Fundamental mechanisms of perovskite photovoltaics and solar fuel devices.

The main work on the team is the investigation of fundamental mechanisms governing the operation of light to energy conversion in semiconductor materials and devices. The research program is about in perovskite solar cells, nanostructured solar cells (including dye-sensitized solar cells, organic solar cells, quantum-dot sensitized solar cells), and water splitting with visible light and semiconductors (solar fuel generation). We combine experimental investigation and theoretical and numerical tools to develop insights in the electronic processes in hybrid organic-inorganic solar cells, combining novel theory of semiconductor nanostructures, photoelectrochemistry, and systematic experimental demonstration. We apply a broad range of concepts and characterization methods to analyze the operation of photovoltaic and optoelectronic devices in general, in a highly interdisciplinary strategy. One important tool of analysis is the application of impedance spectroscopy and related frequency domain methods that enable us to separate different operation processes in working devices.

Short Biography of Prof. Bisquert

Juan Bisquert (M.Sc. degree in physics in 1985 and the Ph.D. degree in 1992, both from the Universitat de València, Spain) worked in the Universidad de Castilla-La Mancha, Albacete, from 1987 to 1992, and is a professor of applied physics at Universitat Jaume I de Castelló (2004). At UJI he is the director of the Institute of Advanced Materials, that develops research activity on materials, nanostructures and devices for production and efficient use of clean energies. He published 320 papers in research journals, and a reference book, Nanostructured Energy Devices. He has 14000 citations and h-index 71. He is a Senior Editor of the Journal of Physical Chemistry Letters and member of the editorial board of Energy and Environmental Science, ChemElectroChem and the South Korean Journal of Electrochemical Science and Technology. He has been distinguished in the 2014 and 2015 list of ISI Highly Cited Researchers. He cooperates with research project management with King Abdulaziz University and King Saud University of Saudi Arabia. He conducts experimental and theoretical research on materials and devices for production and storage of clean energies. His main topics of interest are materials and processes in perovskite solar cells and solar fuel production. He has developed the application of measurement techniques and physical modeling of nanostructured energy devices, that relate the device operation with the elementary steps that take place at the nanoscale dimension: charge transfer, carrier transport, chemical reaction, etc., especially in the field of impedance spectroscopy, as well as general device models.



  1. Physical Review E, 2024, 109, 044803.
    Ramirez, P.; Portillo, S.; Cervera, J.; Bisquert, J.; Mafe, S.
    Memristive arrangements of nanofluidic pores.
  2. Physical Chemistry Chemical Physics, 2024,
    Bisquert, J.; Roldan, J.B.; Miranda, E.
    Hysteresis in memristors produces conduction inductance and conduction capacitance effects.
  3. Nanoscale Horizons, 2024,
    Jain, M.; Patel, M.Jagdishbha; Liu, L.; Gosai, J.; Khemnani, M.; Gogoi, H.Jyoti; Chee, M.Yin; Guerrero, A.; Lew, W.Siang; Solanki, A.
    Insights into synaptic functionality and resistive switching in lead iodide flexible memristor devices.
  4. ACS Energy Letters, 2024, 9, 478−486.
    Hernández-Balaguera, E.; Bisquert, J.
    Accelerating the Assessment of Hysteresis in Perovskite Solar Cells.
  5. PRX Energy, 2024, 3, 011001.
    Bisquert, J.
    Inductive and capacitive hysteresis of current-voltage curves: unified structural dynamics in solar energy devices, memristors, ionic transistors, and bioelectronics.


