5. Nanoscale Advances, 2019, 1, 4109-4118.
    Ngo, T.Tuyen; Masi, S.; Méndez, P.Fabiola; Kazes, M.; Oron, D.; Mora-Seró, I.
    PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping.
  6. Solar RRL, 2019, 3, 1900325.
    Zhou, Y.; Saliba, M.; Mora-Seró, I.
    Welcoming the First Decade of Perovskite Solar Cells.
  7. Joule, 2019, 3, 10, 2535-2549.
    Yoo, S.M.; Yoon, S.Joon; Anta, J.A.; Lee, H.Joong; Boix, P.P.; Mora-Seró, I.
    An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures.
  8. ACS Energy Letters, 2019, 4, 1954−1960.
    Suri, M.; Hazarika, A.; Larson, B.W.; Zhao, Q.; Vallés-Pelarda, M.; Siegler, T.D.; Abney, M.K.; Ferguson, A.J.; Korgel, B.A.; Luther, J.M.
    Enhanced Open-Circuit Voltage of WideBandgap Perovskite Photovoltaics by Using Alloyed (FA1−xCsx)Pb(I1−xBrx)3 Quantum Dots.
  9. Solar RRL, 2019, 1900191, 1-6.
    Méndez, P.Fabiola; Muhammed, S.K.M.; Barea, E.M.; Masi, S.; Mora-Seró, I.
    Analysis of the UV–Ozone-Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis.
  10. Nanomaterials, 2019, 9, 868.
    Navarro-Arenas, J.; Suárez, I.; Martínez-Pastor, J.P.; Ferrando, A.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Gao, S.F.; Wang, Y.Y.; Wang, P.; Sun, Z.
    Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals.
  11. Materials Today, 2019, 31, 39-46.
    Sanchez, S.; Vallés-Pelarda, M.; Alberola-Borràs, J.A.; Vidal, R.; Jerónimo-Rendón, J.J.; Saliba, M.; Boix, P.P.; Mora-Seró, I.
    Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells.
  12. Journal of Materials Chemistry A, 2019, 7, 12191-12200.
    Contreras-Bernal, L.; Ramos-Terrón, S.; Riquelme, A.; Boix, P.P.; Idígoras, J.; Mora-Seró, I.; Anta, J.A.
    Impedance analysis of perovskite solar cells: a case study.