  1. Chemical Engineering Journal, 2023, 145707.
    Cao, S.; Gutsev, L.G.; Bi, Z.; Zheng, Y.; Xu, X.; Zhu, Y.; Zhong, L.; Zheng, J.; Xu, G.; Troshin, P.A.; Liu, S.; Wang, K.; Gonzales, C.; Guerrero, A.; Ren, Z.; Li, G.
    Synergistic effect of multifunctional MXene-nanosheet and naphthoquinone sulfonate toward high-performance perovskite solar cells and modules.
  2. The Journal of Physical Chemistry Letters, 2023, 14, 11610–11617.
    Yudco, S.; Bisquert, J.; Etgar, L.
    Enhanced LED Performance by Ion Migration in Multiple Quantum Well Perovskite.
  3. Chemical Physics Reviews, 2023, 4, 031313.
    Bisquert, J.
    Device physics recipe to make spiking neurons.
    Article page:
  4. The Journal of Physical Chemistry Letters, 2023, 14, 10951–10958.
    Bisquert, J.
    Hysteresis in Organic Electrochemical Transistors: Distinction of Capacitive and Inductive Effects.
  5. The Journal of Physical Chemistry Letters, 2023, 14, 10930–10934.
    Ramirez, P.; Gómez, V.; Cervera, J.; Mafe, S.; Bisquert, J.
    Synaptical Tunability of Multipore Nanofluidic Memristors.
  6. Advanced Functional Materials, 2023, 2308678.
    Bisquert, J.; Hernández-Balaguera, E.
    Time Transients with Inductive Loop Traces in Metal Halide Perovskites.
  7. Journal of Materials Chemistry C, 2023, 127, 21338−21350.
    Bisquert, J.; Gonzales, C.; Guerrero, A.
    Transient On/Off Photocurrent Response of Halide Perovskite Photodetectors.
  8. Physical Review Applied, 2023, 20, 044022.
    Bisquert, J.
    Current-controlled memristors: Resistive switching systems with negative capacitance and inverted hysteresis.
  9. The Journal of Physical Chemistry Letters, 2023, 14, 9027–9033.
    Bisquert, J.
    Iontronic Nanopore Model for Artificial Neurons: The Requisites of Spiking.
  10. Advanced Functional Materials, 2023, 2305211.
    Pérez-Martínez, J.Carlos; Berruet, M.; Gonzales, C.; Salehpour, S.; Bahari, S.; Arredondo, B.; Guerrero, A.
    Role of Metal Contacts on Halide Perovskite Memristors.
  11. ChemBioChem, 2023, 24, 1, 1-6.
    Giraldo-Narciso, S.; Guenani, N.I.; Sánchez-Pérez, A.María; Guerrero, A.
    Accelerated Polyethylene Terephthalate (PET) Enzymatic Degradation by Room Temperature Alkali Pre-treatment for Reduced Polymer Crystallinity.
  12. IEEE Electron Device Letters, 2023,
    Pérez-Martínez, J.Carlos; Martín-Martín, D.; Del Pozo, G.; Arredondo, B.; Guerrero, A.; Romero, B.
    Impact of Scan Rate and Mobile Ion Concentration on the Anomalous J-V Curves of Metal Halide Perovskite-based Memristors.
  13. The Journal of Physical Chemistry Letters, 2023, 14, 6, 1395-1402.
    Gonzales, C.; Guerrero, A.
    Mechanistic and Kinetic Analysis of Perovskite Memristors with Buffer Layers: The Case of a Two-Step Set Process.
  14. APL Machine Learning , 2023, 1, 036101.
    Bisquert, J.; Bou, A.; Guerrero, A.; Hernández-Balaguera, E.
    Resistance transient dynamics in switchable perovskite memristors.
  15. Neuromorphic Computing and Engineering, 2023, 3, 024005.
    Hernández-Balaguera, E.; Munoz-Diaz, L.; Bou, A.; Romero, B.; Ilyassov, B.; Guerrero, A.; Bisquert, J.
    Long-term potentiation mechanism of biological postsynaptic activity in neuro-inspired halide perovskite memristors.
  16. Synthetic Metals, 2023, 295, 117347.
    Rozhkova, X.; Aimukhanov, A.; Guerrero, A.; Bisquert, J.; Alexeev, A.; Zeinidenov, A.; Paygin, V.; Valiev, D.; Ilyassov, B.
    Nanocomposition of PEDOT:PSS with metal phthalocyanines as promising hole transport layers for organic photovoltaics.
  17. The Journal of Physical Chemistry Letters, 2023, 14, 1014–1021.
    Bisquert, J.
    Electrical Charge Coupling Dominates the Hysteresis Effect of Halide Perovskite Devices.
  18. Journal of Catalysis, 2023, 418, 51-63.
    Shaddad, M.N.; Arunachalam, P.; Hezam, M.; BinSaeedan, N.M.; Giménez, S.; Bisquert, J.; Al-Mayouf, A.M.
    Facile Fabrication of heterostructured BiPS4-Bi2S3-BiVO4 photoanode for enhanced stability and photoelectrochemical water splitting performance.
  19. Solar Energy Materials & Solar Cells, 2023, 251, 112115.
    Tsarev, S.; Dubinina, T.; Olthof, S.; Guerrero, A.; Luchkin, S.Yu; Bisquert, J.; Troshin, P.
    Stabilizing perovskite solar cells with modified indium oxide electron transport layer.
  20. Advanced Materials, 2023, 35, 2207993.
    Sánchez, R.S.; Villanueva-Antolí, A.; Bou, A.; Ruiz-Murillo, M.; Mora-Seró, I.; Bisquert, J.
    Radiative recombination processes in halide perovskites observed by light emission voltage modulated spectroscopy.


  1. Chemical Engineering Journal, 2022, 446, P3, 137164.
    Bi, Z.; Xu, X.; Chen, X.; Zhu, Y.; Liu, C.; Yu, H.; Zheng, Y.; Troshin, P.A.; Guerrero, A.; Xu, G.
    High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications.
  2. ACS Energy Letters, 2022, 7, 3, 1214-1222.
    Berruet, M.; Pérez-Martínez, J.Carlos; Romero, B.; Gonzales, C.; Al-Mayouf, A.M.; Guerrero, A.; Bisquert, J.
    Physical Model for the Current–Voltage Hysteresis and Impedance of Halide Perovskite Memristors.
  3. The Journal of Physical Chemistry Letters, 2022, 13, 7320–7335.
    Bisquert, J.
    Interpretation of the Recombination Lifetime in Halide Perovskite Devices by Correlated Techniques.
  4. Solar RRL, 2022, 6, 2200737.
    Zheng, Y.; Xu, X.; Liu, S.; Bi, Z.; Zhu, Y.; Guerrero, A.; Xing, G.
    Blade‐Coating High‐Quality Formamidinium‐Cesium Lead Halide Perovskites with Green Solvent for Efficient and Stable Solar Cells.
  5. The Journal of Physical Chemistry C, 2022, 126, 13560.
    Gonzales, C.; Guerrero, A.; Bisquert, J.
    Transition from capacitive to inductive hysteresis: A neuron-style model to correlate I-V curves to impedances of metal halide perovskites.
  6. ACS Energy Letters, 2022, 7, 3401–3414.
    Sakhatskyi, K.; Guerrero, A.; Bisquert, J.; Kovalenko, M.V.
    Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites.
  7. Chemical Physics Reviews, 2022, 3, 041305.
    Bisquert, J.
    Negative inductor effects in nonlinear two-dimensional systems: Oscillatory neurons and memristors.
  8. ACS Energy Letters, 2022, 7, 2602–2610.
    Hernández-Balaguera, E.; Bisquert, J.
    Negative Transient Spikes in Halide Perovskites.
  9. Frontiers in Energy, 2022, 10, 914115.
    Munoz-Diaz, L.; Rosa, A.J.; Bou, A.; Sánchez, R.S.; Romero, B.; John, R.Abraham; Kovalenko, M.V.; Guerrero, A.; Bisquert, J.
    Inductive and Capacitive Hysteresis of Halide Perovskite Solar Cells and Memristors Under Illumination.
  10. Materials Letters, 2022, 325, 132799.
    Shaddad, M.N.; Hezam, M.; Arunachalam, P.; AL-Saeedan, N.M.; Giménez, S.; Bisquert, J.; Al-Mayouf, A.M.
    Improved Solar Water Splitting Performance of BiVO4 Photoanode by the Synergistic Effect of Zr-Mo co-doping and FeOOH Co-catalyst layer.
  11. Solar RRL, 2022, 6, 2200173.
    García-Batlle, M.; Zia, W.; Aranda, C.; Saliba, M.; Almora, O.; Guerrero, A.; Garcia-Belmonte, G.
    Observation of Long-Term Stable Response in MAPbBr3 Single Crystals Monitored through Displacement Currents under Varying Illumination.
  12. APL Materials, 2022, 10, 051104.
    Bou, A.; Pockett, A.; Cruanyes, H.; Raptis, D.; Watson, T.M.; Carnie, M.J.; Bisquert, J.
    Limited information of impedance spectroscopy about electronic diffusion transport: The case of perovskite solar cells.
  13. The Journal of Physical Chemistry Letters, 2022, 13, 3130–3137.
    Sahamir, S.Razey; Ripolles, T.S.; Segawa, H.; Shen, Q.; Bisquert, J.; Hayase, S.
    Enhancing the Electronic Properties and Stability of High-Efficiency Tin–Lead Mixed Halide Perovskite Solar Cells via Doping Engineering.
  14. The Journal of Physical Chemistry Letters, 2022, 13, 17, 3789–3795.
    Bisquert, J.; Guerrero, A.
    Dynamic Instability and Time Domain Response of a Model Halide Perovskite Memristor for Artificial Neurons.
  15. Physica Status Solidi (a), 2022, 219, 2200064.
    Bisquert, J.
    The Impedance of Spiking Neurons Coupled by Time-Delayed Interaction.
  16. International Journal of Energy Research, 2022, 46, 9150-9165.
    BinSaeedan, N.M.; Arunachalam, P.; Al-Mayouf, A.M.; Shaddad, M.N.; Amer, M.S.; Beagan, A.M.; Fabregat-Santiago, F.; Bisquert, J.
    Enhanced electrochemical hydrogen peroxide production from surface state modified mesoporous tin oxide catalysts.
  17. Chemical Science, 2022, 13, 4828.
    Ravishankar, S.; Bisquert, J.; Kirchartz, T.
    Interpretation of Mott–Schottky plots of photoanodes for water splitting.
  18. Journal of American Chemical Society, 2022, 144 (13), 5996–6009.
    Bisquert, J.; Guerrero, A.
    Chemical Inductor.
  19. Applied Physics Reviews, 2022, 9, 011318.
    Bisquert, J.
    Hopf bifurcations in electrochemical, neuronal, and semiconductor systems analysis by impedance spectroscopy.
  20. ACS Energy Letters, 2022, 7, 1214–1222.
    Berruet, M.; Pérez-Martínez, J.Carlos; Romero, B.; Gonzales, C.; Al-Mayouf, A.M.; Guerrero, A.; Bisquert, J.
    Physical Model for the Current–Voltage Hysteresis and Impedance of Halide Perovskite Memristors.
  21. ACS Energy Letters, 2022, 7, 946−951.
    García-Batlle, M.; Guillén, J.Mayén; Chapran, M.; Baussens, O.; Zaccaro, J.; Verilhac, J.M.; Gros-Daillon, E.; Guerrero, A.; Almora, O.; Garcia-Belmonte, G.
    Coupling between Ion Drift and Kinetics of Electronic Current Transients in MAPbBr3 Single Crystals.


  1. Chemical Reviews, 2021, 121, 14430–14484.
    Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G.
    Impedance Spectroscopy of Metal Halide Perovskite Solar Cells from the Perspective of Equivalent Circuits.
  2. The Journal of Physical Chemistry Letters, 2021, 12, 11005–11013.
    Bisquert, J.
    A Frequency Domain Analysis of the Excitability and Bifurcations of the FitzHugh–Nagumo Neuron Model.
  3. Nature Electronics, 2021, 4, 681–688.
    Deumel, S.; van Breemen, A.; Gelinck, G.; Peeters, B.; Maas, J.; Verbeek, R.; Shanmugam, S.; Akkerman, H.; Meulenkamp, E.; Huerdler, J.E.; Acharya, M.; García-Batlle, M.; Almora, O.; Guerrero, A.; Garcia-Belmonte, G.; Heiss, W.; Schmidt, O.; Tedde, S.F.
    High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites.
  4. International Journal of Hydrogen Energy, 2021, 46, 23702-23714.
    Shaddad, M.N.; Arunachalam, P.; Hezam, M.; AL-Saeedan, N.M.; Giménez, S.; Bisquert, J.; Al-Mayouf, A.M.
    Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping.
… … next › last »